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Abstract

From the commonsense viewpoint, if a person who
weighs around 100 kilograms gains one more kilogram,
his weight is still around 100 kilograms. Alas, not so
in traditional fuzzy arithmetic. In this paper, we pro-
pose a modification of fuzzy arithmetic which does have
this property. We gain the desired property, but there is
no free lunch, we have to lose two important properties
of the traditional fuzzy arithmetic: first, addition is no
longer always associative; second, addition is no longer
always easily computable.

1. Introduction

1.1. Intuitive Property of Commonsense
Arithmetic

To explain the problem that we try to solve in this paper,
let us start with a joke. A museum guide tells the visitors
that a dinosaur that they are looking at is 14,000,005
years old. An impressed visitor asks how scientists can
be so accurate in its predictions. “I don’t know how
they do it, – explains the guide – but 5 years ago, when
I started working here, I was told that this dinosaur is
14,000,000 years old, so now it must be 5 years older”.

This is clearly a joke, because from the common
sense viewpoint, a dinosaur which was approximately
14,000,000 years old 5 years ago is still 14,000,000
years old. In more precise terms, if we add 5 to
a “fuzzy” number “approximately 14,000,000”, we
should get the answer “approximately 14,000,000”.

Similarly, if a person weighs, say, approximately 100
kg, and he gains 1 kg, he still weighs approximately 100
kg. So, if we add 1 to a “fuzzy” number “approximately

100”, we should get the answer “approximately 100”.

In general, if � is much larger than � ( ���	� ), and we
add � to “approximately � ”, we should get “approxi-
mately � ”. It is therefore natural to expect formal sys-
tems which formalize commonsense reasoning to have
this property.

1.2. Fuzzy Arithmetic: A Natural Formal-
ization of Commonsense Arithmetic

A natural way of dealing with approximately known
values (such as “approximately � ”) is fuzzy arithmetic.
In fuzzy arithmetic, each such value is represented by
a membership function 
���
�� describing, for each real
number 
 , to what extent 
 matches the description (see,
e.g., [10, 14]).

For example, if the value that we want to formalize is
“approximately � ” (for some given real number � ), then
the value 
���� matches the described property per-
fectly well ( 
���������� ), while the more distant the value

 from � , the smaller the degree of matching. In other
words, a natural way to represent a property “approxi-
mately � ” is to have a membership function 
���
�� which:

� attains its maximum value 1 for 
���� ,
� increase for 
���� , and
� decreases for 
���� .

In practical applications, researchers have used mem-
bership functions 
���
�� of different shape to represent
the property “approximately � ”: Gaussian, piece-wise
linear, etc.; all these shapes have a clear maximum at

 �!� .
Vice versa, if we have a membership function 
���
��
which:



� has a clear maximum at some point 
 �!� ,
� is increasing for 
 � � , and

� is decreasing for 
 � � ,

it is natural to interpret this function as describing a
property “approximately � ”.

When several numbers
�

, � , etc., are described by
membership functions, we can use the extension prin-
ciple to describe the result of applying an arithmetic
operation to these numbers. For example, if a number�

is described by a membership function 
�� ��
�� , and
the number � is described by a membership function

�� ��
�� , then their sum � � ��� � is described by the
following membership function:


�	 ��
�� � 
���
��� ��� ��������� 
�������
������ ��� 
�� �� �� �"! � � �

We can also have a more general formula, if we use an
arbitrary t-norm instead of the minimum.

Whether we use min or a more general t-norm, in the
simple case when the number � is crisp ( � � � ), the
resulting membership function is equal to 
 	 ��
�� �

�����
$# � � ; in other words, it has the same shape as
the membership function for

�
– but it is shifted by � .

1.3. Problem: Traditional Fuzzy Arithmetic
Does Not Have the Desired Property

In many practical applications, the traditional fuzzy
arithmetic works well. Unfortunately, the traditional
fuzzy arithmetic does not satisfy the desired intuitive
property.

