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On Fusion of Soft and Hard Computing:
Traditional (“Hard Computing”) Optimal Rescaling
Techniques Simplify Fuzzy Control

Hugh F. VanLandingham, Vladik Kreinovich

Abstract— One of the main objectives of fuzzy control is to
translate expert rules — formulated in imprecise (“fuzzy”)
words from natural language — into a precise control strat-
egy. This translation is usually done is two steps. First, we
apply a fuzzy control methodology to get a rough approz-
imation to the expert’s control strategy, and then we tune
the resulting fuzzy control system. The first step (getting
a rough approximation) is well-analyzed, and the fact that
we have expert’s intuitive understanding enables us to use
soft computing techniques to perform this step. The second
(tuning) step is much more difficult: we no longer have any
expert understanding of which tuning is better, and there-
fore, soft computing techniques are not that helpful. In this
paper, we show that we can formulate an important particu-
lar case of the tuning problem as a traditional optimization
problem and solve it by using traditional (“hard comput-
ing”) techniques. We show, on a practical industrial control
example, that the resulting fusion of soft computing (for a
rough approximation) and a hard computing (for tuning)
leads to a high quality control.

Keywords— Fuzzy control,
rescaling.
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I. INTRODUCTION

A. Fuzzy Control: One of the Most Successful Soft Com-
puting Techniques

In most industrial applications, we want to control the
corresponding industrial processes in such a way as to max-
imize the output within certain (physical and economical)
restrictions. When the corresponding mathematical de-
scription is linear, we can use well-known optimal control
techniques to find the optimal control strategy. In real-
ity, however, most industrial processes are non-linear. For
non-linear control problems, the situation is much more
complicated: there are good recipes which often work but,
alas, there is still no general methods of generating an opti-
mal (or even a reasonably good) control; see, e.g., [7]. (For
a formal proof that the corresponding optimization prob-
lems are computationally difficult (NP-hard), see, e.g., [4]
and references therein.)

If for a certain industrial process, no known technique
leads to a good quality control, what can we do? Usually,
the very fact that this process is actually used in indus-
try means that this process is reasonably well controlled
by human controllers. Therefore, if we want to automate
this control, we must somehow transform the knowledge
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of these expert controllers (operators) into an automatic
control strategy.

The necessity for such a transformation was one of the
main motivations behind one of the most successful soft
computing techniques — fuzzy control. Specifically, our
goal is to describe a function which takes the sensor in-
puts zi,...,T, (numbers) and generates the (numerical)
value of the control effort w. Unfortunately, expert oper-
ators cannot formulate their expertise in these terms. In-
stead, they describe their control strategy by using uncer-
tain (“fuzzy”) statements of the type “if the obstacle is
straight ahead, the distance to it is small, and the veloc-
ity of the car is medium, press the brakes hard”. Fuzzy
control is a methodology which translates such statements
into precise formulas for control. Fuzzy control was started
by L. Zadeh and E. H. Mamdani [2], [6], [17], [18] in the
framework of Zadeh’s fuzzy set theory [16]. For the current
state of fuzzy control the reader is referred, e.g., to the
volume [11] (or to [12]).

B. Tuning Is Necessary

Fuzzy control methodology usually consists of two steps
(see, e.g., [10]:
o first, we apply a routine fuzzy control methodology to
get a rough approxzimation to the expert’s control strategy;
¢ the resulting control is usually not that good, so we have
to tune the resulting fuzzy control system.
The first step usually starts with assigning membership
functions to all the terms that the expert uses in his rules
(in our sample phrase these words are “small”, “medium”,
and “hard”). Most software packages for fuzzy control are
based on (usually triangular) membership functions whose
domains have equally spaced endpoints. For example, we
can fix a neutral value N (usually, N = 0), and a number
A, and take:
o “negligible” with the domain [N — A, N + AJ;
o “small positive” with the domain [N, N + 2A];
e “medium positive” with the domain [N + A, N + 3A],
etc.
Correspondingly:
« “small negative” has the domain [N — 2A, N7J;
o “medium negative” has the domain [N —3A, N — A], etc.
Once an interval [a — A, a + A] is given, then we can take
a triangular membership function u(z) which:
 is equal to 0 outside this interval;
e is equal to 1 for £ = a, and
o is linear on each of the intervals [a — A] and [a,a + A].



