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Abstract

Traditionally, in logic, only unary and binary operations
are used as basic ones – e.g., “not”, “and”, “or” – while
the only ternary (and higher order) operations are the
operations which come from a combination of unary
and binary ones. For the classical logic, with the binary
set of truth values

���������
, the possibility to express an

arbitrary operation in terms of unary and binary ones is
well known: it follows, e.g., from the well known pos-
sibility to express an arbitrary operation in DNF form.
A similar representation result for 	 ������
 -based logic was
proven in our previous paper. In this paper, we expand
this result to finite logics (more general than classical
logic) and to multi-D analogues of the fuzzy logic – both
motivated by interval-valued fuzzy logics.

1. Introduction

Traditionally, in logic, only unary and binary operations
are used as basic ones – e.g., “not”, “and”, “or” – while
the only ternary (and higher order) operations are the
operations which come from a combination of unary
and binary ones.

A natural question is: are such combinations sufficient?
I.e., to be more precise, can an arbitrary logical op-
eration be represented as a combination of unary and
binary ones?

For the classical logic, with the binary set of truth values��
 ���������
(=
�����������������������

), the positive answer to this
question is well known. Indeed, it is known that an arbi-
trary logical operation  "! �$#&%'�

can be represented,
e.g., in DNF form and thus, it can indeed be represented
as a combination of unary (“not”) and binary (“and” and
“or”) operations.

We are interested in explaining why unary and binary
logical operations are the only basic ones. If we assume
that the logic of human reasoning is the two-valued
(classical) logic, then the possibility to transform every
logical function into a DNF form explains this empirical
fact.

However, classical logic is not a perfect description of
human reasoning: for example, it does not take into con-
sideration fuzziness and uncertainty of human reason-
ing. This uncertainty is taken into consideration in fuzzy
logic [9, 25, 29]. In the traditional fuzzy logic, the set
of truth values is the entire interval

�(
 	 ������
 . This
interval has a natural notion of continuity, so it is natu-
ral to restrict ourselves to continuous unary and binary
operations.

With this restriction in place, a natural question is: can
an arbitrary continuous function  )!*	 ������
 #+% 	 ������
 be
represented as a composition of continuous unary and
binary operations? The positive answer to this question
was obtained in our papers [19, 22].

In 	 ������
 -based fuzzy logic, an arbitrary logical operation
can be represented as a composition of unary and binary
ones. However, the 	 ������
 -based fuzzy logic is, by itself,
only an approximation to the actual human reasoning
about uncertainty.

Indeed, how can we describe the expert’s degree of con-
fidence ,.-0/21 in a certain statement / ? A natural way
to determine this degree is, e.g., to ask an expert to es-
timate his degree of confidence on a scale from 0 to 10.
If he selects 8, then we take ,3-4/21 
6587 ���

.

To get a more accurate result, we can then ask the same
expert to estimate his degree of confidence on a finer
scale, e.g., from 0 to 100, etc. For example, if an expert
selects 81, we will take ,.-0/21 
�5 � 7 ���9� 
 ��: 5 �

. If we
want an even more accurate estimate, we can ask the



expert to estimate his degree of confidence on an even
finer scale, etc.

The problem with this approach is that experts cannot
describe their degrees of too fine scales. For example,
an expert can point to 8 on a scale from 0 to 10, but this
same expert will hardly be able to pinpoint a value on a
scale from 0 to 100.

So, to attain a more adequate description of human
reasoning, we must modify the traditional 	 ������
 -based
fuzzy logic. Two types of modifications have been pro-
posed.

One possibility is to take the finest (finite) scale which
an expert can still use, and take the values on this scale
as the desired degrees of confidence. This approach
leads to a finite-valued fuzzy logic, in which the set of
truth values

�
is finite.

This approach has been successfully used in practice;
see, e.g., [1, 5, 20, 26]. It is therefore desirable to check
whether in a finite logic, every operation can be repre-
sented as a composition of unary and binary operations.

The problem with finite-valued logics is that the set
�

of resulting truth values depends on which scale we use.

