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Abstract—Many different “and”- and
“or”-operations have been proposed for use in fuzzy
logic; ; see, e.g., [4],[13]. It is therefore important
to select, for each particular application, the oper-
ations which are the best for this particular appli-
cation. Several papers discuss the optimal choice of
“and”- and “or”-operations for fuzzy control, when
the main criterion is to get the stablest control (or
the smoothest or the most robust or the fastest-to-
compute). In reasoning applications, however, it is
more appropriate to select operations which are the
best in reflecting human reasoning, i.e., operations
which are “the most logical”. In this paper, we ex-
plain how we can use logic motivations to select fuzzy
logic operations, and show the consequences of this
choice. As one of the unexpected consequences, we
get a surprising relation with the entropy techniques,
well known in probabilistic approach to uncertainty.

Main Idea. One of the main ideas behind fuzzy logic is
that often, we do not have a 100% confidence in a cer-
tain statement; to describe the different degrees of such
confidence, we can, e.g., use numbers from the interval
[0,1].

The more arguments we have in favor of a certain state-
ment A, the larger our degree of confidence in this state-
ment. It is therefore natural to take, as our degree of
confidence d(A) in the statement A, the (relative) num-
ber of arguments in favor of this statement.

Let us use this natural interpretation of fuzzy degrees
to come up with natural logical operations of these de-
grees.

Selecting an “and”-Operation. Let us start with
an “and”-operation (t-norm) fg(a,b). The purpose of
an “and”-operation is, given our degrees of certainty
a = d(A) and b = d(B) in statements A and B, to
estimate our degree of certainty d(A& B) in a com-
posite statement A& B. If the values d(A) and d(B)
are the only information that we have about A and
B, then our estimate for d(A & B) can depend only on
this available information, i.e., in must be a function
of these two numbers. Thus, an estimate must take
the form d(A& B) = fg(d(A),d(B)) for some function
f& :[0,1] x [0,1] — [0,1]. This function fg(a,b) is called
an “and”-operation or a t-norm.

From the viewpoint of the above logic-motivated idea,
the fact that our degree of certainty in the statement A
is equal to d(A) means that we have d(A) arguments in
favor of A. Similarly, the fact that our degree of certainty
in the statement B is equal to d(B) means that we have

d(B) arguments in favor of B. We are in the situation
when we have no other information about the statements
A and B, in particular, we have no information about the
possible relation between these two statements.

In this situation, if we have an argument in favor of “A
and B”, then (since we have no information about the
relation between A and B) we must have an argument in
favor of A and an argument in favor of B. Vice versa, a
pair of arguments, one in favor of A and one in favor of
B, forms an argument in favor of A& B.

Thus, the number of arguments in favor of A& B co-
incides with the numbers of pairs

(argument in favor of A, argument in favor of B)
The number of such pairs is equal to the product:

(# of arguments in favor of A) x (# of arguments in
favor of B),

i.e., to d(A) - d(B).

Thus, logic motivates the use of an algebraic product
fe(a,b) =a-b as an “and”-operation (t-norm).
Comments.

e It is worth mentioning that algebraic product is one
of the two “and”-operations introduced in the pioneer
paper by L. Zadeh [16].

e An alternative justification of the use of this operation
comes, e.g., from requiring that it should be, on average,
the least sensitive to possible uncertainty in determining
the exact values of d(A) and d(B); see [12].

¢ The interpretation of a composite statement A & B as
the set of pairs (Cartesian product) S(A) x S(B) of the
sets S(A) and S(B) corresponding to the original state-
ments A and B is not new in mathematical logic: it has
been actively used in topos theory (see, e.g., [1],[9]) and
in linear logic (see, e.g., [3],[14]). The fact that the same
mathematical interpretation appears in linear logic and
in fuzzy logic is not surprising — there is a natural re-
lationship between fuzzy logic and linear logic; see, e.g.,
[7],[10] and references therein.

Selecting an Implication Operation. Let us now
continue with an implication operation f_,(a,b). The
purpose of an implication operation is, given our degrees
of certainty a = d(A) and b = d(B) in statements A and
B, to estimate our degree of certainty d(A — B) in a
composite statement “A implies B”.