The resulting control is often not perfect, so a further tun-
ing is necessary.

C. Usually, Soft Computing Techniques Are Used For Tun-
ing, But This May Not Be The Best Idea

Usually, soft computing techniques such as neural net-
works or genetic algorithms are used for tuning fuzzy con-
trol. This is done mainly by tuning the corresponding
membership functions. The results are usually reasonable,
but this tuning often takes lots of time; for example, several
thousands iterations are typical for neural networks.

How come soft computing techniques are so good for
getting a rough approximation, but these same techniques
are not so good for improving (tuning) this approximation?
The explanation is very simple:

On the first step (getting a rough approximation), the
fact that we have an expert’s intuitive understanding en-
ables us to use soft computing techniques to perform this
step.

On the second (tuning) step, we no longer have any ex-
pert understanding of which tuning is better; as a result,
soft computing techniques are not that helpful.

D. Natural Idea: Let’s Use Hard Computing for Tuning

Since soft computing techniques do not work that well
for tuning, we propose to supplement them with more tra-
ditional (“hard computing”) optimization techniques. In
this paper, we show that we can formulate an important
particular case of the tuning problem as a traditional opti-
mization problem and solve it by using traditional (“hard
computing”) techniques. We also show, on a practical in-
dustrial control example, that the resulting fusion of
o soft computing (for a rough approximation) and
¢ hard computing (for tuning)
does lead to a high quality control.

Comment. Preliminary results of our research first ap-
peared in [15]

II. RESCALING: AN IMPORTANT PARTICULAR CASE OF
TUNING

A. Rescaling: Physical Motivations

In some cases, there are physical reasons why the use of
membership functions with equally spaced domains does
not work well. For example, if the control variable u is al-
ways positive (e.g., if we control the flow of some substance
into a reactor), then negative values (that will be eventu-
ally generated by an equal spacing method) simply make
no sense.

A natural idea is to choose another scale u = f(u) to
represent the control variable u, so that equal spacing will
work fine for u. This idea is in good accordance with our
common-sense description of physical processes; let us give
a few examples.

From the physical viewpoint it is quite possible to de-
scribe the strength of an earthqueke by its energy, but,
when we talk about its consequences, it is much more con-
venient to use a logarithmic scale (called Richter scale).
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Non-linear scales are used to describe amplifiers and
noise (decibels, in electrical engineering).

A non-linear scale is used to describe hardness of miner-
als in geosciences, etc.

For a general survey of different scales and rescalings, see
[13].

In our case, we want to design such a scale that for f(u)
the equally spaced endpoints N —k-A and N + k- A would
make sense for all integers k. Therefore, we are looking for a
function f(u), whose domain is the set of all positive values,
and whose range is the set of all possible real numbers. In
mathematical notations, f must map (0, 00) onto (—oo, 00).
There are lots of such functions, and evidently not all of
them will improve the control. So we arrive at the following
problem:

B. The Main Problem: Informally

Which rescaling f : (0,00) — (—o00,00) should we
choose?

C. What We Are Planning To Do

In this paper, we do the following:

first, we formulate the problem of choosing the best
rescaling function f(u) as a mathematical optimization
problem;

then, we solve this optimization problem under some rea-
sonable optimality criteria; as a result, we get an optimal
function f(u);

finally, we show that the use of this optimal re-scaling
function really improves fuzzy control.

III. TowARDS THE USE OF HARD COMPUTING:
MOTIVATIONS OF THE PROPOSED FORMAL
DESCRIPTION OF THE PROBLEM

A. Why Is This Problem Difficult?

We want to find a scaling function f(u) that is the best
in some reasonable sense. In other words, we want to find
a scaling function for which some characteristic I attains
the value that corresponds to the best performance of the
resulting fuzzy control.

As examples of such characteristics, we can take:

» an average running time of the algorithm,

« smoothness of the resulitng control;

« stability of the resulting control, etc.