Indeed, let
�

mean “approximately � ” (e.g., “approx-
imately 100”). Then, the corresponding membership
function 
 � ��
 � has a maximum at 
 � � , is increas-
ing for 
 � � and decreasing for 
 � � . When we
add, to

�
, a crisp number � � � (e.g., 1), we get a

shifted membership function which has a maximum at

 � � � � , is increasing for 
 � � � � and decreasing
for 
 ��� � � . In accordance with the above interpreta-
tion, we thus interpret the sum

�%� � as “approximately
� � � ”. Thus, the sum “ & �(')' ”+1 is equal not to & �(')'
as we would intuitively expect, but to & �(' � .
How can we modify fuzzy arithmetic to make sure that
the desired property is satisfied, and the sum of “ &��*'+' ”
and 1 is equal to & �(')' ?

2. Solution: Main Idea and Its For-
malization

2.1. Main Idea

When we only know a (crisp of fuzzy) interval of pos-
sible values of a certain quantity (or a more general set
of possible values), it is desirable to characterize this
interval by supplying the user with the “simplest” ele-
ment from this interval, and by characterizing how far
away from this value we can get. For example, if, for
some unknown physical quantity 
 , measurements re-
sult in the interval , �+! -/.0��10! ��2 of possible values, then,
most probably, the physicist will publish this result as
�$&31 . Similarly, a natural representation of the mea-
surement result 
546, 78! �:9 �(.)-+10�;78! �:9 �(.<-)7�2 is 
=&?> .

So, intuitively, if we know the membership functions for�
and for � , we should:

� compute the membership function 
@	 ��
�� for ����A� � ;

� find the interval of possible values of � (e.g., as all
the values for which 
 	 ��
��%BDC+E for some value
C E );

� pick the simplest value F on this interval, and then

� return “approximately F ” as the result of adding
�

and � .

In particular, when
�

is “approximately 14,000,000” –
meaning that the interval of possible values is proba-
bly [13,500,000; 14,500,000] – and � is a crisp value
5, then for

�G� � , the interval of possible values is
[13,500,005; 14,500,005]. On this interval, 14,000,000
is probably still the simplest value, so we conclude that
the sum of “approximately 14,000,000” and 5 is – as we
expected – equal to “approximately 14,000,000”.

Similarly, in this new definition, if we add 1 kg to a
weight of approximately 100 kg, we still get approxi-
mately 100 kg as the result.

2.2. How to Formalize This Definition?

In order to formalize the above definition, we must for-
malize what “simplest” means. Intuitively, the simpler
the description of a real number, the simpler this num-
ber. Thus, to define relative complexity of different real
numbers, we fix some logical theory H in which we will
describe real numbers.

We will consider languages in which the list of sortsI
contains two symbols: “integer” and “real”, and

which contain standard arithmetic predicates and func-
tion symbols such as ' , � , � , # , J , K , � , � , L , both



for integers and for reals. We will assume that this the-
ory contains both the standard first order theory of in-
tegers (Peano arithmetic [1, 8, 16]) and a standard first
order theory of real numbers [3, 7, 17, 18]. One of the
possibilities is to consider, as the theory H , axiomatic
set theory (e.g., ZF), together with explicit definitions
of integers, real numbers, and standard operations and
predicates in terms of set theory.

Once a theory H is fixed, we can define a complexity� ��
�� of a real number 
 as the shortest length of a for-
mula � ��� � in the language � which defines this partic-
ular number 
 , i.e., which is true for � � 
 and false for
����!
 .

To clarify this definition, let us give examples of formu-
las which define different real numbers:

� A formula ���%J���� � � � ��� �$BG' is true if and
only if � ��� 1 ; thus, this formula defines the num-
ber � 1 .

� Similarly, a formula 	�
 ��
 J � �!
 � 
 � 
�� defines
a real number 3.

