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Abstract

We propose a new way to generalize logical operations from the discrete classical logic to a continuous
fuzzy logic; namely, we propose to define derivatives for discrete case, and then to use these derivatives
to derive the continuous operations. We show that this natural approach leads to “algebraic” fuzzy
operations a-band a+b—a-b.

1 Introduction

The traditional fuzzy logic, in which the set of truth values is the interval [0, 1], is a natural generalization of
the classical (2-valued) logic in which the set of truth values {0,1} = {F, T} consists of only two elements:

e 0 =F =“false”, and
o 1 =T =“true”.

There are many different ways of generalizing logical operations from the (discrete) 2-valued set {0, 1} to the
continuous interval [0, 1]; see, e.g., [2, 7]. Most of these generalizations come from selecting some reasonable
properties of a 2-valued logic and requiring that these same properties hold for the continuous logic as well.
For example, if we require that the property A& A = A be preserved for an “and”-operation (t-norm)
f& :[0,1] x [0,1] = [0,1], then this requirement uniquely determines the operation fg (a,b) = min(a, b).

In this traditional approach, we generalize the properties of the discrete-valued logic to the continuous
case. Thus, the generalization goes in the direction from the discrete case to the continuous case.

In this paper, we propose a new approach to such a generalization, an approach in which the generalization
goes (in some reasonable sense) in both directions:



e in the usual direction, from discrete to continuous, and also

e in the opposite direction: from the continuous to the discrete case.

Specifically, we do the following:

e We start with the notion which is natural to define in the continuous case but which is difficult to
define for the original discrete logic — the notion of the derivative.

e Then, we define a natural generalization of this continuous notion to the discrete case. This is the step
where we generalize from the continuous to the discrete case.

o We use the definition of the “generalized” derivative to determine the derivatives of the standard
2-valued logical operations.

e Next, we generalize in the usual direction: namely, we require that the continuous generalizations of
these logical operations have exactly the same values of derivatives.

From the continuous viewpoint, this approach makes perfect sense, because most continuous processes — in
physics, in chemistry, etc. — are described by differential equations, when we first determine the values of
the derivatives and then then use these values to reconstruct the desired functions.

We are doing, in effect, the same thing for fuzzy logic operations: we first find the appropriate differential
equations for these operations, and then we solve (“integrate”) these equations to get the explicit formulas.

2 A Natural Generalization of a Derivative to the Discrete
(2-Valued) Case

The derivative of a function f(t) is defined as a limit

df aef . f(t2) — f(t1)
i lim —_— (1)
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The limit means that the closer the values ¢; and ¢, to ¢, the more accurately the ratio in the right-hand side
of the formula (1) describes the desired derivative. Thus, in practice, to estimate the value of the derivative
as accurately as possible, we select the values t1 < t3 to be as close to t as possible, and use the corresponding
ratio as the desired estimate: N
d _ flt2) — f(t)

2
dt ta — 11 2
It is reasonable to use this same idea to define the derivative in the discrete 2-valued case, when the variable

t only takes two possible values: 0 and 1. From the viewpoint of this definition, the main difference between
the continuous and the discrete cases is as follows:

e In the continuous case, we can take the values ¢; as close to ¢ as possible. No matter how close to t the
values t; are, the resulting ratio (2) is only an approximation to the actual derivative, and we need the
limit operation to define the exact value of the derivatives.

e In the 2-valued case, there are only two possible values of ¢, so if we still want to use the definition (2),
our only choice is touse t; =0 an t, = 1.

In this case, to —t; = 1, so (2) turns into the following definition of the discrete derivative:

Df ef
o = 1) - 1(0). 3)

This natural formula looks trivial, but it is actually very useful in discrete optimization — just like the normal
derivative is useful in continuous optimization. Let us just give two references:



e In [3], it is shown how this discrete derivative can be used to design efficient gradient-type heuristic
techniques for solving discrete optimization problems (which are usually difficult to solve — NP-hard,
to be more precise).

e In [5], it is shown how a similar discrete derivative can help to optimize functions of sets, i.e., functions
f(t) in which the variable ¢ can take, as values, different (crisp) subsets. We can, of course, make this
problem closer to the continuous case by considering, instead of a set, its characteristic function. The
values of the characteristic function are numbers #(x) corresponding to different points z, so it looks
almost like a normal differentiation problem. However, for each x, the characteristic function can only
take two values: 0 and 1, so we face the same problem of defining a derivative in the discrete case.

A similar notion of a discrete derivative turns out to be very useful in a more general granulation framework,
when a function f(t) is only defined on (fuzzy) granules ¢, and we want to estimate the rate with which it
increases (i.e., its derivative); see, e.g., [1].

Let us show how, with this discrete differentiation operation, we can use the above methodology to select
the fuzzy logic operations.

3 First Example: Selecting Fuzzy Negation

Let us start with the simplest fuzzy logic operation: negation f-(z). In 2-valued logic, f-(0) = 1 and
f-(1) = 0. To generalize this operation to the interval [0,1], we must find the derivative of the discrete
negation.
In accordance with the formula (3), this derivative is equal to (1) — f~(0) =0 — 1= —1. We want to
use this same expression for the derivative of a continuous function f-(z).
Thus, we must find a function f-(z) for which f.(0) =1 and f-(0) =1 (since it is a generalization of a
classical negation) and for which
df-
de
One can easily see that with the given boundary conditions, this differential equation has only one solution:
f-(z) =1—u.

Thus, our approach leads to the standard negation operation.

