From [0,1]-Based Logic
To Interval Logic
(From known description of all possible
[0,1]-based logical operations
to a description of all possible
interval-based logical operations)

Hung T. Nguyen! and Vladik Kreinovich?

!Department of Mathematical Sciences
New Mexico State University
Las Cruces, NM 88003, USA
hunguyen@nmsu.edu

2Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA
vladik@cs.utep.edu

Abstract

Since early 1960s, we have a complete description of all possible [0, 1]-
based logical operations, namely of “and”-operations (t-norms) and of
“or”-operations (t-conorms). In some real-life situations, intervals provide
a more adequate way of describing uncertainty, so we need to describe
interval-based logical operations. Usually, researchers followed a prag-
matic path and simply derived these operations from the [0, 1]-based ones.
From the foundational viewpoint, it is desirable not to a priori restrict
ourselves to such derivative operations but, instead, to get a description
of all interval-based operations which satisfy reasonable properties.

Such description is presented in this paper. It turns out that all such
operations can be described as the result of applying interval computations
to the corresponding [0, 1]-based ones.

1 [0,1]-Based Logical Operations: Reminder
1.1 Why [0,1]-Based Logical Values

In many areas of expertise, such as medicine, geophysics, etc., human experts are
needed. Usually, there are very few top level experts, and it is not physically
possible for these few experts to solve all numerous related problems. It is
therefore desirable to develop a computer-based system which incorporates the
knowledge of the top experts and uses this knowledge either to directly solve
the related problems — or, at least, to provide high-level advise to people trying
to solve these problems.

Experts can describe their knowledge in terms of statements and rules, but
this formulation often comes with uncertainty and ambiguity: experts are often
not 100% confident in the statements which form their knowledge, and even
when they are, these statements are formulated in terms of words of natural
language (such as “large”) which do not have precise meaning. To adequately
describe the expert knowledge, we must therefore store, in the knowledge base,
not only the statements themselves, but also the indication of the degree to
which the experts are confident in these statements.

This degree is usually described by a number from the interval [0,1]. An
expert’s degree of confidence d(A) in a statement A can be determined, if, e.g.,
we ask an expert to estimate his/her degree of confidence on a scale from 0 to
10. If s/he selects 8, then we take d(A) = 8/10.

1.2 Why [0,1]-Based Logical Operations

Suppose now that we know the degrees of confidence d(A) and d(B) in state-
ments A and B, and we know nothing else about A and B. Suppose also that
we are interested in the degree of confidence of the composite statement A & B.
Since the only information available consists of the values d(A) and d(B), we
must compute d(A & B) based on these values. We must be able to do that for
arbitrary values d(A) and d(B). Therefore, we need a function that transforms
the values d(A) and d(B) into an estimate for d(A & B). Such a function is called
an “and”-operation (t-norm). If an “and”-operation fg : [0,1] x [0,1] — [0,1] is
fixed, then we take fg (d(A),d(B)) as an estimate for d(A & B).

Similarly, to estimate the degree of confidence in A V B, we need an “or”-
operation (t-conorm) fy : [0,1] x [0,1] — [0,1]. The following are the natural
general requirements for “and”- and “or”-operations:

Definition 1.

e By an “and”-operation, we mean a commutative, associative, monotonic,
continuous operation fg, : [0,1] x [0,1] = [0, 1] for which fg(1,a) = a and
f& (07 (l) =0.

e By an “or”-operation, we mean a commutative, associative, monotonic,
continuous operation fy : [0,1] x [0,1] = [0,1] for which fy(1,a) =1 and
fv(0,a) = a.

These properties are easy to explain. For example, commutativity fg(a,b) =
fe(b,a) comes from the fact that, from a common sense viewpoint, composite
statements A& B and B & A are equivalent; therefore, we expect our “and”-
operation to lead to the same degree of certainty for both composite statements.
In precise terms, this means that we expect fg (d(A),d(B)) = fe(d(B),d(A))
for every two statements A and B. If we denote d(A) by a and d(B) by b, we
can therefore conclude that fg(a,b) = fg (b, a) for every a and b.

Similarly, associativity fg (a, fe(b,¢)) = fe(fe(a,b),c) comes from the fact
that from the common sense viewpoint, the composite statements A & (B & C)
and (A& B) & C are equivalent.

Monotonicity, i.e., the fact that a1 < as and by < by, then fg(ai,b1) <
fel(az,b2) (and fy(ai,b1) < fu(aa,b2)), comes from the fact that if our degree
of confidence in A; is smaller than the degree of confidence in Ay, and the
degree of confidence in B; is smaller than the degree of confidence in Bs, then
our confidence in A; & B; must be smaller (or at least equal, but not larger)
than our confidence in A & Bs.

The first two pairs of “and” and “or” operations were proposed by L. Zadeh
in [28]: fe(z,y) = min(z,y), fv(z,y) = max(z,y), and fe(z,y) = 2 -y,
fv(z,y) = ¢+ y — z-y. Later, numerous other operations have been pro-
posed: e.g., in [8], Giles proposed “bold and” fg(a,b) = max(a+ b —1,0) and
“bold or” fy(a,b) = min(a + b,1).

1.3 Fuzzy Control: One of the Main Applications of Fuzzy
Logic

One of the main applications of fuzzy logic is fuzzy control (see, e.g., [17]). In
most industrial applications, we want to control the corresponding industrial
processes in such a way as to maximize the output within certain (physical and
economical) restrictions. When the corresponding mathematical description is
linear, we can use well-known optimal control techniques to find the optimal
control strategy. In reality, however, most industrial processes are non-linear.
For non-linear control problems, the situation is much more complicated: there
are good recipes which often work but, alas, there is still no general method of
generating an optimal (or even a reasonably good) control.

