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Abstract

In fuzzy logic, every word or phrase describing uncertainty is repre-
sented by a real number from the interval [0,1]. There are only denu-
merable many words and phrases, and continuum many real numbers;
thus, not every real number corresponds to some commonsense degree of
uncertainty. In this paper, for several fuzzy logic, we describe which num-
bers are describing such degrees, i.e., in mathematical terms, which real
numbers are definable in the corresponding fuzzy logic.



1 Introduction: Why Definable Values Are Im-
portant

In commonsense reasoning, we use words and phrases from natural language —
like “possible”, “reasonably possible”, etc. — to describe our degree of certainty
in different statements. To represent these degrees of certainty in a computer,
traditionally, real numbers from the interval [0,1] are used: 1 (“true”) means
that we are absolutely sure that a statement is true, 0 means that we are abso-
lutely sure that the statement is false, and numbers between 0 and 1 describe
partial certainty; see, e.g., [5, 8, 12].

The correspondence between words and phrases describing uncertainty and
real numbers is not one-to-one: in every natural language, there are no more
than countably many (Xg) words and phrases, while there is a continuum
(N; > Ng) numbers in the interval [0,1]. From the practical viewpoint, it is
therefore desirable to find out which real numbers are actually needed for de-
scribing degrees of uncertainty.

Since one of the main reasons for representing degrees by real numbers is
is to represent these degrees in a computer, one possible answer to the above
question is to look at which real numbers are actually computer represented.
At present, a typical computer-represented “real number” is actually a ratio-
nal number (= fraction). Therefore, it may seem reasonable to only consider
rational numbers — especially since every real number can be approximated by
rational numbers with any given accuracy. However, this answer is not very sat-
isfying because sometimes, irrational numbers from the interval [0, 1] are also
useful in fuzzy logic. Let us give two examples. These two examples are related
to hedges like “almost”, “very”, etc., which constitute an important part of our
reasoning about uncertainty [5, 8, 12]:

e A standard representation of a hedge “almost” is that when a statement S
has a degree d, the statement “almost S” has a degree v/d. Thus, even if S
has a simple degree of belief, like d = 1/2 or d = 3/4, the resulting degree
of belief for “almost S” will be an irrational number: correspondingly,

V2/2 or V/3/2.

o A standard representation of “very” is d?, so it does not directly lead
to an irrational number. However, indirectly it does. For example, in
[6], a “perfect” degree is interpreted as a degree p for which a further
“intensification” leads to the opposite effect, i.e., for which “very” p =
1 — p. For “very” p = p?, the resulting equation leads to the golden ratio
p = (/5 —1)/2, which is an irrational number. This number has a lot of
uses, so it is desirable to keep it in our set of possible values.

These examples prompt us to consider not only computer-represented rational
numbers, but also more “complicated” numbers. First, we want to include
numbers which can be obtained by an explicit application of standard fuzzy



logic operations — like “and”, “or”, and hedges), so as to cover values like /2 /2.
More generally, we want to include numbers p which are uniquely determined
by some meaningful conditions. These conditions can be explicit, equating the
number p with a basic expression (like in the above example p = “almost” 1/2).
These conditions can be implicit, e.g., as an equality between two meaningful
terms — as in the above example “very” p =1 — p.

We can have even more complicated conditions. For example, if in fuzzy
logic, we have an “and” operation (t-norm) a & b, then a natural definition of a

fuzzy implication a=bis a=b def sup {c| (cgca) < b}. By definition of the

least upper bound sup, this means that the value p f i Sbisan upper bound
— i.e., it is greater than or equal to any ¢ for which (c&a < b — and that it

is the least upper bound, i.e., that it does not exceed any other upper bound gq.
In formal terms, this definition takes the following form:

Ve ((cgzagb) — (pzc)) &Vyq (Vc ((cgcagb) - (ch)) — @Sq)).

Summarizing these examples, we can say that from all the numbers from the
interval [0, 1], we want to use only those numbers which are uniquely determined
by some reasonable conditions.

In logic, elements of a set which are uniquely determined by some condition
are called definable. In these terms, our original problem of selecting truth values
which are really needed can be reformulated as follows: describe all definable
truth values.

In this paper, we formalize this problem, and show how its solution depends
on the particular selection of operations in fuzzy logic.

2 Definitions

Let us first define what a condition can look like. In mathematical logic, formal
expressions which describe conditions are called formulas, so we want to define
the notion of a formula. We will give sketchy definitions here; readers who are
interested in technical details can look, e.g., in [3, 4, 9].

