What Is the Best Way
To Draw a Cube? A Hypercube?

Brian d’Auriol, Vladik Kreinovich,
Bindu George, Florence Muganda, and
Pramod Kumar Chikkapaiah

Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
contact email vladik@cs.utep.edu

Abstract

One of the possible connections between processors is a hypercube.
The simplest case of a hypercube — a 4-vertex square — can be natu-
rally represented on a 2-D page. To represent a 3-dimensional (or higher-
dimensional) hypercube, we must project additional dimensions onto a
2-D page. In general, when we project a multi-D space into a 2-D plane,
different points project into the same one. To get the best visualization,
we must select a projection in such a way that the projections of different
points are as distant from each other as possible. In this paper, we for-
malize and solve the corresponding optimization problem. Thus, we show
what is the best way of drawing a cube.

1 Introduction

One of the possible connections between processors in a parallel computer is an
(n-dimensional) hypercube (see, e.g., [1]). In a hypercube, 2™ processors are in
1-1 correspondence with n-bit sequences (i.e., sequences of n 0’s and 1’s), and
two processors are connected if and only if the corresponding sequences differ
in exactly one bit.

To analyze the behavior of different algorithms, we would like to visualize a
hypercube, i.e., to represent its processors (vertices) and connections between
these processors (edges) in a 2-D page (or on a 2-D screen).

For a 2-D “cube” (square), there is no problem: we can represent its four
vertices — corresponding to (0,0), (0,1), (1,0), and (1,1) — as points on the plane

with exactly these coordinates:

For a 3-D cube, the situation is not that straightforward. To represent a 3-
dimensional (or higher-dimensional) hypercube, we must project the additional
dimension(s) onto a 2-D page. As a result, for a 3-D cube, we get a picture of
the following type:

Let us describe this picture in precise terms. In this picture, four out of eight
vertices still have the same “binary” coordinates vertices (0,0), (0,1), (1,0),
and (1,1). To describe the coordinates of four other vertices, it is sufficient to
describe the coordinates (a,b) of a vertex which is connected to (0,1). Then,
the other three vertices have coordinates (a,1+b), (1 +a,b), and (1+a,1+b),
and the eight points are:

(0,0), (0,1), (1,0), (1,1),

(a,b), (a,1+0b), (1+a,b), (1+a,1+0). (1)

Depending on the choice of a and b, we get different representations. Which of
them is the best?
Similarly, when we add the 4-th dimension, we get a picture like this:

Here, 8 of 16 vertices have the same coordinates (1) as a 3-D cube. To describe
the coordinates of the remaining eight vertices, it is sufficient to describe the
coordinates (¢, d) of the point connected to (0,0); then, the remaining 8 vertices
have the following coordinates:

(¢,d), (¢,1+d), 1+¢,d), (1+¢1+4d),

(a+e,b+d), (a+c,1+b+d), 1+a+ec,b+d), 1+a+c,1+b+d). (2)

Again, a similar question appears: which values of a, b, ¢, and d lead to the
“best” visualization of the 4-D cube?

2 “The Best” In What Sense? Formalizing the
Problem

One of the main reasons why we want to represent a processor configuration —
which is naturally represented in a multi-D space — on a 2-D page is that we
want to visualize the configuration.

In general, when we project a multi-D space onto a 2-D plane, different points
from the multi-D space may project onto the same point on a 2-D plane. It is
therefore impossible to organize this projection in such a way that all different
points from the original multi-D space map into different points on a 2-D plane.
Luckily, we are interested only in finitely many points of the multi-D space:
namely, we are only interested in the points corresponding to processors. If we
restrict ourselves to finitely many points from a multi-D space, then, of course,
it is possible to find a projection which maps all these points into different points
on the plane. Hence, we must restrict ourselves only to such projections.

This restriction is important, but it does not solve the problem of select-
ing an appropriate projection, because many different projections satisfy this
restriction. Which of these projections should we select?

A natural selection criterion comes from the following extension of this idea:
for a better visualization, not only we want to avoid different points being
projected into the same ones, but we should also avoid the situations when
two different points are projected into two wvery close points on the plane. If
this happens, then while we can distinguish between these two points in an ideal
quality 2-D image, any minor distortion will make these points indistinguishable.

From this viewpoint, if, among N 2-D points {P,..., Py} on the page,
there is a pair of points P; # P; which are too close, i.e., for which the distance
d(P;, P;) between these pints is too small, then this representation is not a very
good one. Hence, as a measure of quality of a given 2-D representation, we can
take the smallest of these distances, i.e., the following quantity:

7]

The smaller this quantity, the closer some points and thus, the worse the re-
sulting representation. Therefore, at first glance, it seems like the larger this
quantity, the better the representation.