If for a certain industrial process, no known technique leads to a good qual-
ity control, what can we do? Usually, the very fact that this process is actually
used in industry means that this process is reasonably well controlled by human
controllers. Therefore, if we want to automate this control, we must somehow
transform the knowledge of these expert controllers (operators) into an auto-
matic control strategy.

Specifically, our goal is to describe a function which takes the sensor inputs
Z1,...,Z, (numbers) and generates the (numerical) value of the control effort
u. Unfortunately, expert operators cannot formulate their expertise in these
terms. Instead, they describe their control strategy by using uncertain (“fuzzy”)
statements of the type “if the obstacle is straight ahead, the distance to it is
small, and the velocity of the car is medium, press the brakes hard”. Fuzzy
control is a methodology which translates such statements into precise formulas
for control.

Once we have selected a fuzzy “and”-operation fg(a,b) and a fuzzy “or”-
operation fy(a,b), we are able to transform an arbitrary set of fuzzy if-then

rules connecting inputs z1,...,Z, and the output w into a crisp function
y = f(x1,-..,2n)- Indeed, let us assume that the relation between the inputs
Z1,--.,Z, and the output v can be characterized by several if-then rules:

if Aj1(z1) and ... and A, (z,) then B;(u);

if Aj1(z1) and ... and A, (x,) then B;(u); (1)

if Apa(zy) and ... and A, (z,) then By, (u),

where A;;(z;) and B;(u) are properties expressed by words from natural lan-
guage. This interpretation consists of the following steps (see, e.g., [12, 17]):

e First, we can use one of the known elicitation techniques to determine
the membership functions ,u;-‘} (z;) and pP(y) corresponding to the words
Aij(z;) and Bi(y).

e Then, we can use the fuzzy “and” operation fg (a,b) to determine, for each
rule 4, for given input z1, . . ., Z,, and for a given control u, the degree c;(u)
to which the given input and control satisfies this rule. This value is equal
to

ci(u) = fu(pir (1), .., i (za), 17 (u)). 2)

e Next, we use the fuzzy “or” operation fy(a,b) to determine the degree
p(u) to which one of these rules is activated:

u(w) = fvler(u), ..., em(u)). 3)

¢ Finally, we apply one of the many known defuzzification procedures — e.g.,
the centroid defuzzification

- Ju- p(u)du
T) d

— to determine the actual control value @ which we want to apply for the
given input 21,...,%,.

(4)

1.4 From This Viewpoint, the More Logical Operations
We Can Find, the Better

For each pair of the “and”- and “or”-operations, we can have a reasonable
fuzzy control strategy. However, the fact that we have three pairs of operations
does not necessarily mean that we should not look for more. It is a general
commonsense fact that the more options one has, the better option one can
find for some future optimization problem. This general fact is also true for
fuzzy control (and for other applications of fuzzy logic). Indeed, as we have
mentioned, Zadeh [28] originally proposed two pairs of operations:

° f&(aa b) = min(aa b)a fV(a7 b) = max(a: b)7
e fy(a,b)=a-b, fu(a,b)=a+b—a-b.
For some optimality criteria, these pairs are indeed the best; for example:

e the first pair is the best when we are interested in the operations which
are the most robust (the least sensitive) in the worst case;

e the second pair is the best when we are interested in the operations which
are the most robust (the least sensitive) in the average.

However, for other criteria, other pairs are optimal; for example:

e when we want to achieve the most stable fuzzy control, we should use
fe(a,b) = min(a,b) and fy(a,b) = min(a + b,1);

e when we want to achieve the most smooth fuzzy control, we should use
fe(a,b) = max(a+ b—1,0) and fy(a,b) = max(a,b);

(for exact formulations and similar results, see, e.g., [22], the surveys [13, 17]
and references therein).

1.5 Description of All Possible [0,1]-Based Logical Oper-
ations: Reminder
As we have just argued, it is desirable not to a priori restrict ourselves to known

operations, but, instead, to get a complete description of all possible operations.
For [0, 1]-based logical operations, such a classification is known.

This classification is related to the known fact that we can get new t-norms
if we consider different “scales” on the interval [0,1] of all possible degrees
of certainty. Namely, the assignment of different numerical degrees to words
expressing uncertainty is rather arbitrary. Let us assume that we assign new
values to these words, and let ¢(a) be a new value assigned to the word to
which we originally assigned the value a. In this new scale, to each statement
A, instead of the original degree of certainty d(A), we assign a new degree of
certainty d'(A) = p(d(A)). In the new scale, the same “and”-operation will look
different. Namely, if we know the degrees a’' = d'(A) and b’ = d'(B) in the new
scale, and we want to find d'(A4 & B), then we must do the following:

e first, we compute the degrees a = d(A) and b = d(B) in the old scale as
a= ¢ Ya') and b = 71 (b') (where ¢! denotes the inverse function);

e second, we use the known t-norm fg(a,b) to compute the degree of cer-
tainty ¢ = fg(a,b) = fe(p™t(a'),p 1(b')) of the composite statement
A& B in the old scale;

¢ finally, we transform the degree ¢ back into the new scale, resulting in
¢ = () = p(fele™ (@), ¢ ())).

This three-step procedure is equivalent to using an operation fi (a',b’) =
o(fe(pt(a'),p (b)) and the new operation is called isomorphic to the orig-
inal t-norm fg(a,b). Isomorphic operations provide numerous new ezamples of
t-norms and t-conorms.