Let us fix a set of constants (e.g., 0 and 1), and a set of operations on the

interval [0,1]; this set can include an “and”-operation (t-norm) &, an “or”-
operation V, a fuzzy negation =, hedge operations, etc. Some of these oper-
ations are binary (like t-norm and t-conorm), some are unary (like negation),
we may also have ternary operations, etc. We also have a sequence of variables
Llyee-yLpy---
Then, we define the notion of a term. Every constant is a term, every variable is
a term, and if f(x,...,%m) is an operation and ¢y, ...,t,, are terms, then the
expression f(t1,...,tm) is also a term. For example, #1 & (22 V z3) is a term,
“very” p is a term, —p is a term, etc.



Next, we define the notion of an elementary formula as an expression of the
type t1 = ta, t1 < to, t1 < ta, t1 > ta, t1 > to, Or t; # t2, where t; are terms.

For example, <cgz a) <b, q > ¢, and p < g are elementary formulas.

The notion of a formula is defined as follows:
e Every elementary formula is a formula.

e If F and G are formulas, then the expressions (F), F&G, FV G, —F, and
F — G are formulas.

e If F'is a formula and v is a variable, then expressions Vv F' and Jv F are
formulas.

It is easy to check that all the above conditions are formulas in this sense.

Finally, a truth value v is called definable if there exists a logical formula F(x)
with a single free variable x such that this formula is only true for z = v.

3 Results

What are the operations normally used in fuzzy logic? Some of the operations
are polynomial: e.g.,a&b=a-band aVb = a+b—a-b. Some of the operations,
like ¢ = “almost”(p) = ,/p, are not polynomial, but are solutions of a polynomial
equation — in the above example, the equation ¢> — p = 0. Such functions are
called algebraic (or, to be more precise, semialgebraic; see, e.g., [2]).

To be even more precise, a set S C IR? is called semialgebraic if it is a
finite union of subsets, each of which is defined by a finite system of polynomial
equations P, (x1,...,24) = 0 and inequalities of the types P;(x1,...,24) > 0
and P;(z1,...,24) > 0 — for some polynomials P; with integer coefficients.

A function f: IR™ — R is called semialgebraic if its graph {(z, f(z))} is a
semialgebraic set.

For example, the graph of the function z = min(z,y) is a union of two
pieces of planes z —x = 0 and z —y = 0, each piece is described by a polynomial
equation (of the plane) and of polynomial inequalities (describing this particular
part of the plane): e.g., for z — z = 0, the inequalities are: y — z > 0 (meaning
that t <yand >0,y >0,1—2 >0, and 1 —y > 0 (these four inequalities
mean that both = and y belong to the interval [0, 1]).

It turns out that for such operations, every definable truth value x is an
algebraic number, i.e., a solution of a polynomial equation ag + a1 - = + as - 22 +
...+ ap-z* =0 with integer coefficients a;:

Theorem 1. When all logical operations are semialgebraic, then every definable
truth value is algebraic.

(For reader’s convenience, all the proofs are given in the last Proofs section).



We know that every definable truth value is algebraic. The next natural
question is: is the inverse also true, i.e., is every algebraic number from the
interval [0, 1] definable? The following two results show that the answer to this
question depends on the specific choice of the logical operations. First, let us
give an example where every algebraic number is definable:

Theorem 2. For a&b = a- b, aVb = min(a + b,1), and Sa = 1 — a, every
algebraic number from the interval [0,1] is definable.

One can see, from the proof, that not only every algebraic number is definable,
but is can be defined by a quantifier-free formula F(z).

Next, comes an example when some algebraic numbers are not definable.
To describe this example in its utmost generality, we need to introduce a new
definition.

A set S C IR? is called semilinear if it is a finite union of subsets, each of
which is defined by a finite system of linear equations P,(z1,...,24) = 0 and
inequalities of the types Ps(21,...,%4) > 0 and Py(z1,...,24) > 0 — for some
linear functions P; with integer coefficients. A function f : R" — IR is called
semilinear if its graph {(z, f(z))} is a semilinear set.

For example, the text before Theorem 1 shows that the simplest t-norm
min(a, b) is a semilinear operation; similarly, the simplest t-conorm max(a, b),
the “bold” t-conorm min(a + b,1), and the bold t-norm max(a + b — 1,0) are
semilinear operations.

Theorem 3. When all logical operations are semilinear, then every definable
truth value is rational.