Instead of fixing a finite set, we can describe the expert’s
degree of confidence by an interval from 	 ������
 . For ex-
ample, if an expert estimates his degree of confidence
by a value 8 on a 0 to 10 scale, then the only thing that
we know about the expert’s degree of confidence is that
it is closer to 0.8 (8/10) than to 0.7 or to 0.9, i.e., that it
belongs to the interval 	 ��: ��� ����: 5�� 
 .
So, a natural way of describing degrees of confidence
more adequately is to use intervals � 
 	 ��� � �	� 
 instead
of real numbers. In this representation, real numbers can
be viewed as particular – degenerate – cases of intervals	 � � � 
 . The idea of using intervals have been originally
proposed by Zadeh himself and further developed by
Bandler and Kohout [2], Türkşen [27], and others; for a
recent survey, see, e.g., [24].

In interval-valued fuzzy approach, to describe each de-
gree of confidence, we must describe two real numbers:
the lower endpoint and the upper endpoint of the corre-
sponding “confidence interval”.

We can go one step further and take into consideration
that the endpoints of the corresponding interval are also
not precisely known. Thus, each of these endpoints is,
in actuality, an interval itself. So, to describe a degree of
confidence, we now need four real numbers: two to de-
scribe the lower endpoint, and two to describe the upper
one.

In general, we get a multi-D fuzzy logic. A natural ques-
tion is: can every (continuous) operation on a multi-D
fuzzy logic be represented as a composition of (contin-
uous) unary and and binary operations?

Uncertainty of expert estimates is only one reason why
we may want to go beyond the traditional 	 ������
 -valued
logic; there are also other reasons:


 A 1-D value is a reqsonable way of describing the
uncertainty of a single expert. However, the con-
fidence strongly depends on the īt consensus be-
tween different experts. We may want to use ad-
ditional dimensions to describe how many expert
share the original expert’s opinion, and to what de-
gree; see, e.g., [13, 23].


 Different experts may strongly disagree. To de-
scribe the dgeree of this disagreement, we also
need additional numerical characteristics, which
make the resulting logic multi-D; see, e.g., [21].

In all these cases, we need a multi-D logic to adequately
describe expert’s degree of confidence.

In this paper, we show that both for finite-valued logics
and for multi-D logics, every logical operation can be
represented as a composition of unary and binary op-
erations. Thus, we give a general explanation for the
above empirical fact.

2. Finite-Valued Logics

2.1. What Was Known Before

In the Introduction, we have already mentioned that for
the 2-element set of truth values

� 
 ���������
, an ar-

bitrary logical operation  ! � # % �
can be repre-

sented as a composition of unary and binary operations.
Specifically, in this case, an arbitrary logical operation
can be represented as a composition of negation � % ��� ,
conjunction 
 , and disjunction � .

In [6], we proved that the same is true for the case when�
is a finite Boolean algebra. Specifically, we prove

that for such sets
�

, an arbitrary logical operation can be
represented as a composition of negation, conjunction
(“intersection”), disjunction (“union”), constants, and a
special unary operation called absolute truth:

Definition 1. For an arbitrary Boolean algebra � ,
we define an absolute truth operation ��-�� 1 as follows:
��-�� 1 
 � and ��-�� 1 
��

for all ���
 � .

The function � is similar to the delta-function � -��31 (see,
e.g., [30]), which is defined, crudely speaking, as a
function which is different from 0 only at one point
� 
 �

. It is even more similar to Kronecker’s “delta”
����� � which is defined as ����� � 
 �

if  
"!
and ����� � 
 �

when  #�
$!
: we can easily see that ��-�� 1 
 �&%'� ( .



Proposition [6]. For every finite Boolean algebra � ,
and for every positive integer � , every � -ary operation ! � # % � can be represented as a composition of � ,

 , � � , � , and constants.

This representation has the form
� 	 ��� -���� � ����1 
 :�:�: 
 ��� -�� # � � # 1 
  -���� ��:�:�:�� � # 1 
 �

where � is taken over all tuples -�� � ��:�:�:�� � # 1	� � # , and��� -�� � � 1 is defined as

�
� -�� � � 1���
��
 ��-�-�� 
 � 1 �)-�� � 
 � � 1�1
and is equal to

��� -�� � � 1 
 � when � 
 � , and to��� -�� � � 1 
��
when � �
 � .