From the viewpoint of the above logic-motivated idea,
the fact that our degree of certainty in the statement A
is equal to d(A) means that we have d(A) arguments in
favor of A. Similarly, the fact that our degree of certainty



in the statement B is equal to d(B) means that we have
d(B) arguments in favor of B.

If we have an argument in favor of the implication “A
implies B”, then, by combining each argument in favor of
A with the argument in favor of the implication, we get
an argument in favor of the conclusion B. Thus, when-
ever we have an argument in favor of the implication, we
thus have a transformation which transforms each argu-
ment in favor of A into an argument in favor of B. In
mathematical terms, we thus have a function which maps
the set S(A) of arguments in favor of a statement A into
the set S(B) of arguments in favor of the statement B.

Vice versa, if we have a function which converts every
argument in favor of the statement A into an argument in
favor of a statement B, then this function can be viewed
as an argument in favor of the implication A — B.

Thus, the number of arguments in favor of A — B
coincides with the numbers of functions from the set S(A)
to the set S(B). The number of such functions is known
to be equal to d(B)44),

Thus, logic motivates the use of f_,(a,b) = b* as an
implication operation.

Comments.

e The implication operation f_ (a,b) = b* was first in-
troduced by R. Yager and is called Yager’s implication.
e An alternative justification of the use of Yager’s impli-
cation comes from requiring that several natural proper-
ties of classical implication, such as

(A= B)&(A— C)=(A— (B&C)) and

(A->(B—-0C)=(A&B)—C,

hold for fuzzy implication operation as well; for details,
see [15].

o Strictly speaking, the value b® is not well defined when
a = b =0, and the above definition has to be specifically
supplemented by explicitly defining what 0° should stand
for. At first glance, this may sound like an inconvenience,
but in reality, the ambiguity of an implication A — B
for the case when both A and B are false (i.e., when
d(A) = d(B) = 0) is in good accordance with common
sense. In traditional (mathematical) logic, the implica-
tion is assumed to be true if both the condition and the
conclusion are false. However, from the commonsense
viewpoint, phrases like “if the Moon is made of green
cheese then 2 + 2 = 5” do not seem like convincingly
true.

e Similarly to the interpretation of a composite statement
A& B as the set of pairs (Cartesian product) S(4) x
S(B), the interpretation of the implication A — B as
the set of all the functions from the set S(A) to the set
S(B) has also been been actively used in topos theory
and in linear logic.

We Can Now Interpret If-Then Rules. Once
we have selected a fuzzy “and”-operation fg(a,b) and
a fuzzy implication operation f_,(a,b), we are able to
transform an arbitrary set of fuzzy if-then rules connect-
ing inputs 1, ..., z, and the output y into a crisp func-
tion y = f(x1,...,2Z,). Indeed, let us assume that the

relation between the inputs x1,...,2, and the output y
can be characterized by several if—then rules:

(All(.'lj'l) & ... &Aln(xn)) — Bl(y),

(Ami(z1) & ... & Apn(zn)) = Bn(y),

where A;;(z;) and B;(y) are properties expressed by
words from natural language. This interpretation con-
sists of the following steps (see, e.g., [11]):

e First, we can use one of the known elicitation
techniques to determine the membership functions
pii(z;) and pP(y) corresponding to the words
Aij(z;) and B;(y).

e Then, we can use the fuzzy “and” operation
fe(a,b) = a - b to determine, for each rule
¢ and for given input zi,...,z,, the degree ¢;
to which the given input satisfies the conditions

Aj(z1) & ... & Ain(z,) of the given rule. This
value is equal to ¢; = pfi (1) - ... - pid (z,).
e Next, we use the fuzzy implication operation

f=(a,b) = b* to determine, for each rule 7, for given
input z,...,%,, and for an arbitrary value y, the
degree d; to which this value y satisfies this rule.
This value is equal to

dily) = (P (1)) = (uB ()" )i

e Next, we use the fuzzy “and”-operation fg (a,b) =
a - b to determine, for the given input and for an
arbitrary value y, the degree d(y) to which the
value y satisfies all m rules, i.e., Rule 1 and Rule
2 ...and Rule m. Since we already know the de-
grees di(y),--.,dm(y) to which each of these rules
is satisfied, we can thus determine the desired degree

d(y) as d(y) = di(y) - ... - dm(y)-

e Finally, for the given input zy,...,z,, we find the
desired value y as the value for which the degree
d(y) is the largest possible: d(y) — max. It is worth

Y

mentioning that for the frequently used Mamdani
approach, the selection of the largest degree does not
lead to a very good control, so more sophisticated de-
fuzzification methods — like centroid defuzzification
[4] — have to be used. We will see that in our case,
maximum works just fine, and more sophisticated
defuzzification techniques are not necessary.

