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Abstract The most widely used guaranteed methods for global opti-
mization are interval-based branch-and-bound techniques. In these tech-
niques, we start with a single box — the entire function domain - as a
possible location of the global minimum, and then, of each step, subdi-
vide some of the boxes, use interval computations to compute the enclosure
[F(X),F(X)] D f(X) for the range f(X) of the optimized function f(z)
on each new sub-box X, and, based on these computations, eliminate the
boxes which cannot contain the global minimum. The computational ef-
ficiency of these methods strongly depends on which boxes we select for
sub-division. Traditionally, for sub-division, the algorithms selected a box
with the smallest value of F'(X). Recently, it was shown that the algorithm
converges much faster if we select, instead, a box with the largest possible
o _f—=F(X)
value of the ratio F(X) - F(X)
actual global minimum. In this paper, we give a theoretical justification for
this empirical criterion. Namely, we show that:

, where fis a current upper bound on the

— first, this criterion is the only one that is invariant w.r.t. some reasonable
symmetries; and
— second, that this criterion is optimal in some reasonable sense.
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1 Introduction

The most widely used guaranteed methods for global optimization are
interval-based branch-and-bound techniques; see, e.g., [7,13]. The main idea
of these techniques is as follows. We start with a single box — the entire func-
tion domain D C IR™ — as a possible location of the global minimum. On
each step of the corresponding algorithm, we have one or several boxes X
— which are chosen in such a way that all global minima are guaranteed to
lie within one of these boxes. For each box X, we use interval computation
techniques to compute the enclosure [F(X),F(X)] D f(X) for the range
f(X) of the minimized function f(z) = f(z1,...,2Zn).

For each point z within each of the selected boxes X, we have f(z) <
F(X); therefore,

min f(z) < F(X)
and hence,
min f(z) < mig f(2) < F(X).

Since this is true for every box X, we can therefore conclude that

. 7def . —
min f(z) < f = min F(X).

If for some box X, we have F(X) > f, this means that the global minimum
cannot be in this box, and so, this box can be safely deleted from the list
of possible locations of global minima.

After this deletion, we select a box X, divide it into two or more sub-
boxes, and estimate the enclosure for all the new boxes. After this calcula-
tion, we recalculate f = m}én F(X). Usually, the resulting new estimate is

lower than the previous one, and this enables us to eliminates some of the
old and/or new boxes. After this, the process starts anew.

The computational efficiency of these methods strongly depends on
which boxes we select for sub-division. Traditionally, for sub-division, the
algorithms selected a box with the smallest value of f(X) [13]. Recently,
it was shown [5,6] that the algorithm converges much faster if we select,
instead, a box with the largest possible value of the following indicator [2]:

f—E(X)

her X = F 3 F )

(1)

Similar formulas have also been successfully used in other contexts:

— the formula (1) is used to predict the computational cost of processing
the box X — with the purpose of evenly distributing the load on a parallel
computer [2];

— the same indicator was also used to improve the efficiency of multisection
in interval optimization algorithms [3];
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— and it was also applied to decide heuristically which subboxes can be
deleted when due to the limited memory we have to give up solving
optimization problems reliably [4];

— a similar formula

fl@)—m

M-m’

where m is an estimate for a minimum of a function f(z), and M is an
estimate for its maximum, is used in fuzzy optimization to describe the
degree to which the value x maximizes the objective function f [1,9,12].

In this paper, we give a theoretical justification for the empirical expression
(1). Namely, we show that:

— first, this expression is the only one that is invariant w.r.t. some reason-
able symmetries; and
— second, that this expression is optimal in some reasonable sense.

For that, we use symmetry techniques which have already been used in
several similar problems:

— in [8] to find the optimal selection of a side to bisect;
— in [10] to select an optimal formula for the so-called “e-inflation”, and
— in [11] for several other computational problems.

2 Informal (Heuristic) Justification of the New Indicator
Function

Before we start a formal analysis of this problem, let us give an informal
(heuristic) justification of the formula (1).