The complete description of all possible [0, 1]-based logical operations (which
uses rescaling and isomorphisms) has been given, in effect, in [16] (see also
[12, 14, 19, 21]). It turns out that every t-norm fg(a,b) can be described as
follows:

e we subdivide the interval [0, 1] into subintervals;

e the restriction of the t-norm fg(a,b) to each of these subintervals is iso-
morphic either to the “algebraic” t-norm a - b, or to max(a + b —1,0), or
to min(a, b); this describes the values of fg (a,b) for the case when both a
and b belong to the same subinterval;

e when a and b belong to different subintervals, then fg (a,b) = min(a, b).

A similar description is known for t-conorms.

2 Interval-Based Logical Operations: Reminder
and Formulation of a Problem

2.1 Need for Interval-Based Logical Values

Experts cannot describe their degrees of confidence precisely. At best, they can
give an interval of possible values. For example, an expert can point to 8 on a
scale from 0 to 10, but this same expert will hardly be able to pinpoint a value
on a scale from 0 to 100. As a result, the only thing that we know about the
expert’s degree of confidence is that it is closer to 8 than to 7 or to 9, i.e., that
it is in the interval [0.75,0.85].

So, to describe degrees of confidence more adequately, we must use intervals
a = [a,a"] instead of real numbers. In this representation, real numbers can
be viewed as particular — degenerate — cases of intervals [a, a]. The idea of using
intervals was originally proposed by Zadeh himself and further developed by
Bandler and Kohout [1], Tiirksen [24], and others; for a recent survey, see, e.g.,
[18] (see also [2, 3, 4, 5, 6]).

2.2 Need for Interval-Based Logical Operations

Since we went from numbers to intervals in our description of degrees of cer-
tainty, we must have “and” and “or” operations as functions from intervals
to intervals. For example, in fuzzy control, if the expert controller’s degrees
of certainty in the properties A;;(x;) and B;(u) (like “small”) are described
by intervals, we need operations on intervals to combine these degrees and to
generate the resulting control value.

2.3 Currently Used Interval-Based Logical Operations:
Reminder

Traditionally, researchers followed a pragmatic path and simply derived these
operations from the [0, 1]-based ones. Namely, when an expert says that his/her
degree of certainty in a statement A belongs to the interval [a~,a™], we can
interpret it as meaning that the (unknown) actual degree of confidence can be
any number from this interval. With this interpretation in mind, it is natural
to define, e.g., an interval “and”-operation as follows:

e First, we select a [0,1]-based “and”-operation (t-norm) fg(a,b). This
operation corresponds to the case when an expert knows the exact values
of his/her degrees of certainty, i.e., when the intervals a = [a~,a™] and
b = [b~,b*"] are degenerate (a~ = a™ and b~ = bt).

e Next, when we know the interval degrees a and b, we interpret these
intervals by saying that a can take any value from a and b can take any

value from b. Thus, as the degree corresponding to A & B, it is natural
to take the set of all possible values of fg (a,b) when a € a and b € b. In
precise terms, we define fg (a,b) as follows:

fe(a,b) = {fx.(a,b) |a € a,b e b}.

This formula is a particular case of the so-called interval computations [9, 10,
11, 20]. Since the function fg(a,b) is monotonically increasing and continuous,
the resulting set is easy to describe:

fe(la™,a™],[b7, 7)) = [fe(a™,b7), fe(a™, bF)].

We can use a similar “pragmatic” approach and define an interval-based “or”
operation as

fV([a7=a+]a [b7= b+]) = [fV(aiabi)afV(a—’_Jb_’_)]'

For example, if we start with fg (a,b) = min(a,b) and fy(a,b) = max(a,b), we
get interval operations

fe(la™,a*1,[b7,b%) = [min(a=,b"), min(a*, b+)];

Fo([a™,a™],[b7,b7]) = [max(a”,b”), max(a™, b7)].

When we start with fg(a,b) = a-b and fy(a,b) = a+b—a-b, we get the
following interval operations:

f&([a_7a+]7[b_7b+]) =la”- b_7a+ : b+]§
fV([a_7a+]7 [b_7b+]) = [a_ +b” —a” - b_7a+ + bt —at - b+]

In the general case, the resulting interval operations satisfy the same natural
properties of associativity, commutativity, etc. as the original [0, 1]-based ones
(see, e.g., [19]).

2.4 Need for a Description of All Possible Interval-Based
Logical Operations: Reminder

As we have already mentioned when we described [0, 1]-based operations, the
fact that we have a class of operations does not necessarily mean that we should
not look for more — because the more options one has, the better option one can
find for some future optimization problem. From this commonsense viewpoint,
it is desirable not to a priori restrict ourselves to such “derivative” interval
operative but, instead, to get a complete description of all possible interval-
based operations.

2.5 Description of All Possible Interval-Based Logical Op-
erations: What Was Known and What We Prove in
This Paper

The task of obtaining a description of all possible interval-based logical opera-
tions was started in a pioneer paper by Zuo [29] who described all interval-based
operations which are strictly monotonic (in some reasonable sense). In this pa-
per, we extend Zuo’s results and find a description of all possible interval-based
logical operations (which satisfy reasonable properties like commutativity and
monotonicity).

Specifically, we show that the above interval-computation operations are
the only ones possible. Thus, we provide a fundamental justification for the
traditional (interval-computation) approach.

3 Towards Formalization of the Problem: How
to Define Monotonicity for Interval Opera-
tions?

3.1 Why Is It Important to Define Monotonicity?

An important part of the definition of t-norm and t-conorm is the requirement
that these operations are monotonic, i.e., that if a; < ay and b; < by, then
fe(a1,b1) < fe(az,b2) and fy(a1,b1) < fy(az,bs). For [0,1]-based operations,
these properties are easy to formalize, because the order < is well defined on
the interval [0, 1]. For interval degrees, however, the situation is less clear.