A seemingly natural approach is to describe this charac-
teristic in precise terms and solve the corresponding opti-
mization problem. Alas, life is not so simple. The problem
is that even for the simplest linear plants (controlled sys-
tems), we do not know how to compute any of these pos-
sible characteristics for a give rescaling f(u). How can we
find f(u) for which I(f(u)) is optimal if we cannot com-
pute I(f(u)) even for a single function f(u)? There does
not seem to be a likely answer.

However, we will show that this problem is solvable (and
give the solution).

Comment. To solve this problem, we use a general idea
described in the book [9]; this book also contains applica-
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tions of similar optimization methods to other soft comput-
ing techniques such as fuzzy logic, neural networks, genetic
algorithms, etc.

B. Some Rescalings Preserve Equal Spacing

Let us first show that not all physically meaningful
rescalings help.

Indeed, in order to get numerical values of the variable
u (e.g., of the spatial coordinate z), we must fix a start-
ing point (origin) and a measuring unit (e.g., meter). In
principle, we could as well choose feet to describe length.

If we change the unit, then some things change, e.g., the
numerical values of all the coordinates change: = meters
are equal to A - z feet, where X is the number of feet in 1
meter.

On the other hand, some things do not change: e.g.,
when we change the measuring unit, equally spaced inter-
vals remain equally spaced.

Similarly, we could choose a different initial point for
measuring the x coordinate. If we take, as a new initial
point, a point which previously had a coordinate zo (so
that now its coordinate is 0), then, similarly, on one hand,
the numerical values of the points’ coordinates change from
T to x — xo; on the other hand, intervals that had equal
length in the old scale (z) will still have equal length if we
measure then in the new scale (z — zg).

We can also change both the measuring unit and the
starting point. This way we arrive at a transformation
T AT+ x0.-

Summarizing: if x is a reasonable scale — in the sense that
equally spaced membership functions lead to a reasonably
good control — then the same is true for an arbitrary scale
of the type A-z + xg, where A > 0, and =z is a real number.
The reason is that if we have a sequence of equally spaced
intervals [N + k- A, N + (k + 1) - A], then these intervals
will remain equally spaces after these linear rescalings © —
A -z + zg: namely, these intervals will turn into intervals
[N+k-AN+(k+1)-A], where N = X- N + 2o and

A = XA

C. We Must Choose a Family of Scaling Functions, Not a
Single Function

Let us now consider a scale u, for which equal spacing
does not work. Assume that 4 — f(u) is a transformation
after which equal spacing becomes applicable. This means
that if we use f(u) as a new scale, then equal spacings work
fine. But as we have just shown, for any A > 0 and z( equal
spacing will also work fine for the scale X - f(u) + zo.

Therefore, if f(u) is a function that transforms the initial
scale into a scale, for which equal spacing works fine, then
for every A > 0 and zo the function f(u) = X - f(u) + zg
has the same desired property.

This means that there is no way to pick one function
f(u), because with any function f(u), the whole family of
functions A - f(u) + xo has the same property. Therefore,
desired functions form a family {A- f(u)+Zo}r>0,,- Hence,
instead of choosing a single function, we must formulate a
problem of choosing a family.

D. Which Family Is the Best?

Among all such families, we want to choose the best one.
In formalizing what “the best” means, we follow the gen-
eral idea described in [9]. The criteria to choose may be
computational simplicity, stability or smoothness of the re-
sulting control, etc.

In mathematical optimization problems, numerical cri-
teria are most frequently used, where to every family we
assign some value expressing its performance, and choose
a family for which this value is maximal.

However, it is not necessary to restrict ourselves to such
numeric criteria only. For example, if we have several dif-
ferent families that lead to the same average stability char-
acteristics T', we can choose between them the one that
leads to the maximal smoothness characteristics P. In this
case, the actual criterion that we use to compare two fam-
ilies is not numerical, but more complicated. For example,
we may say that a family ®; is better than the family &, if
and only if either T'(®1) < T(®2), or T(®1) = T(®2) and
P(®,) < P(®,).

A criterion can be even more complicated. What a crite-
rion must do is to allow us for every pair of families to tell
whether the first family is better with respect to this cri-
terion (we’ll denote it by &5 < ®1), or the second is better
(®1 < ®2) or these families have the same quality in the
sense of this criterion (we’ll denote it by &1 ~ ®5).