Since not every algebraic number is rational, we thus conclude that for such
logics, not every algebraic number is definable. The next natural question for
such operations is: are all rational numbers definable? The answer depends on
a specific choice of semilinear operations. First, let us give an example of a logic
in which every rational number is definable:

Theorem 4. For aVb=min(a +b,1) and “a = 1 — a, every rational number
from the interval [0,1] is definable.

One can see, from the proof, that not only every rational number is definable,
but it can be defined by a quantifier-free formula F(z).
As an example of a semilinear logic in which not all rational numbers are defin-

able, we give the simplest fuzzy logic, for which, as it turns out, we only have
three definable values:

Theorem 5. For a&b= min(a, b), aVb = max(a,b), and = a = 1—a, the only
three definable truth values are 0, 1, and 1/2.



4 Proofs

Proof of Theorem 1. Since all the operations are semi-algebraic, then, for
every definable real number v, the defining relation F(z) is obtained from a
semi-algebraic relation by using quantifiers. According to the famous Tarski-
Seidenberg theorem [10, 11] (see also [2]), every relation that is obtained from a
semialgebraic relation by adding quantifiers Vz, 3z (that run over all real num-
bers z), is still semialgebraic. Thus, the condition F'(x) is itself semialgebraic.
In other words, the relation F'(x) can be described as Pi(x) = 0, Pa2(x) > 0,
etc. for some polynomials P; with integer coefficients. The definable number v
satisfies this condition, hence Py (v) = 0, i.e., the number v is algebraic. Q.E.D.

Proof of Theorem 2. Let v be an algebraic real number from the interval
[0,1]; let us show that it is definable. If v = 0, then the defining condition is
that xV2 = x and £ < Sz. Similarly, if v = 1, then the defining condition is
that zVz = z and > . To complete the proof, we must consider the case
when 0 < v < 1.

By definition of an algebraic number, there exists a polynomial P(x) =
ap+ay - +...+ay - x* with integer coefficients for which P(z) = 0 for z = v.
We want to “translate” this equation into a fuzzy logic formula.

The first obstacle to this translation is that in fuzzy logic, we only consider
non-negative real numbers, which the coefficients a; can be negative and thus,
the value P(z) can be negative (thus difficult to interpret) for some z € [0,1]. To
overcome this obstacle, we move negative terms to the other side of the equation
P(z) = 0. As aresult, we get an equality of two polynomials Y b;-z¢ = Y ¢; 27
with natural (integer non-negative) coefficients b; and c¢;. The values on both
side of this equation are now non-negative.

However, this equation is not yet ready for the fuzzy logic interpretation,
because the values Y b; -2 and " ¢; - 27 can exceed 1. How can we overcome
this second obstacle? Since all the coeflicients b; and c; are non-negative, both
functions Y b; - ' and > c¢; - 27 are increasing with z. Thus, their largest
values are attained when x = 1, and equal to, correspondingly, > b; and ) c;.
Without losing generality, let us assume that > b; > > c¢;.

Since v < 1, we have v™ — 0 as n = co. Thus, there exists an n for which
o™+ 3 b; < 1; then, v™ - (3 b; - v) < o™ - Y b; < 1. Since ¢ < 3 b;, we also
have v™ -} ¢; < 1 and v™ - (3 ¢j - v7) <ov™- Y ¢; < 1. Hence, the desired real
number v satisfies the following two conditions: Y b; - £ = Y ¢; - 27" and
Z b; - it < 1.

These conditions can already be interpreted in fuzzy logical terms: indeed,
2" means x& ... & (k times), b-x means z + ... + = (b times), and = + y
means zVy — as long as  +y < 1 (and all the sums in the above formula are
less than 1).

We thus get a fuzzy logic condition F(z) which is equivalent to the original

k



polynomial equation P(xz) = 0. We are almost done, the only remaining problem
is that the equation may have several different roots, and we want a formula
which is true for only one real number. If this is the case, then we must add,
to the condition F'(z), additional conditions which separate v from other roots
of the equation P(z) = 0. Indeed, let v’ be a different root. Without losing
generality, let us assume that v < v’. To get the desired additional condition,
we would like to find the natural numbers n and m for which n-v™ < 1 and
n - (v")™ > 1. If we find such values, then the desired separating condition is
2V ...V 2z (n times) < 1, where z denotes z& z ... &z (m times). The desired
condition on n and m is equivalent to (1/v)™ > n > (1/v")™. When m — oo,
the difference (1/v)™ — (1/v')™ tends to oc; thus, for large enough m, the length
of the interval [(1/v")™, (1/v)™] exceeds 1 and hence, this interval contains at
least one integer n. The existence of the desired m and n is proven. Q.E.D.