The main advance of a subdivision step is that we get a better estimate f
for the global minimum. Since this estimate is the smallest of upper bounds
F(X), the only way to decrease this estimate is to get a new upper bound
F(X)pew to be smaller than the previous estimate, i.e., to get F(X )new < f-

The smaller the box, the more accurate range estimates; thus, subdi-
vision usually does decrease the enclosure. We can crudely estimate this
decrease by assuming that the midpoint m = (F(X) + F(X))/2 of the en-
closure interval stays the same, while the half-width decreases to a g¢-th
portion of its original value w = (F(X) — F(X))/2, for some ¢ < 1. As a
result, the new upper bound is equal to

F(X)+ F(X) F(X)-F(X)
2 ta 2 ’

gl

(X)new =m+q-w =

and the desired inequality F(X)new < f is equivalent to
F(X F(X F(X)-F(X ~
( )7;_( ) 4 . (X) - E(X) _ 7.
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Subtracting F(X) from both sides of this inequality, we get an equivalent
formula

F(X) gE(X) g B ;E(X) _ 1‘2Fq (F(X) - F(X)) < f - F(X),

which, in its turn, is equivalent to

1+¢q f-FX)
. <F(X)_F(X)—Inew<X),

i.e., 10 ¢ < 2@ew(X) — 1. Thus, the larger Iew (X), the more probable it is
that an unknown compression ratio ¢ will lead to a decrease in f Hence,
to increase the possibility that the value f will decrease, we must select the
box X for which the indicator ey (X) attains the largest possible value.
This explanation is a heuristic argument in favor of the formula (1), but
it does not answer the question of whether this method is indeed the best.
To answer that question, we need a more formal analysis of this problem.

3 First Result: Describing All Invariant Indicator Functions
3.1 Selecting an Indicator is Equivalent to Selecting a Function

We would like to assign, to every box X, a numerical value I(X) (called
the indicator) so that on every step, we will subdivide a subbox with the
largest value of I(X). Assume that for each box X, the only information that
we have to determine this indicator consists of the enclosure [F(X), F(X)]
for the range f(X) of the function f(z) on this box, and of the upper
bound f of the minimum of f (z) on the whole domain. Thus, the de-
sired indicator I(X) is a function of the corresponding three real variables:

1(X) = I (E(X), F(X), ).
In these terms, the choice of an indicator I(X) is reformulated as the

choice of the corresponding function I(a, b, ¢) — which is defined for all a < b.
Examples:

— the traditional indicator F(X) — min (or, equivalently, —F(X) — max)
is described by a function I(a,b,c) = —a;
— the new indicator (1) is described by the function

Loew(a,b,0) = 57— (2)

Let us describe natural requirements for the desired function I.
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3.2 Scale Invariance

In real-life problems, the minimized function f(z) often represents the value
of some physical quantity (e.g., voltage) for the situation described by the
parameters £ = (1, -..,Zy)- If we change the unit in which we measure the
corresponding physical quantity (e.g., use centimeters instead of meters),
all numerical values will be multiplied by a constant A (# 0), so instead
of the original function f(x), we get a new “re-scaled” function X - f(z).
If we use scale-invariant range estimates, then the corresponding values
of F(X), F(X), and f will also be multiplied by the same constant \:
F(X) > X\-F(X),F(X) 5> A-F(X),and f > \- f.

It is natural to require that the indicator used for selecting a subbox
should not depend on the choice of units, i.e., that

I()\.E(X),)\-F(X),)\-f) -1 (E(X),F(X),f)

for all A, F(X), F(X), and f. In other words, the desired function I must
be scale-invariant in the sense that

IX-a,\-b,\-c) =I(a,b,c) (3)

for all possible values A > 0, a, b, and c.

3.8 Shift Invariance

For some physical quantities (e.g., for voltage), we can not only change
the measuring unit, we can also change the starting point. In this case, a
constant s will be added to all numerical values of f(z): f(z) — f(z) + s.
If we use shift-invariant range estimates, then the corresponding values of
F(X), F(X), and f will also be increased by the same constant s: F(X) —
F(X)+s,F(X) > F(X)+s,and f — f +s.

It is natural to require that the indicator used for selecting a subbox
should not depend on the choice of the starting point, i.e., that

I (E(X) +5,F(X)+s,f+ s) -y (E(X),F(X), f)

for all s, F(X), F(X), and f. In other words, the desired function I must
be shift-invariant in the sense that

I(a+s,b+s,¢+s) =I(a,b,c) 4)

for all possible values s, a, b, and c.
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3.4 Result

It is easy to check that the function I,ew(a,b,c) corresponding to the new
indicator (1) is both scale- and shift-invariant. The following result shows
that this function is, in essence, the only invariant indicator:

Theorem 1. If a function I is scale- and shift-invariant, then I(a,b,c) =
G(Lnew(a,b,c)) for some function G : IR, — IR.