This representation is similar to the known possibil-
ity to represent an arbitrary function as a linear com-
bination of delta-functions, so-called “sifting property”
([30], pp. 11 and ff.):

 -���� ��:�:�:�� � # 1 
�
%��
:�:�: �

%��	� -�� �
��:�:�:�� � # � � � ��:�:�:�� � # 1�� � � :�:�: ��� # �

where

� ��
��

 � -�� ��� � � 1�� :�:�: ��� -�� # � � # 1��� -�� � ��:�:�:�� � # 1 :

For the case when each variable � � only takes integer
value, we can have another analogue of the same result,
with Kronecker’s “delta” instead of a delta-function:

 -�� � ��:�:�:�� � # 1 

�
%��

:�:�: �
%�� ��� � � % � �

:�:�: ����� � � % � �� -���� ��:�:�:�� � # 1 :

2.2. New Result

Let us show that a similar representation can be used to
prove this result for an arbitrary finite set

�
.

Theorem 1. For every finite set
�

, and for every posi-
tive integer � , every � -ary operation  ! �$#"% �

can
be represented as a composition of unary and binary
operations.

(For reader’s convenience, all the proofs are placed in
the special Proofs section.)

3. Multi-D Logics

3.1. What Was Known Before

In the Introduction, we have already mentioned that for� 
 	 ������
 , an arbitrary continuous logical operation

 ! � # % �
can be represented as a composition of

unary and binary operations. This result is based on the
following known result:

Theorem (Kolmogorov). Every continuous function of
three or more variables can be represented as a compo-
sition of continuous functions of one or two variables.

This result was proven by A. Kolmogorov [10] as a so-
lution to the conjecture of Hilbert, formulated as the
thirteenth problem [8]: one of 22 problems that Hilbert
has proposed in 1900 as a challenge to the XX century
mathematics.

This problem can be traced to the Babylonians, who
found (see, e.g., [3]) that the solutions � of quadratic
equations �	��� �"! �#�"$ 
 �

(viewed as function of
three variables � , ! , and $ ) can be represented as super-
positions of functions of one and two variables, namely,
arithmetic operations and square roots. Much later, sim-
ilar results were obtained for functions of five variables
� , ! , $ , , , % , that represent the solution of quartic equa-
tions �	�'&(�)! �'*+�)$ � � �6,��,�)% 
 �

. But then, Ga-
lois proved in 1830 that for higher order equations, we
cannot have such a representation. This negative result
has caused Hilbert to conjecture that not all functions of
several variables can be represented by functions of two
or fewer variables. Hilbert’s conjecture was refuted by
Kolmogorov (see, e.g., [14], Chapter 11) and his student
V. Arnold.

It is worth mentioning that Kolmogorov’s result is not
only of theoretical value: it was used to speed up actual
computations (see, e.g., [4, 7, 11, 12, 16, 17]).

3.2. New Result

Let us show that one can generalize Kolmogorov’s the-
orem and prove that a similar representation holds for
multi-D logics as well.

Let - be a positive integer, and let
�

be a closure of
a simply connected bounded open set in .0/ (e.g., of a
convex set). Such a set

�
will be called a multi-D set

of truth values. For example, for interval-valued fuzzy
sets, � 
 � -�� � !�121 �43 � 3 ! 3 ���8:

Theorem 2. For every multi-D set of truth values
�

,
and for every positive integer � , every continuous � -
ary operation  ! �$# % �

can be represented as a
composition of continuous unary and binary operations.

4. Proofs

Proof of Theorem 1. To describe the desired represen-
tation, let us pick two different elements from the set



�
and denote them

�
and � . We will then define three

binary operations:


 �
� - � � !�1 is defined as
��� - � � !�10��
��
 � when � 
 ! ,

and
��� - � � !�1���
��
 �

when ���
 ! .

 � is defined in such a way that

� � � 
 � � � 
 �
for all � � � ; when � �
��

and ! �
 �
, we can take

arbitrary values for � � ! , e.g., we can assume that
in this case, � � ! 
 � .


 
 is defined in such a way that � 
 � 
 � 
 � 
 �
for all � � � ; when � �
 � and ! �
 � , we can take
arbitrary values for � 
 ! , e.g., we can assume that
in this case, � 
 ! 
��

.