� If the language of the theory H contains the sine
function 
 ��� , and if the corresponding theory con-
tains the standard definition of the sine function,
then the formula 
 � � ��� ��� '�� 7 L �5L 9 defines
a real number > .

Comment � . This definition is similar to the so-called
Kolmogorov complexity � ��
�� (invented independently
by Chaitin, Kolmogorov, and Solomonoff), which is de-
fined as the smallest length of the program that com-
putes 
 (for a current survey on Kolmogorov complex-
ity, see, e.g., [12]). In our case, however, we do not care
that much about how to compute: computing 3.141592
may be easier than computing > ; we are more interested
in how easy it is to describe 
 . Due to this difference,
we cannot simply use the original Kolmogorov’s defini-
tion: we have to modify it.

Comment 1 . It is worth mentioning that not all real
numbers are definable: indeed, there are only countably
many formulas, so there can be no more than countably
many definable real numbers, while the total cardinal-
ity of the set of all real numbers is known to be larger
( ��
 ��� E ).
This new definition solves the above problem, but – in
full accordance with the saying “there is no free lunch”
– it comes with drawbacks. We will see that these draw-
backs do not mean that our solution is bad, they seem to
be implied (surprisingly) by the very properties that we
try to retain.

3. First Drawback: Addition is No
Longer Always Associative

This drawback is the easiest to describe and to ex-
plain. Both standard arithmetic and traditional fuzzy
arithmetic are associative: if we add several numbers� 
 � !:!:! � ���

, the resulting sum does not depend on
the order in which we add them; in particular,

� !*!:! � � � 
 � ��� � � ��� � � !:!*! � � ��� �
� 
 � � ��� � � ��� � � !*!:! � ��� � !:!:! � ��! � 1 �

Let us show that for the newly defined addition, this for-
mula is no longer always true.

Indeed, suppose now that we want to formalize the idea
that, say “ & �*')' ” + 1 is equal to & �*')' (this is just
an example, but any other example can be used to il-
lustrate non-associativity). Let us take � � �*' � , “ap-
proximately �(')' ” as

� 
 , and
��� � !:!:! � ��� � �

(crisp numbers). In terms of the newly defined numbers���
, the desired property takes the form

� 
 �A� � � � 

(similarly,

� 
 � � � � � 
 , etc.). Thus,
� 
 � � � � � 
 ,

hence � � 
 � � � � � � � � � 
 � � � � � 
 , etc., and
hence the left-hand side of the formula (2) is equal to
“approximately 100”:

� !:!:! � � � 
 � � � � � � � � � !*!:! � � � � � � 
 !
On the other hand, since

� � �:!*!:!:� � � are crisp numbers
(equal to 1 each), their sum

� � � � � � � � !:!*! � � � � !*!:! �
is simply a crisp number � � !*!:! � � � �*')' . Thus, the
right-hand side of the formula (2) is equal to

“approximately 100” + 100

which, intuitively, should be rather “approximately
200” than “approximately 100”. Thus, the left-hand
side of (2) is clearly different from its right-hand side.
Hence, the newly defined addition is not associative.

4. Second Drawback: Addition Is
No Longer Always Easily Com-
putable

Traditional fuzzy arithmetic – defined by the extension
principle – provides an explicit formula for computing
the sum � � � � � of two fuzzy numbers

�
and � .

So, we can still find the interval of possible values for
� . Unfortunately, as we will now show, the next step –
finding the simplest possible real number on this inter-
val – is no longer easily computable.

Theorem 1. No algorithm is possible that, given an
interval with definable endpoints, would return the sim-
plest real number from this interval.



Proof. This proof is similar to proofs from [9]. Let
us prove the desired impossibility of an algorithm by
reduction to a contradiction.