In other words, if I(X) is an invariant indicator, then, for every box X,
we have I(X) = G(Inew(X)). Thus, if we know the value of Iew(X) for
all boxes X, we will be able to determine the values of I(X) for all the
boxes, and thus, select the box to be subdivided. In this sense, the use of
an arbitrary invariant indicator is equivalent to the use of the indicator (1).

It is also natural to require that if the two boxes differ only in the value
of F(X), then the box with the smaller value of F(X) will be more likely
to be sub-divided. The decrease in F(X) increases the ration IL,ey; thus, we
require that if the ratio Iew(X) increases, the value I(X) = G(Ihew (X))
should also increase. In other words, we require that the function G(¢) be
strictly increasing. For such functions, the selection I(X) — max is equiva-
lent to the selection Inew(X) — max.

Proof of Theorem 1. Since the function I(a, b, ¢) is shift-invariant, we can
take s = —a and conclude that

I(a,b,c) = I(a+ (—a),b+ (—a),c+ (—a)) = I(0,b—a,c—a). (5)

Since we assumed that a < b, we have b — a > 0. We can now use scale-
invariance with A = 1/(b — a), and conclude that

I(O,b—a,c—a):I(O,l,%). (6)

Combining (5) and (6), we conclude that I(a,b,¢) = G(Inew(a,b,c)), where
G(t) = I(0,1,t). The theorem is proven. Q.E.D.

4 Second Result: Describing All Optimal Indicator Functions
4.1 What is “Optimality Criterion”?

When we say that some optimality criterion is given, we mean that, given
two different indicator functions I and I', we can decide whether the first one
is better, or that the second one is better, or that these indicator functions
are equivalent w.r.t. the given criterion. In mathematical terms, this means
that we have a pre-ordering relation < on the set of all possible indicator
functions.
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4.2 We Want to Solve an Ambitious Problem: Enumerate oll Indicator
Functions That Are Optimal Relative to some Natural Criteria

One way to approach the problem of choosing the “best” indicator function
I is to select one optimality criterion, and to find a function that is the
best with respect to this criterion. The main drawback of this approach is
that there can be different optimality criteria, and they can lead to different
optimal solutions. It is, therefore, desirable not only to describe a function
that is optimal relative to some criterion, but to describe all functions that
can be optimal relative to different natural criteria'. In this paper, we are
planning to implement exactly this more ambitious task.

4.8 Examples of Optimality Criteria

Pre-ordering is the general formulation of optimization problems in general,
not only of the problem of choosing an indicator function I. In general
optimization theory, in which we are comparing arbitrary alternatives a',
a", ..., from a given set A, the most frequent case of such a pre-ordering is
when a numerical criterion is used, i.e., when a function J : A — R is given
for which o' < o' iff J(a') < J(a").

Several natural numerical criteria can be proposed for choosing a func-
tion J. For example, we can take, as a criterion, the average number of
iterations that lead to determining all global minima with a given relative
accuracy (average in the sense of some natural probability measure on the
set of all problems).

Alternatively, we can fix a class of problems, and take the largest number
of iterations for problems of this class as the desired (numerical) optimality
criterion.

Many other criteria of this type can be (and have actually been) pro-
posed. For such “worst-case” optimality criteria, it often happens that there
are several different alternatives that perform equally well in the worst case,
but whose performance differ drastically in the average cases. In this case,
it makes sense, among all the alternatives with the optimal worst-case be-
havior, to choose the one for which the average behavior is the best pos-
sible. This very natural idea leads to the optimality criterion that is not
described by a numerical optimality criterion J(a): in this case, we need
two functions: Ji(a) describes the worst-case behavior, Ja(a) describes the
average-case behavior, and a < b iff either Ji(a) < J1(b), or Ji(a) = J1(b)
and Jo(a) < Jo(b).

! In this phrase, the word “natural” is used informally. We basically want to say
that from the purely mathematical viewpoint, there can be weird (“unnatural”)
optimality criteria. In our text, we will only consider criteria that satisfy some re-
quirements that we would, from the common sense viewpoint, consider reasonable
and natural.
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We could further specify the described optimality criterion and end up
with @ natural criterion. However, as we have already mentioned, the goal
of this paper is not to find an indicator function that is optimal relative
to some criterion, but to describe all indicator functions that are optimal
relative to some natural optimality criteria. In view of this goal, in the
following text, we will not specify the criterion, but, vice versa, we will
describe a very general class of natural optimality criteria.

So, let us formulate what “natural” means.