E. The Criterion for Choosing the Best Family Must Be
Consistent

Of course, it is necessary to demand that these choices
be consistent: e.g., if ®; < &5 and &5 < P3 then &; < P3.

F. The Criterion Must Be Final

Another natural demand is that this criterion must be
final in the sense that it must choose a wunigue optimal
family (i.e., a family that is better with respect to this
criterion than any other family).

The reason for this demand is very simple:

If a criterion does not choose any family at all, then it is
of no use.

If several different families are “the best” according to
this criterion, then we still have a problem choosing the
absolute “best” family. Therefore, we need some additional
criterion for that choice.

For example, if several families turn out to have the same
stability characteristics, we can choose among them a fam-
ily with maximal smoothness. So what we actually do in
this case is abandon that criterion for which there were
several “best” families, and consider a new “composite”
criterion instead: ®; is better than ®; according to this
new criterion if either it was better according to the old
criterion, or according to the old criterion they had the
same quality, and ®; is better than ®, according to the
additional criterion.

In other words, if a criterion does not allow us to choose
a unique best family, it means that this criterion is not



ultimate; we have to modify it until we arrive at a final
criterion that will have that property.

G. The Criterion Must Be Reasonably Invariant

We have already discussed the effect of changing units
in a new scale f(u). But it is also possible to change units
in the original scale, in which the control u is described.
If we use a unit that is ¢ times smaller, then a control
whose numeric value in the original scale was u, will now
have the numeric value cu. For example, if we initially
measured the flux of a substance (e.g., rocket fuel) into the
reactor by kg/sec, we can now switch to lb/sec.

Comment. There is no physical sense in changing the
starting point for u, because we consider the control vari-
able that takes only positive values, and so 0 is a fixed
value, corresponding to the minimal possible control.

We are looking for the universal rescaling method, that
will be applicable to any reasonable situation (we do not
want it to be adjustable to the situation, because the whole
purpose of this rescaling is to avoid time-consuming ad-
justments). Suppose now that we first used kg/sec, com-
pared two different scaling functions f(u) and f(u), and it
turned out that f(u) is better (or, to be more precise, that
the family ® = {A- f(u) + 2o} is better than the family
$ = {\- flu) + Zo}). It sounds reasonable to expect that
the relative quality of the two scaling functions should not
depend on what units we used for u. So we expect that
when we apply the same methods, but with the values of
control expressed in lb/sec, then the results of applying
f(u) will still be better than the results of applying f(u).

The result of applying the function f(u) to the control
in Ib/sec can be expressed in old units (kg/sec) as
f(c-u), where ¢ is a ratio of these two units. So the result
of applying the rescaling function f(u) to the data in new
units (Ib/sec) coincides with the result of applying a new
scaling function f.(u) = f(c-u) to the control in old units
(kg/sec). So, we conclude that if f(u) is better than f(u),
then f.(u) must be better than f.(u), where f.(u) = f(c-u)
and f.(u) = f(c-u). This must be true for every ¢ because
we could use not only kg/sec or Ib/sec, but arbitrary units
as well.

Now we are ready for the formal definitions.

IV. DEFINITIONS AND THE MAIN RESULT

Definition 1: By a rescaling function (or a rescaling, for
short), we mean a strictly monotonic function that maps
the set of all positive real numbers (0,00) onto the set of
all real numbers (—oo, +00).

Definition 2: We say that two rescalings f(u) and f(u)

are equivalent if f(u) = X - f(u) + xo for some positive
constant A and for some real number xg.
Comment. As we have already mentioned, if we apply

two equivalent rescalings, we will get two scales that are ei-
ther both leading to a good control, or are both inadequate.
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Definition 3: By a family we mean the set of functions
{A- f(u) +x0}, where f(u) is a fixed rescaling, A runs over
all positive real numbers, and o runs over all real numbers.
The set of all families will be denoted by S.

Definition 4: A pair of relations (<, ~) is called consis-
tent if it satisfies the following conditions:

o if F <G and G < H then F < H;

o« '~ F,

o if '~ G then G ~ F

o if F ~ G and G ~ H then F' ~ H;

o if F <G and G ~ H then F < H;

o if F ~ G and G < H then F < H;

¢ if F" < G then it is not true that G < F or F' ~ G.