In this proof, for simplicity, we will identify each de-
finable real number with the property which defines this
number. Let � � � � be a definable real number which is
not the simplest possible real number. Let us assume
that there exists an algorithm

�
that, given any other

definable real number ��� � � � :
� chooses the simplest representative �

from the corresponding interval ( , � � � �"� � � � � � 2 or
, ������� �"� � ��� � 2 ) ; and

� if this simplest representative coincides with one
of the endpoints, returns # or

�
depending on

whether � is the left or the right endpoint.

The fact that � � � � is not the simplest possible num-
ber means that there exist other definable real numbers
whose complexity is smaller than

� � � � , i.e., that are
defined by formulas shorter than

� � � � .
Since for every length � , there are only finitely many
formulas of this length, these formulas can only define
finitely many different numbers. Thus, for every length
� , there exist finitely many definable real numbers of
complexity � . Hence, there exist finitely many definable
real numbers that are simpler than � ��� � . From these
numbers, let us pick the formula � � � � for which the
number defined by it is the closest to the number � � � �
(if there are two such numbers, let us pick the one that is
greater than the number defined by the formula � ��� � ).
Without loss of generality, we can assume that the num-
ber 
�� defined by the formula � � � � is smaller that
the number 

	 defined by the formula � � � � (the case

�	 ��
 � can be considered similarly). Now, let � � � �
be any algorithmic function from natural numbers to
natural numbers. It is known that every algorithmic se-
quence is definable in Peano arithmetic, and therefore,
since out theory H includes Peano arithmetic, � � � � is
definable in H as well.

For every such function, we can define a new definable
number  
� as follows:

� If 	 ����� � � � � ' � , then  
� � 
 	 .

� If � ����� � � ���� ' � , then

 �� ��
 	 #61��
�
��� �

J ��
 	 # 
�� �"�
where ����� � is the smallest natural number � for
which � � � ���� ' .

(We have used words to define  �� , but this definition
can be easily reformulated in terms of formulas, so, the
number  � is indeed definable.)

For each function � , it is easy to see which element from
the interval , 
 � �  � 2 is the simplest:

� If � ����� � � � �� ' � , then 
 � �  � � 

	 . Since
we have chosen 

	 as the closest of all definable
real numbers that are simpler than 
 � , and since all
the elements of the semi-open interval ��
 � �  � 2 are
closer to 
 � than 

	 , we can conclude that none
of the real numbers from the interval ��
 � �  � 2 is
simpler than 
 � . Thus, 
 � is the simplest of all
real numbers from the interval , 
�� �  ���2 .

� If 	 ����� � � � � ' � , then  � � 
�	 . Since we have
chosen 

	 as the closest of all definable real num-
bers that are simpler than 
 � , and since all the el-
ements of the open interval ��
 � � 

	 � are closer to

 � than 

	 , we can conclude that none of the real
numbers from the open interval ��
�� � 
 	 � is sim-
pler than 

� . Thus, 
 	 is the simplest of all real
numbers from the interval , 
�� � 
 	 2 � , 
�� �  ���2 .

In both cases, the simplest element coincides with one
of the endpoints, so, the algorithm

�
will return either

# or
�

:

� If � ����� � � � �� ' � , then the lower endpoint ( 
�� )
is the simplest, and hence, the algorithm

�
will

return # .

� If 	 ����� � � � � ' � , then the upper endpoint (  �� ) is
the simplest, and hence, the algorithm

�
will re-

turn
�

.

Thus, by checking whether the sign returned by the al-
gorithm

�
is # or

�
, we will be able to check, for a

given computable function � , whether 	 ����� � � ��� ' � is
true or not.

However, it is known (see, e.g., [11, 13, 15]) that there
exists no algorithm for deciding whether a program (to
be more precise, a program that always finishes its com-
putations) always returns 0. In other words, there exists
no algorithm, that, given an algorithmic (everywhere
defined) function � � � � from natural numbers to natu-
ral numbers would check whether 	 ����� � � ��� ' � . This
contradiction shows that our initial assumption — that
the problem of choosing the representative from an in-
terval is algorithmically solvable — is false. Hence, this
problem is not algorithmically solvable. The theorem is
proven.