If we know the interval degrees a; = [a],a]] and as = [a;,a}] for two
statements A; and As, this means that the actual degree of confidence a; in
A; can take any value from the interval a;, and the actual degree of confidence
a2 in Ay can take any value from the interval ay. If the intervals a; and as
intersect, then, depending on the selection of the values a; € a;, we may have
a1 < az and we may also have a; < a;.

For example, if a; = [0.7,0.9] and as = [0.8,1.0], then:

e on one hand, we may have a; = 0.7 € a; and a; = 1.0 € as, in which case
a; < as;

e on the other hand, we may have a; = 0.9 € a; and a; = 0.8 € ay, in
which case a1 > as.

Comment. A reader may notice the similarity between this example and prob-
lems from constraint propagation (see, e.g., [15, 23, 25, 26]). To get a better
understanding of our problem, let us explicitly describe the similarity and the
difference between similar problems from constraint propagation and the prob-
lems considered in this section.

A typical related constraint propagation problem would be formulated as
follows. Suppose that in addition to the domains a; = [0.7,0.9] and ap =
[0.8,1.0] of two quantities a; and ag, we know that a; > az. We can say that
we have three constraints:

e the domain a; = [0.7,0.9] is a constraint on the value of the first quantity
a1; it means that the value a; must satisfy the inequality 0.7 < a1 < 0.9;

e the domain a; = [0.8,1.0] is a constraint on the value of the second
quantity as; it means that the value a; must satisfy the inequality
0.8 < as < 1.0;

o finally, the inequality a; > az is a joint constraint which relates the values
of both variables.

These constraints lead to the updating of the previously known constraints and
to the appearance of the new constraints. The corresponding process of updating
previously known constraints and of discovering new (derivative) constraints is
called constraint propagatation. In the above example, we can use the three
constraints to update a constraint on as, namely, to deduce a stricter bound
on as: Indeed, since a; < aj, and a; < 0.9, we can conclude that a: < 0.9
and hence, as can only take values from a (narrower) interval [0.8,0.9]. In more
general terms:

e in constraint propagation:

e we have intervals of possible values of certain quantities, and

o we know the relations between the values of these quantities
(and we use these relations to narrow down the intervals).
e In this section, we consider the “inverse” problem:

e we know the intervals of possible values of certain quantities, and

e we want to find the relations between the values of these quantities.
3.2 Solution: Operations “Necessarily <” and “Possibly
<”

We have already mentioned that for interval degrees a; and ag, it is sometimes
not clear whether a; < a, or not. However, the situation is not hopeless: we
have the following two natural order-like relations:

10

Definition 2. Let a; = [a; ,a]] and ay = [a, ,a]] be two intervals.

o We say that a; is necessarily < as (and denote it by a; <b a) ifa; < ay
for every a; € a; and for every as € as.

e We say that a; is possibly < a, (and denote it by a; <® ay) ifa; < ay for
some a; € a; and ag € as.

It is therefore natural to require that the desired interval-based logical operations
be monotonic relative to both these operations, i.e., that:

e if a; <7 ay and by < by, then fg (a1, b1) <7 fe(az, b);
o if ai SO as and b1 SO b2, then f&(al,bl) SO f&(ag,bz).

We can describe these new monotonicity requirements in general terms:
Definition 3. Let L be an arbitrary (partially) ordered set.

e Let a~ and a™ be two points from L for which a=— < a®. The set
{bla” <b<a'}
will be called an interval and denoted by [a~,a™].

e The set of all intervals over L will be denoted by I(L).

For intervals over an arbitrary ordered set L, we can use Definition 2 to define
relations <" and <¢. Proposition 1 holds for this case as well. Monotonicity
with respect to these operations can then be defined as follows:

Definition 4. Let n be an arbitrary positive integer.

o We say that an n-ary interval operation F : I(L) x ... x I(L) — (L) is

<H-monotonic if a; <" ay, ..., by <" by imply that F(a;,...,b;) <"
F(ag, . ,bg).

o We say that an n-ary interval operation F : I(L) x ... x I(L) — (L) is
<% -monotonic if a; <® ay, ..., by <% by imply that F(ay,...,b;) <¢
F(ag, N ,bQ).

3.3 Solution Simplified

At first glance, the above solution may seem somewhat complicated. Indeed, if
we try to use the above definitions to check, e.g., whether a; is necessarily <
than as, then we will have to check infinitely many inequalities a; < as for all
possible pairs a; € a; and as € as. Luckily, the above definition can be easily
simplified; indeed, the following result can be easily proven:

Proposition 1.
e a; <"ayeal <aj;

e a <%ayta <af.

11

3.4 Simple to Check But Not Easy to Analyze

The above reformulation shows that both relations <" and <¢ are easy to check.
However, this same result shows that these relations are not easy to analyze,
because they are not orders [27].

Indeed, an order < is reflexive (i.e., a < a for every a), but the relation <"
is not reflexive: if a= < a™, then [a=,a’] £” [a~,a™]. One might suspect that
<" is a strict order, i.e., a anti-reflexive relation (for which a £ a for all a), but
this is not true either: for degenerate intervals, the relation is reflexive: a <" a.
Similarly, the order < should be transitive (if a < b and b < ¢, then a < ¢), but
the relation <® is not transitive: e.g., [0.9,1.0] < [0,1], [0,1] < [0,0.1], but
[0.9.1] £¢ [0,0.1].