Definition 5: Assume a set A is given. Its elements will
be called alternatives. By an optimality criterion we mean
a consistent pair (<,~) of relations on the set A of all
alternatives. If G < F, we say that F' is better than G; if
F ~ G, we say that the alternatives F' and G are equivalent
with respect to this criterion.

Definition 6: We say that an alternative F' is optimal (or
the best) with respect to a criterion (<, ~) if for every other
alternative G either G < F or F' ~ G.

Definition 7: We say that a criterion is final if there ex-
ists an optimal alternative, and this optimal alternative is
unique.

Comment. In the present paper, we consider optimality
criteria on the set S of all families.

Definition 8: By a result of a unit change in a function
f(u) to a unit that is ¢ > 0 times smaller we mean a func-
tion f.(u) = f(c- u).

Definition 9: By the result of a unit change in a family
® by ¢ > 0 we mean the set of all the functions that are
obtained by this unit change from f € ®. This result will
be denoted by ¢ - .

Definition 10: We say that an optimality criterion on F'
is unit-invariant if for every two families ® and ® and for
every number ¢ > 0 the following two conditions are true:
o if ® < ®,thenc-® <c- P
o if ®~ ® thenc-®~c-d.

Theorem 1: If a family ® is optimal in the sense of some
optimality criterion that is final and unit-invariant, then
every rescaling f(u) from & is equivalent to f(u) = log(u).

Comment. This result means that the optimal rescalings
are of the type « - log(u) + o for some real numbers v > 0
and a.

Comment. For reader’s convenience, the proof is given
in the last section.

V. CASE STUDY: APPLICATION OF THE RESULTING
OpTiMAL RESCALING TO Fuzzy CONTROL (BRIEF
DESCRIPTION)

A. Description of a Plant

We design a control for chemical reaction within a con-
stant volume, non-adiabatic, continuously stirred tank re-
actor (CSTR). The model that describes the CSTR is de-
scribed by the following system of differential equations
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(see, e.g., [8]):

. z
xlz—x1+D-a-(1—m1)-exp< 23;2);
1+ %2
~
Z2

T2
1+’Y

:'ng—m2+B-D-a-(1—:U1)-exp< )—u-(xg—xc),
where:

e x7 is the conversion rate;

e o is the (dimensionless) temperature; and

o u is the (dimensionless) heat transfer coefficient.

The objective of the control is to stabilize the system (i.e.,
bring it closer to the equilibrium point).

B. What We Did

We applied a logarithmic rescaling o — X = log(zs),
and used membership functions with equal spacing for X.
No further adjustment of membership functions was made.

C. Results

Even without any further adjustment the results of this
control were comparable to the results of applying the in-
telligent “gain scheduled” (non-linear) PID controller [3],
[8]. In other words, we got the control that was as good
as the one generated by the state-of-art traditional control
theory with respect to stability and controllability of the
plant.

With respect to the computational complexity our fuzzy
controller is much simpler.

D. Rescaling Is Necessary

Without the rescaling, we got a fuzzy control whose qual-
ity was much worse than that of a PID controller.

Comment. The details of this case study were published
in [14].

VI. PROOF OF THE MAIN RESULT

The idea of this proof is as follows: first we prove that
the optimal family is unit-invariant (in Part 1), and from
that, in Part 2, we conclude that an arbitrary function f
from @ satisfies a certain functional equation; the solutions
to this equations are known, and this completes the proof.

1. Let us first prove that the optimal family ®,, exists
and is unit-inveriant in the sense that ®,,; = c - ®,p; for
all ¢ > 0.

Indeed, we assumed that the optimality criterion is final,
therefore there exists a unique optimal family ®,,;. Let’s
now prove that this optimal family is unit-invariant (this
proof is practically the same as in [9]). The fact that ®,p;
is optimal means that for every other ®, either ® < ®,,;
or &,,, ~ &. If &,,; ~ ® for some & # &,,;, then from the
definition of the optimality criterion we can easily deduce
that ® is also optimal, which contradicts the fact that there
is only one optimal family. So for every ® either ® < ®,,;
or &,,; = .