In the following sections, we will show that for sev-
eral important rule bases, the logic-motivated operations
fe(a,b) =a-band f_(a,b) = b* indeed lead to a natural
function y = f(x1,...,%n)-

Logic-Motivated Fuzzy Logic Operations Lead to
a Natural Interpolation. Let us start with a simplest
example of if-then rules, in which we only have one input



variable = z1, and all the properties of the output vari-
able y are exactly the same as for the input variable z;.
For such examples, since all the properties of the output
y are exactly the same as the properties of the input z,
it is natural to expect that the defuzzification procedure
would lead to y = z. We will show, on a simple example,
that for Mamdani approach with a centroid defuzzifica-
tion, we do not get y = z, but for our approach, with
logic-motivated fuzzy logic operations, we indeed get the
expected function y = z.

For simplicity, let us assume that both z and y take
values in the interval [0,1] and we have two rules:

If x is small, then y is small.
If x is large, then y is large.

Here, n = 1, m = 2, A11 = Bl =“small” and A21 =
By =“large”.

Since we only consider values from the interval [0, 1],
the largest value (= 1) from this interval should be con-
sidered large, while the smallest value (= 0) from this
interval should be absolutely not large. Thus, the mem-
bership function 2} (z) for “large” should be equal to 0
for x = 0 and to 1 for £ = 1. the simplest such function
is ps (z) = 2.

Similarly, the membership function puf} (z) for “small”
should be equal to 1 for x = 0 and to 0 for x = 1. the
simplest such function is uf,(z) =1 — 2.

One can easily check that for Mamdani approach with
centroid defuzzification (a standard approach in fuzzy
control), we do not get y = x. However, for the logic-
based fuzzy operations, we do get the desired function:

Proposition 1. For the above rules, logic-based fuzzy
logic operations lead to y = x.

(For reader’s convenience, all the proofs are placed at the
end of the paper.)

A Natural Derivation of the Standard Fuzzy
Negation. We can apply the same approach to the de-
termination of the fuzzy “negation” operation. In clas-
sical logic, there are only two truth values: “true” and
“false”. Therefore, we can describe the classical negation
y = —z by the following two if-then rules:

If x is false, then y is true.
If x is true, then y is false.

We can use these same rules to describe fuzzy negation.
For a truth value z € [0, 1] which is different from 0 and 1,
the statement “z is true” becomes fuzzy. the value z itself
describes to what extent it is true: 1 means absolutely
true, 0 means not true at all, intermediate values mean
“true to some extent”. Thus, as the truth value u3} (z)
that x is true, it is natural to take this same value .

Similarly, as a truth value pf} (z) that =z is false, it is
natural to take 1—z. Correspondingly, we get uZ(y) =y
and pg (y) =1 —y.

It turns out that for this natural choice, the above
scheme leads to the standard negation operation:

Proposition 2. For the above rules, logic-based fuzzy
logic operations lead toy =1 — .

The Resulting Fuzzy “Or”-Operation: “Alge-
braic Sum”. A similar approach can select the “or”
operation (a t-conorm). Specifically, the classical “or”
can be described by the following four if-then rules:

If x; is false and x5 is false, then y is false.
If x; is false and x5 is true, then y is true.
If x; is false and x5 is true, then y is true.
If z; is true and z2 is true, then y is true.

With the same membership functions as for negation, we
get the “algebraic sum” t-conorm as a result:

Proposition 3. For the above rules, logic-based fuzzy
logic operations lead to y = x1 + x5 — T - To.

Is This Approach Consistent? Checking That
It Returns the Original Fuzzy “And”-Operation.
What if we apply this same approach to reconstruct the
“and” operation? The classical “and” can be described
by the following four if-then rules:

If 1 is false and x, is false, then vy is false.
If x; is false and x5 is true, then y is false.
If x; is false and x5 is true, then y is false.
If x; is true and z2 is true, then y is true.