Since these relations are not orders, we cannot use standard results about
monotonicity, and we therefore have to prove everything “from scratch”. This
is what we will do in the next section. An interesting auxiliary question —
originally formulated in [27] — is to give a complete algebraic characterization
of these relations. This characterization is given in Section 4.

3.5 Additional Monotonicity Property: Inclusion Mono-
tonicity

Let us show that, in addition to <®- and <®-monotonicity, it is natural to
require one more monotonicity property for interval operations. Indeed, suppose
that initially, we had a; and by as sets of possible values of degrees of confidence
in A and B. Then, by applying the interval “and”-operation fg,, we can conclude
that the degree of confidence in A& B is in fg (az, bs).

Suppose now that we have narrowed down our degrees of confidence to a; C
a; and b; C by. If we apply the same interval “and”-operation to the new
degrees of confidence, we get a new interval fg (a;,by). Since we have narrowed
down our intervals of possible degrees of confidence, it can happen that some
previously possible degrees of confidence in A & B are not possible anymore. But
it is reasonable to require that if a value is now possible, then it was possible
earlier as well (when we had even less knowledge about degrees of confidence).
In other words, we require that every number from fg (a;,b;) should belong to
fe(az, b2).

In other words, we require that if a; C ap and by C ba, then fg (a1, by) C
f&(az,b2). In mathematical terms, we require that the interval “and”-operation
f«(a, b) be monotonic relative to set inclusion C, i.e., in short, inclusion mono-
tonic.

Definition 5. Let n be an arbitrary positive integer. We say that an n-ary
interval operation F' : I(L)x...xI(L) — (L) is inclusion-monotonic ifa; C ag,
ey b1 g b2 1mp1y that F(al,...,bl) g F(aQ,...,bQ).

Now, we are ready for the main result.

12

4 Main Result

Although our main interest is in binary operations over subintervals of the in-
terval [0, 1], we will formulate this result in the most general terms: as a result
about operations of arbitrary arity over subintervals of an arbitrary ordered
set L.

Definition 6. Let n be an arbitrary positive integer. We say that an n-
ary interval operation F' : (L) x ... x I(L) — T(L) is obtained by interval
computations if there exists an n-ary <-monotonic function f : Lx ... X L — L
for which

F(la=,a™],....,[b=,0"]) =[f(a™,...,b7), fla®,...,b")].

Theorem 1.

e Every operation F obtained by interval computations is <"-monotonic,
< _-monotonic, and inclusion-monotonic.

o Every <-monotonic, <°-monotonic, and inclusion-monotonic interval
operation F is obtained by interval computations.

The second part of this theorem says that every interval-based operation which
satisfies the above natural monotonicity requirement is obtained by interval com-
putations. Thus, for binary operations over II([0,1]), we did provide a funda-
mental justification for the traditional pragmatic approach to interval-valued
operations.

Editorial Comment. For the convenience of the readers who are interested in
the results but not in the technical details of the proofs, all the proofs are placed
in the special Proofs section located at the end of the paper.

Technical Comment. In the second part of Theorem 1, we required that the
interval operation F be both <"-monotonic and <®-monotonic. As one can
see from the proof, it is sufficient to require that F' is <"-monotonic; then
<%-monotonicity follows automatically.

Historical Comment. A similar result was proven, in [7], under a different
monotonicity assumption: that the operation F' is monotonic relative to the
component-wise order:

[a7,a] < lag,a3] ¢ (a7 < a3 &af <a3).

In contrast to the relations <% and <<, the above relation is an order.

13

5 Auxiliary Results

Normally, we require that the relation < between degrees of certainty be an
order, i.e., a relation which satisfies the following three properties:

e it is reflexive (a < a);
e it is transitive (a < b and b < ¢ imply a < ¢); and
o it is antisymmetric (a < b and b < a imply a = b).

In the previous section, we mentioned that neither <" not <¢ are orders. What
are they?

In this section, we give exact algebraic characterizations of these two rela-
tions. To describe these results, let us recall the definition of a restriction of a
relation to a subset. Let S be an arbitrary set, let R be an arbitrary relation
on this set, and let S" C S be a subset of S. Then, we define a restriction R|g
of Rto S' as follows: if a,b € S’ then a R|s b if and only if a Rb.

Theorem 2.

o Let L be an arbitrary partially ordered set, and let S be an arbitrary subset
of I(L). Then, the restriction of <V on S is transitive and antisymmetric.

o Let S be an arbitrary set with a transitive antisymmetric relation R. Then,
there exists a partially ordered set L and a subset S' of the interval set
I(L) such that the relation R on S is isomorphic to the restriction of <"
to S'.

Theorem 3.

e Let L be an arbitrary partially ordered set, and let S be an arbitrary subset
of I(L). Then, the restriction of <® on S is reflexive.

o Let S be an arbitrary set with a reflexive relation R. Then, there exists a
partially ordered set L and a subset S’ of the interval set (L) such that
the relation R on S is isomorphic to the restriction of <® to S'.

So, both relations appear naturally if we divide the three properties describing
order into two groups: reflexivity in one group, and transitivity and antisym-
metry in another group.

o If we only keep properties from the first group, we get <.
o If we only keep properties from the second group, we get <.

o If we keep properties from both groups, we get a normal order relation.

14

6 Proofs

6.1 Proof of Theorem 1

1°. The first part is reasonable straightforward: if the interval operation F' is
obtained by interval computations from some monotonic operation

f:Lx...xL—L,

then from <-monotonicity of f, one can easily prove that F is <"-, <®- and
inclusion-monotonic.