5. A Similar Result Holds for Com-
putable Real Numbers

A similar result holds if we restrict ourselves to com-
putable real numbers, i.e., real numbers that can be



computed with an arbitrary accuracy (see, e.g., [2, 4,
5, 6]). To be more precise, a real number 
 is called
computable if there exists an algorithm (program) that
transforms an arbitrary integer

�
into a rational number


�� that is 1 � � # close to 
 . It is said that this algorithm
computes the real number 
 .

Every computable real number is uniquely determined
by the corresponding algorithm and is, therefore, defin-
able.

Theorem 2. No algorithm is possible that, given an
interval with computable endpoints, returns the simplest
computable real number from this interval.

Proof. If 
 is not the simplest possible computable real
number, then we can use the same construction as in the
proof of Theorem 1. To complete the proof, we must
now prove only the following two additional statements:

� First, we need to prove that  �� is a computable real
number (and that, given a program � , we can con-
struct a program (algorithm) for computing  � ).

� Second, in our definition, we no longer require the
algorithm to return # or

�
. Therefore, to com-

plete the proof, we must show that if an algorithm
returns a computable real number � that is equal
to one of the endpoints (i.e., to 
 or to  � ), then
we can algorithmically check whether this com-
putable real number coincides with the left end-
point or with the right endpoint.

Both statements are (relatively) easy to prove:

� To compute  � with an accuracy �� # 
�� J;1 � � , it is
sufficient to compute first

�
values of � , and take:

� If 	 ��� � ��� � � ��� ' � , then � � �  .
� If � � � � � ��� � � ���� ' � , then

� � �  #61��
� ��� �

J �� # 
����
where � ��� � is the smallest natural number� L �

for which � � � ����?' .
Then, as one can easily see,

� ��� #6 � � L�1 � � J �  �� # 
 � L?1 � � J �  #�
 � !
From these values ��� , we can easily compute the
desired rational approximations  ���� to  �� .

� If an algorithm returns a computable real number
� that coincides with one of the computable end-
points of the interval , 
@�  ���2 , then, by computing

 ,  �� , and � with sufficient accuracy (namely, with
accuracy 	 � �  �� # 
 � K�9 ), and comparing the cor-
responding rational numbers, we will be able to
check whether � � 
 or � �  � . Indeed, in this

case, from
� � � # � � L
	 , and

�  ��� #A � � L�	 , we
can conclude that

�  ���� # ��� � B �  � # � � # � ��� # � � # �  ���� #6 �� � �
�  �� # � � #$1 J � ��K�9�� J �  �� # � � � � ��K)1 �@J �  �� # 
 � !

Hence:

� If � � 
 , then, similarly,

� � � #  ��� � � � ��K)1 �@J �  � # 
 � !
On the other hand, in this case,

� � � #�
 � � L � � � # � � � � 
 � # 
 � L

1�	 � � ��K<1 �@J �� � # 
���!
Therefore, in this case,

� ��� # 
�� � � � ���8#  ��
� � .
� Similarly, if � �? � , then

� � � #�
 � � � � � � #  ��� � !
Thus, comparing two rational numbers

� � � #�
 � �
and

� � � #$ ��� � , we can tell with which of the end-
points � coincides.

The theorem is proven.

6. Conclusion

From the commonsense viewpoint, if 5 years ago, a di-
nosaur was approximately 14,000,000 years old, it is
still approximately 14,000,000 years years old. Unfor-
tunately, when we formalize the notion “approximately
14,000,000” in traditional fuzzy arithmetic, we do not
get this property. In this paper, we have described a nat-
ural modification of fuzzy arithmetic which does have
this property. This modification is closer to common-
sense reasoning, but this closeness comes at a cost: ad-
dition is no longer always associative and no longer al-
ways easily computable.
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