If we use the same membership functions as for negation
and for “or”, then Mamdani’s approach with defuzzifi-
cation leads to a function which is different from the
original t-norm. The above logic-motivated approach is
consistent in the sense that we get the exact same “and”-
operation fg(a,b) = a - b back:

Proposition 4. For the above rules, logic-based fuzzy
logic operations lead to y = x1 - x2.

Comment. It would be interesting to find out what other
fuzzy logic operations are “consistence” in this sense.

Relation to Entropy. Since we started talking about
consistency, let us go back to the example of a simple
interpolation. In this example, we argued, in fact, that
from the commonsense viewpoint, the rules like A; (z) —
A1(y), ..., An(z) = An(y), should be true for y = z.
When the properties A; are fuzzy, these rules still hold,
but only to a certain degree.

The degree d to which the above rules hold for all val-
ues of z is equal to

=11 (("fl(m))uf(@ e (ué(w))”m(w)> _

Maximizing d is equivalent to maximizing its logarithm,
i.e., the value

L=Y (ui(@) In (uf(@) + ...+ ph() - In (un(2))) -

This expression is similar to the expression for entropy S
in probability theory and information theory (see, e.g.,
[2]); namely, the entropy of a probability distribution
characterized by probabilities p1, ..., p, is equal to:

S=—=(p-In(p1) +... +pm - In(pn)) -



This relation is not just a coincidental similarity between
the two formulas: it can be shown, e.g., that if we use the
maximum entropy approach to select the most appropri-
ate “and” and “or” operations, we get exactly the same
operations fg(a,b) =a-band fy(a,b)=a+b—a-bas
our logic-motivated approach [6].

There may also be a relation between the fact that the
Maximum Entropy principle in statistics is often used
to justify Gaussian distribution, and the fact that Gaus-
sian membership functions are often used in fuzzy logic
methodology (see, e.g., [4] and references therein; please
note that there are alternative explanations of Gaussian
membership functions; see, e.g., [8]).

A similar relation with entropy techniques can be made
for the case when conclusions differ from the conditions,
i.e., for the rules of the type A;(z) — B;(z), 1 < i <
m. In this case, the degree to which all these rules are
satisfied is equal to:

@ =TT (@)™ o () ™*)).

T

Since B; # A;, this degree is smaller than the degree d
corresponding to B; = A;. The decrease can be charac-
terize by the ratio d’/d. The logarithm L' of this ratio is
equal to

3 (uf(m) ‘In (“?(x)) +.. 4 pt(z)-1In (“ﬁ("’”)» :

: wi@) wi @)

This expression is similar to the known expression for a
relative entropy:

S’=—<p1-1n<q—1)+...+pm-ln<q—m>).
D1 Pm

Proof of Proposition 1. In accordance with the above
description, for a given z, and for an arbitrary y, the
degree d(y) is equal to y® - (1 — y)~®. Maximizing this
degree is equivalent to maximizing its logarithm, i.e., the
value L(y) ef 5. In(y) + (1 — z) - In(1 — y). Differenti-
ating L(y) w.r.t. y and equating the derivative to 0, we
conclude that z/y — (1 — z)/(1 — y) = 0; subtracting the
fractions, we get y = x.

Proof of Proposition 2. Similarly to the proof of
Proposition 1, we get d(y) = y'= - (1 — y)®. Differ-
entiating the logarithm of this expression w.r.t. y and
equating the resulting derivative to 0, we get the desired
value of y.

Proof of Proposition 3. Here,

d(y) = (1 - y)(1—$1)'(1—$2) . y(l—wl)-wz . ywl-(l—wg) . ‘ywl-wZ.

Combining powers of y together, we conclude that d(y) =
(1 —gy)(t=z1)-(1=22) g@1te2—21-22_ Differentiating the log-
arithm of this expression w.r.t. y and equating the re-
sulting derivative to 0, we get the desired value of y.

Proof of Proposition 4. This case is similar to the
proof of Proposition 3, with the only difference that d(y)
is equl to:

(1=y) 1m0 (1) () 72, (Lo Oy oen,

Combining powers of 1 — y together, we conclude that
d(y) = (1—y)'t~*r*2.y®122 Differentiating the logarithm
of this expression w.r.t. y and equating the resulting
derivative to 0, we get the desired value of y.
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