2°. To complete the proof of the theorem, we must therefore prove its second
part: that every <-, <¢- and inclusion-monotonic interval operation F' is
obtained by interval computations.
We will actually prove this result without requiring that F is <®-monotonic.
Then, from the first part, it will follow that <<®-monotonicity is automatically
satisfied.

So, let F' be <"- and inclusion-monotonic. The result of applying F' is an
interval. Let us denote its lower endpoint by F'~ and its upper endpoint by FT.

2.1°. Let us first prove that when all inputs to F' are degenerate intervals, then
the output is also degenerate, i.e., for every a,...,b € L, we have

F~([a,a],...,[b,b]) = F*([a,a],...,[b,b]).

Indeed, by definition of <", for every a € L, we have
[a,a] <F [a,a].

So, [a,a] <" [a,a], ..., [b,b] <7 [b,b], and due to <"-monotonicity of the
operation F', we conclude that

F([a,a],...,[b,b]) < F(la,a],...,[b,b]).
By definition of <", from
F~([a,a],...,[b,b]) € F([a,a],...,[b,b])

and
F*([a,a],...,[b,b]) € F([a,al,...,[b,d]),

we can conclude that

F*([a,a],-..,[b,b]) < F~([a,d],...,[b,]).

15

On the other hand, since F'~ and F'T are endpoints of the interval, we have
F~([a,a],...,[b,b]) < F*([a,a],...,[b,b])-

Thus,
F~([a,a],...,[b,b]) = F*([a,a],...,[b,b]).

The statement is proven.

2.2°. Let us define a function f : L x ... x L — L as follows: for every
a,...,b € L, we define

fla,....0) ¥ F([a,q],...,[b,b]) = F*(a,a],...,[bb).

Then, for degenerate intervals, we have
F(la,al,...,[b,d) =[f(a,...,b), f(a,...,b)]
We will complete the proof of the theorem by showing two things:

e that thus defined function f is monotonic, and

e that
F(la,a™],...,[b,b]) =[f(a,...,b7), f(a*t,...,b")]
for all possible intervals [a™,at],...,[b7,b"] € I(L).

2.3°. Let us prove that the function f (defined in Part 2.2 of this proof) is
monotonic. In other words, let us prove that if a1 < as, ..., by < bs, then
flai,...,b1) < f(az,...,b2).

Indeed, let a; < as, ..., by < by. By definition of <", we can therefore conclude
that [a1,a1] <" [az,as], .., [b1,b1] <" [b2, b2]. Due to <"-monotonicity of the

operation F', we conclude that
F(la1,a1],---,[b1,b1]) <% F([az,as],- .., b2, ba]).
We already know, from Part 2.3 of this proof, that
F(la1,a1],-..,[b1,01]) = [f(a1,-..,b1), f(a1,...,b1)]

and
F([az,az], ey [b2,b2]) = [f(ag, .. .,bz),f(ag, .. .,bz)].

Thus, the above “necessarily <” relation means that

f(ala"'abl) Sf(aQJ"'abQ)'

The statement is proven.

16

2.4°. Let us now prove that

F(la ,a™],...,[b",bT]) =[f(a,...,b7), f(at,...,b")]

for all possible intervals [a~,a*],...,[b™,b"] € I(L), i.e., that for all possible
intervals,
F-(la ,a"],...;[b 7,0) = fla,...,b7)

and
Ft(la=,a*],...,[b=,b"]) = f(a™,...,b").
2.4.1°. Let us first prove that

fla,...,b7) < F ([a”,a™],...,[b7,bT)).

Indeed, from the definition of <", we can easily conclude that for every interval
[a=,a™], we have [a—,a"] <" [a,a™].

From the fact that [a=,a"] <" [a~,a™], ..., [b~,b7] <" [b—,b*], and that
F is <"-monotonic, we conclude that

F(la ya],...,[b-,07]) <" F([a ,a™],...,[b—,b"]).
According to Proposition 1, this means that
F*(a™,a7),...,[b7,07]) < F~([a7,a*],..., [b7,b7]).
We already know, from Part 2.2 of this proof, that
Ft(a=,a7],...,[b7,b7]) = f(a™,...,b7).

Thus, the above inequality is exactly what we want to prove. The statement is
proven.

2.4.2°. Let us now prove that

F(a,a*],...,[b~,b*]) < f(a,...,b").

Indeed, for each of the input intervals, we have [a~,a"] = {a~} C [a™,at], ...,
[b=,b7] = {b~} C [b—,b"]. Since the operation F is inclusion-monotonic, we
conclude that

F(la~,a™],...,[b7,07]) C F([a",a"],...,[b-,bT]) =

[F~([a,at],...,[b7,b%]),FT([a,at],...,[b~,b"])].

17

Due to Parts 2.1 and 2.2. of this proof, we have
F(la",a7],...,[b7, 07) ={f(a",...,b7)}.
Thus, the above inclusion means that
fla...,b7) e[F ([a”,at),...,[b~,b%]), F([a”,a™],...,[b7,b%])]
By definition of an interval, this means, in particular, that
F([a,at],...,[b7,b%]) < fla™,...,b7).

The statement is proven.
2.4.3°. From Parts 2.4.1 and 2.4.2 of this proof, we can now conclude that

F ([a,a*],...,[b",b"]) = f(a™,...,b7).

2.4.4°. Let us now start proving the second inequality from Part 2.4 by first
proving that
Fr(a=,a*],....[b7, %)) < fa*,...,07).

Indeed, from the definition of <", we can easily conclude that for every interval
[a=,a™], we have [a™,at] <" [aT,at].