4.4 What Optimality Criteria are Natural?

We have already mentioned that the minimized function f(z) often repre-
sents the value of some measured quantity, and that the numerical value of
a measured quantity changes if we select a new measuring unit and/or a
new starting point. It is natural to require that the relative quality of two
indicator functions does not depend on the choice of units or on the choice
of the starting point.

How does replacing a unit change the indicator function I? If we replace
a unit by one that is A times smaller, then the quantity that was initially
described by a value f(z) will be described by a new value A - f(x). Thus,
the new value of the indicator I(X) is equal to I ()\ CF(X),\-F(X),\- f)
This value is equivalent to applying a new function a,b,c — I(A-a, A-b, A-c)
to the old values F(X), F(X), and f. We will denote this new, “re-scaled”
indicator function by Sy (I)-

Similarly, if we replace a starting point by a new one that is smaller by a
constant s, then the quantity that was initially described by a value f(z) will
be described by a new value f(z) + s. Thus, the new value of the indicator
I(X) is equal to I(F(X) + s, F(X) + s, f + s). This value is equivalent to
applying a new function a,b,c = I(a+s,b+s,c+s) to the old values F(X),
F(X), and f. We will denote this new, “shifted” (“translated”) indicator
function by T5(I).

In these terms, the above requirement is that if I is better than I’, then:

— the “re-scaled” I (i.e., the function Sy(I)) should be better than the
“re-scaled” I' (i.e., than S)(I')); and

— the “shifted” I (i.e., the function T5(I)) should be better than the
“shifted” I' (i.e., than Ts(I")).

There is one more reasonable requirement for a criterion, that is related with
the following idea: If the criterion does not select a single optimal indicator
function, i.e., if it considers several different functions equally good, then we
can always use some other criterion to help select between these “equally
good” ones, thus designing a two-step criterion. If this new criterion still
does not select a unique indicator function, we can continue this process
until we arrive at a combination multi-step criterion for which there is only
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one optimal indicator function. Therefore, we can always assume that our
criterion is final in this sense.

4.5 Definitions and the Main Result

Definition 1. By an optimality criterion, we mean a pre-ordering (i.e., a
transitive reflexive relation) < on the set A. An optimality criterion < is
called:

— scale-invariant if for all f, g, and A, f < g implies Sx(f) < Sx(9)-

— shift-invariant if for all f, g, and s, f < g implies T5(f) < Ts(g).

— final if there exists one and only one indicator function f that is prefer-
able to all the others, i.e., for which g < f for all g # f.

Theorem 2.

— If an indicator function I is optimal w.r.t. some scale- and shift-
invariant final optimality criterion, then this function is equal to G(Lnew)
for some function G : IR — R.

— For every function G : IR — IR, there ezists a scale- and shift-invariant
final optimality criterion for which the only optimal indicator function
8 G(Inew)-

Comment. In other words, if the optimality criterion satisfies the above-
described natural properties, then the optimal indicator function is equiva-
lent to (1).

Proof of Theorem 2.

We have already shown, in Theorem 1, that for every function G, as defined
there, the indicator function G(I,ew) is a scale- and shift-invariant, and that
all scale- and shift-invariant functions have this form.

1. To prove the first part of Theorem 2, we will show that the opti-
mal indicator function I,p is scale-invariant and shift-invariant, i.e., that
Sa(Topt) = Ts(Lopt) = Iopt for all A and s. Then, the result will follow from
Theorem 1.

Indeed, let T be one of these transformations. Let us first show that each
of these transformations is invertible, i.e., that the inverse transformation
X1 exists. Indeed:

— if T = Sy, then T = Sy /y;
—ifT =T, then T =T_,.

Now, from the optimality of I,p, we conclude that for every I' € A,
T~YI') < Iypt. From the invariance of the optimality criterion, we can
now conclude that I' < T'(Iop). This is true for all I' € A and therefore,
the indicator function T'(I,p¢) is optimal. But since the criterion is final,
there is only one optimal indicator function; hence, T'(Iopt) = Iopt- So, the
optimal inflation function is indeed invariant and hence, due to Theorem 1,
it coincides with G(Inew). The first part is proven.
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2. Let us now prove the second part of Theorem 2. Let G be fixed, and let
Iy = G(Ihew) be the corresponding indicator function. We will then define
the optimality criterion as follows: I < I' iff I' is equal to this Ij.

Since the indicator function Ij is scale-invariant and shift-invariant, thus
the defined optimality criterion is also scale- and shift-invariant. It is also
clearly final.

The indicator function Iy is clearly optimal w.r.t. this invariant and final
optimality criterion. Q.E.D.
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