Now, it can easily checked that an arbitrary operation -�� � ��:�:�:�� � # 1 from
� #

to
�

can be represented as
� 	 ��� -���� � ����1 
 :�:�: 
 ��� -�� # � � # 1 
  -���� ��:�:�:�� � # 1 
 �

where � is taken over all tuples - � � ��:�:�:�� � # 1 � � #
.

Q.E.D.

Proof of Theorem 2. This proof is similar to the one
presented in [28].

First, since the set
�

is bounded, we can embed it into a
box

� 
 	 ��� � � 
�� :�:�:�� 	 ��� � � 
 , i.e., a set of all points� 
 - � � ��:�:�:�� � / 1 for which 1 � � 1 3 � ,
:�:�:

, � /
3 1 � 1 .

An arbitrary continuous function on a compact set
� #

can be extended to the entire box
� #

, so we can assume
that  maps

� #
into . / .

Let us prove that every continuous function
 ! � # % . / of three or more variables can be repre-
sented as a composition of continuous unary and binary
functions � ! � % . / and � ! � � % . / .

Kolmogorov theorem proves that such a representation
is possible for - 
 �

. Based on the case - 
 �
, we

can now prove the theorem for all - , by using the fol-
lowing argument (its idea is similar to the one presented
in [18]):

We have a function � 
  - �
	 ��� ��:�:�:�� �
	 # � 1 of � variables

� 	 ��� 
 - � 	 ���� ��:�:�:�� � 	 ���/ 1 � � �
:�:�:��

� 	 # � 
 - � 	 #� ��:�:�:�� � 	 #/ 1��
� :

For each input - �
	 ��� ��:�:�:�� ��	 # � 1 , the value

� 
  - � 	 ��� ��:�:�:�� � 	 # � 1
of this function is a point

 - � 	 ��� ��:�:�:�� � 	 # � 1 

-0 ��- � 	 ��� ��:�:�:�� � 	 # � 1 ��:�:�:��  / - � 	 ��� ��:�:�:�� � 	 # � 1 1

in the - -dimensional space, where by

 ���- � 	 ��� ��:�:�:�� � 	 # � 1 �
we denoted the  -th component of the point � 

 - ��	 ��� ��:�:�:�� �
	 # � 1 . Therefore, each . / -valued function "! � # % / 
 . / can be represented as - real-valued
functions  � ! � #&% . ,

� 3  3 - .

Each of these functions  � ! � # % . maps � ele-
ments from

�
(i.e., � � - components) into a real num-

ber. Therefore, each of these functions can be repre-
sented as a real-valued function of � � - real variables� 	 ���� ��:�:�:�� � 	 ���/ ��:�:�:�� � 	 # �� ��:�:�:�� � 	 # �/ :

Each of these - func-
tions  �� can be (due to Kolmogorov’s theorem) repre-
sented as a composition of functions of one and two
variables. So, to represent the original function of �
variables from

�
as a composition of functions of one

or two variables from
�

, we can do the following:

First, we apply, to each input ��	 ��� 
 - � 	 ���� ��:�:�:�� � 	 ���/ 1 ,- functions � � - � 1 ��:�:�:�� � / - � 1 of one
�

-valued variable
which transform an element � 
 - � � ��:�:�:�� � / 1	� �

into
corresponding “degenerate” elements

� � - � 1���
��
 - � � ��:�:�:�� � � 1 �):�:�:��

� � - � 1���
��
 - � � ��:�:�:�� � � 1 � :�:�:��
� / - � 1 ��
��
 - � / ��:�:�:�� � / 1 :

When we apply these - functions to � input ele-
ments, we get - � � degenerate elements � � - ��	 ��� 1 

- � 	 ���� ��:�:�:�� � 	 ���� 1 , for all  from 1 to - and for all

!
from

1 to � .

Next, we follow the operations from Kolmogorov’s
theorem with these degenerate elements, and get the
“degenerate”-valued functions

� � - � 	 ��� ��:�:�:�� � 	 # � 1���
��

-4 � - � 	 ��� ��:�:�:�� � 	 # � 1 ��:�:�:��  � - � 	 ��� ��:�:�:�� � 	 # � 1 1 �:�:�:��

� / - � 	 ��� ��:�:�:�� � 	 # � 1���
��

-0 / - � 	 ���

��:�:�:�� � 	 # � 1 ��:�:�:��  / - � 	 ���
��:�:�:�� � 	 # � 1 1 �

as the desired compositions of .0/ -valued functions of
one or two . / -valued variables.