From the fact that [a~,a™] <" [at,a™], ..., [b7,bT] <" [b+,b*], and that
F is <"-monotonic, we conclude that

F(la™,a™],...,[b7,b%]) <7 F([la*,a*],..., [b",b7]).
According to Proposition 1, this means that
Ft([a=,at],...,[b7,b%])) < F~([a*t,at],...,[b",b]).
We already know, from Part 2.2 of this proof, that
F~([a*,at],...,[b",b"]) = f(a™,...,b").

Thus, the above inequality is exactly what we want to prove. The statement is
proven.

2.4.5°. Let us now prove that

fla*,...;b") < Ft([a ,at],...,[b",b")).

18

Indeed, for each of the input intervals, we have [aT,a™] = {a*} C [a™,a™], ...,
[bT,b%7] = {b*} C [b—,bT]. Since the operation F is inclusion-monotonic, we
conclude that

F(la*,a™],...,[b",b™]) C F([a,a™],...,[b7,0T]) =
[F~([a",at],...,[b=,b%]), FT([a ,at],...,[b~,b1])]
Due to Parts 2.1 and 2.2. of this proof, we have
F([a*,a™],...,[b",b%]) = {f(a*,...,b")}.
Thus, the above inclusion means that
flat,....vN) e [F ([a,at],...,[b-,b"]), Ft([a ,a™],...,[b~,b"])].
By definition of an interval, this means, in particular, that
flat,...;b7) < Ft(a",a'],...,[b",b%)).

The statement is proven.
2.4.6°. From Parts 2.4.4 and 2.4.5 of this proof, we can now conclude that

F*(la™,a'],...,[b7,b%]) = f(a™,...,07).

The theorem is proven.

6.2 Proof of Theorem 2

The first part of the theorem easily follows from Proposition 1, so it is sufficient
to prove the second part.
Let S be a set with a transitive antisymmetric relation R. Let

S, «f {a € S|aRa}

denote the set of all reflexive elements of S, and let

5; {a € S|—-aRa}

denote the set of all irreflexive elements of S. Let us define L as
LE S, U (S x {-+}),

i.e., as a set consisting of:

e all reflexive element of S, and

19

o of pairs {a,—) and {(a, +), where a € S,

and let us define the relation < on L as follows:

e for every a,b € S, we have a < b if and only if a R b;

e for a € S, and b € S;, we have:
e a < (b,—) if and only if a Rb, and
e a < (b,+) if and only if a Rb;

e for a € S; and b € S,., we have:
e {(a,—) < bif and only if a Rb, and
e {(a,+) < bif and only if a Rb.

e for every a € S;, (a,—) < (a,

finally, for a,b € S;, a # b, we have:

o {(a,—) < (b,—) if and only if a R b;
o {(a,—) < (b,+) if and only if a Rb;
e {a,+) < (b,—) if and only if a R b;
e {(a,+) < (b,+) if and only if a Rb.

_>a (CL, _> S

(a,+), and (a,+) < {(a, +);

One can easily check that this relation is an order.
Let us now assign, to every element a € S, an interval from I(L). Specifically,

we assign:

e to every element a € S, a degenerate interval [a,a] € I(L), and

e to every element a € S;, an interval [{a,

_)a <a7 +>] €]I(L)

Due to Proposition 1 and the definition of the order on L, we have the following

equivalences:

e when a,b € S,, then [a,a] <" [b,b] if and only if a Rb;

when a € S; and b € S,, then [(a

finally, when a, b € S;, then [{(a
a RD.

when a € S, and b € S;, then [a,a] <" [(b,
, =), {a,+)] < [b,b] if and only if a Rb;
) _)a <a7 +>] SD

—),{b,+)] if and only if a Rb;

[(b, =), (b, +)] if and only if

Thus, the original relation R on S is isomorphic to the restriction of <" to the
set S’ of all intervals assigned to elements of S. The theorem is proven.

20

6.3 Proof of Theorem 3

The first part of this theorem easily follows from the definition of <?, so it is
sufficient to prove the second part.

Let S be a set with a reflexive relation R. Let us define L as S x {—,+},
i.e., as the set of all pairs (a,—) and (a,+), where a € S, and let us define the
relation < on L as follows:

e for every a € Sa (aa _) < (aa _>a <a7 _) < <aa +)a and <aa+) < <aa+);
<

e for a # b, we have (a,—) < (b, +) if and only if a Rb;

e for every a and b, (a,+) £ (b, —).

One can easily check that this relation is an order.

Let us now assign, to every element a € S, an interval [(a,—), (a,+)] €
I(L). Due to Proposition 1 and the definition of the order on L, we have
[(a, =), {(a, +)] < [(b, =), (b, +)] if and only if a Rb. Thus, the original relation
R on S is isomorphic to the restriction of <¢ to the set S’ of all intervals
[(a, =), {a,+)]. The theorem is proven.

Acknowledgments

This work was supported in part by NASA under cooperative agreement NCC5-
209 and grant NCC 2-1232, by the Future Aerospace Science and Technology
Program (FAST) Center for Structural Integrity of Aerospace Systems, effort
sponsored by the Air Force Office of Scientific Research, Air Force Materiel
Command, USAF, under grant number F49620-00-1-0365, by Grant No. W-
00016 from the U.S.-Czech Science and Technology Joint Fund, and Grant NSF
9710940 Mexico/Conacyt.

The authors are thankful to Qiang Zuo, to Carol and Elbert Walkers, and
to Piotr Wojciechowski for their encouragement and helpful discussions, and to
the anonymous referees for useful comments and ideas.