Proof of Theorem 3. The proof is similar to the proof of Theorem 1. Namely,
each semilinear set is a polytope with rational-coordinate vertices. The quan-
tifier Jz; corresponds to projecting this polytope unto a space of one fewer di-
mension. Once can easily prove that this projection transforms polytopes into
polytopes, and vertices with rational coordinates are transformed into vertices
with rational coordinates. (This reduction procedure can also be described in
purely algebraic terms; see, e.g., [1].) Thus, for semilinear conditions, the condi-
tion F(z) is itself semilinear. In other words, the relation F(x) can be described
as Pi(z) =0, P»(z) > 0, etc. for some linear function P;(x) with integer coef-
ficients. The definable number v satisfies this condition, hence P;(v) = 0, i.e.,
a-v+b =0 for some integers a and b; hence, the number v = —b/a is rational.
Q.E.D.

Proof of Theorem 4. The proof is similar to the one presented in [7].

We want to prove that every rational number m/n from the interval [0, 1]
is definable. In the proof of Theorem 2, we already proved that 0 and 1 are
definable, so it is sufficient to prove that rational numbers between 0 and 1 are
definable; thus, it is sufficient to consider the case when 0 < m < n. Without
losing generality, we can assume that the numbers m and n have no common
divisors: otherwise, we can divide both n and m by their common divisor, and
get a simpler fraction representing the same rational number.

Let us prove this result by induction over m. The base is easy to prove: for
m = 1, the value 1/n can be defined as the only value z for which

zV...Vz (n — 1 times) = = z.

Let us now prove the induction step. Assume that for for some m, we
have already proved the definability of all the fractions with m' < m, and we
want to prove that m/n is definable. To prove it, let us divide n by m < n.
Since m and n have no common divisors, we have a non-zero remainder r:
n =k-m+r, with 0 < r < m. Dividing both sides of this equation by n,



we conclude that 1 — k- (m/n) = r/n. Since r < m, by induction assumption,
the value r/n is definable, so there exists a formula F(z) which is only true
when z = r/n. To get a formula G(y) which defines m/n, all we need to do
is substitute £ = = (yV...Vy (k times)) instead of z into the formula F(z).
When G(y) is true, then = r/n, hence 1 —k-y = r/n and y = m/n. The
induction step is proven. Q.E.D.

As an example, let us show how 2/5 will be defined. To define 1/5, we
have a formula zVzVzVz = Sz. To define 2/5, we divide 5 by 2, getting
5=2-2+41hence 1 =2-(2/5) =1/5. So, to get the condition for 2/5, we
substitute z = = (y Vy) into the above formula instead of z. As a result, we
get the following condition:

G @vy) VEEVY))VE YY)V E YY) =5G V).

Proof of Theorem 5. Let us first show that all three values are indeed
definable. Indeed, 0 is the only value which does not exceed everyone else,
i.e., it is the only value x which satisfies the condition Vy (z < y). Similarly, 1
is the only value which is greater than or equal to everyone else, i.e., it is the
only value z which satisfies the condition Vy (z > y). Finally, 1/2 is the only
value which satisfies the condition =2 = x.

To complete the proof, we must show that no other value v from the interval
[0,1] is definable. Let us prove this by reduction to a contradiction. Assume
that v is definable, which means that there is a formula F(z) be a formula
which defines v — i.e., which is true for x = v and false for all other values z.
Without losing generality, we can assume that 0 < v < 1/2. Let us build a piece-
wise linear transformation f : [0,1] — [0,1] by taking f(0) = 0, f(v) = v/2,
f(1/2) =1/2, f(1 —v) =1—v/2, f(1) = 1, and by making f linear on the
intervals [0,v], [v,1/2], [1/2,1 — v], and [1 — v,1]. It is easy to check that
thus defined function f transforms v into v/2 and preserves all three logical
operations (i.e., is an isomorphism) of the corresponding fuzzy logic. Thus,
a formula F(z) is true if and only if the formula F(f(x)) is also true. Since
F(v) is true, we conclude that the formula F(f(v)) = F(v/2) is also true,
which contradicts to our assumption that F(z) is false for every = # v. This
contradiction shows that the value v is not definable. Q.E.D.
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