Finally, we use combination functions � � - �
� � � 1 , . . . ,

� / - � � � � 1 to combine the functions
� � ��:�:�:�� � / into a

single function  . Namely, these functions work as fol-
lows:

� � - - � �
��:�:�: 1 � - � � � � � ��

��:�:�:�� � �/ 1 1���
��



- � � � � ��
��:�:�:�� � �/ 1

�
:�:�:��



� � -�- � � ��:�:�:�� � � � �
� � � ��:�:�: 1 � - � � � ��:�:�:�� � �� � �

� � �� ��:�:�: 1�1���
��

- � � ��:�:�:�� � � � �

� � �� ��:�:�:�� � �/ 1
�

:�:�:��
� / - - � � ��:�:�:�� � / � �

� � / 1 � - � � � ��:�:�:�� � �/ � �
� � �/ 1�1 ��
��



- � � ��:�:�:�� � / � �

� � �/ 1
:

We apply these combination functions to the values
produced by the functions

� � ��:�:�:�� � / , to get the re-
sults

� � 
 � � - � �
� � � 1 , � * 
 � * - � �

� � � 1 ,
:�:�:

,
� � 


� � - � � � �
� � � 1 , :�:�: As a result, we get:

� � 
 � � - � �
� � � 1 
 -0 � �  �

��:�:�:��  � 1
�

� * 
 � * - � �
� � * 1 
 -0 � �  �

�  * ��:�:�:��  * 1 �:�:�:��
� � 
 � * - � � � �

� � ��1 
 -0 � ��:�:�:��  �� ��:�:�:��  ���1 �
and finally,

� / 
 � / - � / � �
� � / 1 
 -4 � ��:�:�:��  / 1 


 - � 	 ��� ��:�:�:�� � 	 # � 1 :
Thus, the function  - � 	 ��� ��:�:�:�� � 	 # � 1 has been repre-
sented as a composition of functions of one or two . / -
valued variables. The statement is proven.

This representation is not exactly what we want, be-
cause the corresponding unary and binary functions
� ! � % . / and � ! � � % . / can take values out-
side the original set of truth values

�
. To complete the

proof, we must therefore “compress” the corresponding
functions – e.g., by applying appropriate linear trans-
formation to each coordinate in their ranges. After we
compressed all these functions, we get not the original
function  , but the “compressed” one, so, to get  , we
must apply “un-compression” (inverse linear transfor-
mation).

By definition, this “un-compression” � is a unary oper-
ation which transforms the original set

�
into a larger

set, so to need to make � into a unary logical operation.
Since the set

�
is simply connected, it is a retract of. / (see, e.g., [15], Ch. 8), i.e., there exists a continu-

ous mapping � !2. / % �
for which � - � 1 
 � for all� � � . Thus, as the desired unary logical operation, we

can take
�
�&- � 1���
��
 � -��+- � 1 1 : the use of � does not change

the result  which was already in
�

, but brings all the
values outside

�
back into the set

�
. Q.E.D.

5. Conclusion

Traditionally, in logic, only unary and binary opera-
tions are used as basic ones. In traditional (2-valued)
logic, the use of only unary and binary operations is

justified by the known possibility to represent an arbi-
trary � -ary logical operation as a composition of unary
and binary ones. A similar representation result is true
for the 	 ������
 -based fuzzy logic. However, the 	 ������
 -
based fuzzy logic is only an approximation to the actual
human reasoning about uncertainty. A more accurate
description of human reasoning requires that we take
into consideration the uncertainty with which we know
the values from the interval 	 ������
 . This additional un-
certainty leads to two modifications of the 	 ������
 -based
fuzzy logic: finite-valued logic and multi-D logic.

We show that for both modifications, an arbitrary � -ary
logical operation can be represented as a composition
of unary and binary ones. Thus, the above justification
for using only unary and binary logical operation as ba-
sic ones is still valid if we take interval uncertainty into
consideration.
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