References

[1] W. Bandler and L. J. Kohout, “Unified theory of multi-valued logical op-
erations in the light of the checklist paradigm”, Proc. of IEEE Conference
on Systems, Man, and Cybernetics, Halifax, Nova Scotia, Oct. 1984.

[2] D. Berleant and H. Cheng, “A Software Tool for Automatically Verified Op-
erations on Intervals and Probability Distributions”, Reliable Computing,
1998, Vol. 4, No. 1, pp. 71-82.

[3] D. Berleant and C. Goodman-Strauss, “Bounding the Results of Arithmetic
Operations on Random Variables of Unknown Dependency using Intervals”,
Reliable Computing, 1998, Vol. 4, No. 2, pp. 147-165.

21

[4]

[6]

[9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

S. Ferson, “Probability bounds analysis software,” Computing in Environ-
mental Resource Management: Proceedings of a Special Conference, Re-
search Triangle Park, NC, December 2-4, 1996, Air and Waste Management,
Association, Pittsburgh, Pennsylvania, 1996, pp. 669-678.

S. Ferson and L. Ginzburg, “Hybrid arithmetic”, In: B. M. Ayyub (ed.),
Proceedings of the ISUMA-NAFIPS’95, IEEE Computer Society Press, Los
Alamitos, California, 1995, pp. 619-623.

S. Ferson, L. Ginzburg, V. Kreinovich, and H. Schulte, “Interval Com-
putations as a Particular Case of a General Scheme Involving Classes
of Probability Distributions”, In: J. Wolff von Gudenberg and Walter
Kramer (eds.), Proceedings of the SCAN’2000/INTERVAL’2000, Kluwer
Academic/Plenum Publishers, Dordrecht, 2001 (to appear).

M. Gehrke, C. Walker, and E. Walker, “Some comments on interval-valued
fuzzy sets”, Internat. J. Intelligent Systems, 1996, Vol. 11, pp. 751-759.

R. Giles, “Lukasiewicz logic and fuzzy set theory”, Internat. J. Man-
Machine Stud., 1976, Vol. 8, pp. 313-327.

R. Hammer, M. Hocks, U. Kulisch, and D. Ratz, Numerical toolbox for ver-
ified computing. I. Basic numerical problems, Springer-Verlag, Heidelberg,
1993.

R. B. Kearfott, Rigorous global search: continuous problems, Kluwer, Dor-
drecht, 1996.

R. B. Kearfott and V. Kreinovich (eds.), Applications of Interval Compu-
tations, Kluwer, Dordrecht, 1996.

G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications,
Prentice Hall, Upper Saddle River, New Jersey, 1995.

V. Kreinovich, G. C. Mouzouris, and H. T. Nguyen, “Fuzzy rule based mod-
eling as a universal control tool”, In: H. T. Nguyen and M. Sugeno (eds.),
Fuzzy Systems: Modeling and Control, Kluwer, Boston, Massachusetts,
1998, pp. 135-195.

C. H. Ling, “Representation of associative functions”, Publ. Math. Debre-
cen, 1965, Vol. 12, pp. 189-212.

K. Marriott and P. J. Stuckey, Programming with Constraints: An Intro-
duction, MIT Press, Cambridge, Massachusetts, 1998.

P. S. Mostert and A. L. Shields, “On the structure of semigroups on a
compact manifold with boundary”, Ann, of Math., 1957, Vol. 65, pp. 117-
143.

22

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

H. T. Nguyen and V. Kreinovich, “Methodology of fuzzy control: an intro-
duction”, In: H. T. Nguyen and M. Sugeno (eds.), Fuzzy Systems: Modeling
and Control, Kluwer, Boston, Massachusetts, 1998, pp. 19-62.

H. T. Nguyen, V. Kreinovich, and Q. Zuo, “Interval-valued degrees of be-
lief: applications of interval computations to expert systems and intelligent
control” | International Journal of Uncertainty, Fuzziness, and Knowledge-
Based Systems (IJUFKS), 1997, Vol. 5, No. 3, pp. 317-358.

H. T. Nguyen and E. A. Walker, First Course in Fuzzy Logic, CRC Press,
Boca Raton, Florida, 1999.

H. Ratschek and J. Rokne, New computer methods for global optimization,
Ellis Horwood, Chichester, 1988.

B. Schweizer and A. Sklar, Probabilistic metric spaces, North Holland, New
York, 1983.

M. H. Smith and V. Kreinovich, “Optimal strategy of switching reasoning
methods in fuzzy control”, In: H. T. Nguyen, M. Sugeno, R. Tong, and
R. Yager (eds.), Theoretical aspects of fuzzy control, J. Wiley, New York,
1995, pp. 117-146.

E. Tsang, Foundations of Constraint Satisfaction, Academic Press, N.Y.,
1993.

I. B. Tiirkgen, “Interval valued fuzzy sets based on normal forms”, Fuzzy
Sets and Systems, 1986, Vol. 20, pp. 191-210.

P. Van Hentenryck, Constraint Satisfaction in Logic Programming, MIT
Press, Cambridge, Massachusetts, 1989.

P. Van Hentenryck, L. Michel, and Y. Deville, Numerica: A Modeling
Language for Global Optimization, MIT Press, Cambridge, Massachusetts,
1997.

C. Walker and E. A. Walker, private communication, 1995.

L. A. Zadeh, “Fuzzy Sets”, Information and Control, 1965, Vol. 8, pp. 338-
353.

Q. Zuo, “Description of strictly monotonic interval AND/OR, operations”,
Reliable Computing, 1995, Supplement (Extended Abstracts of APIC’95:
International Workshop on Applications of Interval Computations, El Paso,
TX, Febr. 23-25, 1995), pp. 232-235.

23