Take an arbitrary ¢ and apply this conclusion to & =
c-Popt- e Pope = @ < Pppy, then from the invariance
of the optimality criterion (condition ii)) we conclude that
Do < ¢t -®,,¢, and that conclusion contradicts the choice
of ®,,: as the optimal family. So ® = c- @opr < Pt is
impossible, and therefore ®,,; = @, i.e., Popr = ¢+ Pypy,
and the optimal family is really unit-invariant.

2. Let us now deduce the actual form of the functions f(u)
from the optimal family ®,p¢.

If f(u) is such a function, then the result f(c-u) of changing
the unit of u to a ¢ times smaller unit belongs to ¢ - ®op¢;
s0, due to Part 1 of this proof, the function f(c-u) also
belongs to the family ®,,:.

By the definition of a family, all its functions can be
obtained from each other by a linear transformation A -
f(u) + zo; therefore, f(c-u) = A- f(u) + xo for some X\ and
zg. The corresponding values A and zy depend on c; so, we
arrive at the following functional equation for f(u):

fle-u) =) - f(u) + zo(c).

In the survey on functional equations [1], the solutions of
this equation are not explicitly given, but a for a similar
functional equation

f@+y) = f(@) hy) + k),

all solutions are enumerated in Corollary 1 to Theorem 1
from Section 3.1.2 of [1]: they are f(z) = v -z + a and
f(z) = v-exp(c-x) + @, where v # 0, ¢ # 0 and « are
arbitrary constants. To use this result, let us reduce our
equation to the one with known solutions.

The only difference between these two equations is that
we have a product, and we need a sum. There is a well
known way to reduce product to a sum: turn to logarithms,
because log(ab) = log(a) +log(b). For simplicity, let us use
natural logarithms In(z). Let us introduce new variables
X =In(u) and Y = In(¢). In terms of these new variables,
z = exp(X) and ¢ = exp(Y). Substituting these values
into our functional equation, and taking into consideration
that

exp(X) -exp(Y) = exp(X +7Y),

we conclude that
FIX+Y)=HY)-F(X)+ K(),

where we denoted

F(X) % flexp(X

K(Y) Y zo(exp(Y)).

So, according to the above-cited result, either

), H(Y) X Aexp(Y)),

or F(X)=v -exp(c-X)+a.

From F(X) = f(exp(X)), we conclude that f(u) =
F(In(u)), therefore either f(u) = v -1ln(u) + a, or f(u) =
v -exp(c-In(u)) + @ = v-u® + a. In the second case the



function f(u) maps (0,00) onto the interval (a,o00), and
we defined a rescaling as a function whose values run over
all possible real numbers. So the second case is impossi-
ble, and f(z) = 7 -In(u) + @, which means that f(u) is
equivalent to a logarithm. Q.E.D.

VII. CONCLUSIONS

One of the most successful examples of soft computing
is fuzzy control. One of the important steps in designing
a fuzzy control is the choice of the membership functions
for all the terms that the experts use. This choice strongly
influences the quality of the resulting control.

For simple controlled systems, it is sufficient to have
equally spaced membership functions, i.e., functions that
have similar shape (usually triangular or trapezoid), and
are located in intervals of equal length

..,[N=A,N+A],[N,N +2A], [N +A,N +34],...

For complicated systems this choice does not lead to a
good fuzzy control, so it is necessary to tune the member-
ship functions. This tuning is usually done by using soft
computing techniques such as neural networks or genetic al-
gorithms. Such tuning is, however, a very time-consuming
procedure. We show that traditional (“hard computing”)
optimization techniques lead to a faster tuning.

Specifically, we consider the case when equally spaced
membership functions are inadequate because the control
variable u can take only positive values. Such situations
occur, for example, when we control the flux of the sub-
stances into a chemical reactor (e.g., the flux of fuel into
an engine). Our idea is to “rescale” this variable, i.e., to
use a new variable u = f(u), and to choose a function f(u)
in such a way that we can apply membership functions,
that are equally spaced in w.

We give a mathematical proof that the optimal rescaling
is logarithmic (f(u) = a - log(u) + b). We also show on a
real-life example of a non-linear chemical reactor that the
resulting fuzzy control, without any further tuning of mem-
bership functions, can be comparable in quality with the
best state-of-art non-linear controls of traditional control
theory.
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