This is not exactly true because, of course, we can always increase the above
quantity (3) by simply “blowing up” the entire picture. It therefore makes more
sense to consider, as a quality of a point configuration {Py,..., Py}, not the
absolute distances between the points, but rather the relative distances, i.e.,
distances that we get when we reduce different configurations to the same scale.

Since we are talking about the distances between the points, a natural choice
of such a scale is the scale in which the largest distance between every pair of
points is equal to 1. In other words, instead of the above quantity (3), we
consider a modified quantity

min d(P;, P}), (4)
i#]
where J(P, Q) = k-d(P,Q), and the scaling parameter k is chosen in such a way
that

maxd(Pi,Pj) =1. (5)
i#]
From (5), we conclude that
max(k - d(P;, P;)) =k - (maxd(Pi,Pj)> =1,
i#£j i#]

hence,
_ 1
-~ maxd(P;, P;)’

i#]

and the criterion (4) takes the following form:
min d(PZ, PJ)
W] (6)
i#]

We say that the configuration {Py,..., Py} is the best in a given family of
configurations if it has the largest value of the quantity (6).
Now, we are ready to describe the results.

3 Main Results
3.1 3-D Case

The following is the best visualization of the cube:

Proposition 1. Out of all possible configurations (1), the best configuration
corresponds to a = b = 0.5.

Proof. Let us describe the proof, in detail, for the case when 0 < a,b < 0.5. Due
to symmetry, for all other possible cases (such as 0 < a < 0.5 and 0.5 <b< 1,
05<a<1and0<b<05,05<a,b<1, -0.5<ab<0), the proof is
similar.

In the case when 0 < a,b < 0.5, wehavea <0.5<1—aand b<0.5<1-b.
Thus, when we compare the distances between all possible pairs of points, we
can easily see that the shortest distance is between the points (0,0) and (a,b),
and this distance is equal to Va2 + b2.

Similarly, one can easily see that the largest of the distances is between the
points (0,0) and (1+a, 1+b), and this distance is equal to /(1 + a)? + (1 + b)2.
Thus, the quality of a configuration corresponding to the values a and b is equal

to the ratio
VI +a)?+ (1+0b)2

For a = b = 0.5, this ratio is equal to 1/3. Thus, to prove that among all pairs
(a,b) for which 0 < a,b < 0.5, the best pair is indeed (0.5,0.5), we must show

that

Va2 + b2 < 1 (8)
VI@+a2+(1+b)2 3
for (a,b) # (0.5,0.5). If we multiply both parts of the desired inequality (8) by
the denominator of the left-hand side and square both sides, we get an equivalent
inequality:

(7)

a2+b2<%-((1+a)2+(1+b)2).)

To prove this inequality, it is sufficient to show that for every x € [0,0.5], we
have 2% < % (1 + z)? - i.e., equivalently, that

1
z< 3 (1+a), (10)
and that for z < 0.5, we get an exact inequality. If we prove that, then, by
combining the inequalities corresponding to a and b, we will prove the desired
inequality (9).

This inequality (10) is equivalent to % cx < %, ie., to z <0.5. So, (10) is
true, hence (8) is true, i.e., for the case when 0 < a,b < 0.5, the proposition is
true.

Similar arguments show that the proposition is true for other cases as well.

3.2 4-D Case

To describe the best representation (1-2) for a 4-D cube, we start with an
optimal cube representation — i.e., with the formula (1) with a = b= 0.5 — and

select ¢ and d for which the quantity (6) attains the largest possible value. The
resulting configuration turned out to be the best in this sense:

Proposition 2. Out of all possible configurations (1 — 2) with a = b= 0.5, the
best configuration corresponds to ¢ = —0.25, d = 0.25.

The proof of Proposition 2 is similar to the above proof of Proposition 1.

4 Open Problems

In this paper, we have described the best representation for 3- and 4-D hyper-
cubes. It would be nice to find out what is the optimal representation for 5-D
hypercubes? 6-D? n-D for arbitrary n? What are the best 2-D representations
of other multi-D constructions?

Acknowledgments

This work was supported in part by NASA under cooperative agreement NCC5-
209, and by the Future Aerospace Science and Technology Program (FAST)
Center for Structural Integrity of Aerospace Systems, effort sponsored by the
Air Force Office of Scientific Research, Air Force Materiel Command, USAF,
under grant number F49620-00-1-0365.

References

[1] Th. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algo-
rithms, MIT Press, Cambridge, MA, and Mc-Graw Hill Co., N.Y., 1994.