4 Second Example: Selecting Fuzzy “And” (T-Norm)

Selecting a fuzzy “and”-operation fg (a,b) is somewhat more difficult than selecting a fuzzy negation, because,
instead of selecting a function of a single variable, we must select a function of two variables. Let us show
how it can be done.

Our main idea is that once we fix the value of one of the variables, e.g., the first variable a, then fg(a,b)
becomes a function of only one variable: the variable b. Thus, if we can use the above approach to find, for
each a from the interval [0, 1], the function b — fg.(a,b), we will be able to uniquely reconstruct the values
fe(a,b) for every a and b — and hence, the desired function of two variables.

Let us therefore fix a and consider the function g,(b) = fg(a,b) of one variable. To reconstruct this
auxiliary function, we must know its initial condition, i.e., the value g,(0) = fg(a,0), and its derivative

dga(b) _ af&(aa b) )

db 0b
In accordance with our methodology, as the value of this derivative, we take the discrete derivative
Dga(b
P9) _ gu1) ~ 9a(0) = Jila, 1)~ fila,0). ()

Thus, to apply this idea, we must know, for each value a, the values fg(a,1) and fg(a,0). In other words,
we need to know the values of another two auxiliary functions of one variable. These values can also be
determined by the above procedure.

As a result, we arrive at the following procedure:



e First, we determine the values of the function fg(a,0):
e The initial condition comes from the requirement that this function should be an extension of the
classical “and” operation. So, we have fg(0,0) = 0.
e The discrete derivative of this function is equal to fg(1,0) — fg(0,0)=0—-0=0.

o We extrapolate the function to arbitrary values of a € [0, 1] by assuming that the same expression
holds for the actual derivative
8f& (a7 O)

Oa

Thus, we have a function whose initial value is 0, and whose derivative is 0, so the function is
identically 0: fg (a,0) = 0 for all a.

e Second, we determine the values of the function fg(a,1):
e The initial condition comes from the requirement that this function should be an extension of the
classical “and” operation. So, we have fg(0,1) = 0.
e The discrete derivative of this function is equal to fg(1,1) — fg(0,1)=1-0=1.

e We extrapolate the function to arbitrary values of a € [0, 1] by assuming that the same expression
holds for the actual derivative
af& (a7 1)

Oa

Thus, we have a function whose initial value is 0, and whose derivative is 1, so the function is
equal to fg(a,1)=0+1-a=a for all a.

e Finally, we determine the values of the function fg(a,b) for arbitrary a and b. We do that by deter-
mining, for each a € [0, 1], the function g,(b) = f.(a,b) of one variable b.
e The initial condition for the function g,(b) comes from the already known fact that fg (a,0) = 0.
e The discrete derivative of this function is equal to fg(a,1) — fg(a,0) =a—0=a.

e We extrapolate the function to arbitrary values of b € [0, 1] by assuming that the same expression
holds for the actual derivative
8f& (a7 b)

0b

Thus, we have a function whose initial value is 0, and whose derivative is a, so the function is
equal to fg(a,b) =0+4+a-b=a-b for all a and b.

So, we get the “algebraic product”, one of the t-norms originally proposed by L. Zadeh in his pioneer
paper [8].

Comment. Instead of looking for a function g, (b) def fe(a,b), we could, alternatively, start by looking for a
function hp(a) e £ (a,b). One can easily show that we would have gotten the same result.

5 Third Example: Selecting Fuzzy “Or” (T-Conorm)

A similar procedure can determine the fuzzy “or” operation (a t-conorm):
e First, we determine the values of the function fy(a,0).

e The initial condition comes from the requirement that this function should be an extension of the
classical “or” operation. So, we have fy(0,0) = 0.

e The discrete derivative of this function is equal to fyv(1,0) — fv(0,0) =1-0=1.



e We extrapolate the function to arbitrary values of a € [0, 1] by assuming that the same expression
holds for the actual derivative
6f\/(0/, 0)

oa.

Thus, we have a function whose initial value is 0, and whose derivative is 1, so the function is
equal to fy(a,0) =0+4+1-a =a for all a.

e Second, we determine the values of the function fy (a,1).

e The initial condition comes from the requirement that this function should be an extension of the
classical “or” operation. So, we have f,(0,1) = 0.
e The discrete derivative of this function is equal to fyv(1,1) — fv(0,1) =1—-1=0.
e We extrapolate the function to arbitrary values of a € [0, 1] by assuming that the same expression
holds for the actual derivative
6f\/ (av ]-)
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Thus, we have a function whose initial value is 1, and whose derivative is 0, so the function is
equal to fy(a,1) =1 for all a.

e Finally, we determine the values of the function f\ (a,b) for arbitrary a and b. We do that by deter-
mining, for each a € [0, 1], the function g,(b) = fv(a,b) of one variable b.

e The initial condition for the function g,(b) comes from the already known fact that f\ (a,0) = 0.

e The discrete derivative of this function is equal to fy(a,1) — fy(a,0) =1 —a.

e We extrapolate the function to arbitrary values of b € [0, 1] by assuming that the same expression
holds for the actual derivative
6fv (a, b)

ob
Thus, we have a function whose initial value is a, and whose derivative is 1 — a, so the function
is equal to fy(a,b)=a+(1—a)-b=a+b—a-bfor all a and b.

So, we get the “algebraic sum”, one of the t-conorms originally proposed by L. Zadeh in his pioneer paper [8].

Comment. The fact that these operations surface is no accidental: An alternative justification of the use
of this operation comes, e.g., from requiring that it should be, on average, the least sensitive to possible
uncertainty in determining the exact values of d(A) and d(B); see [6]. Since a natural interpretation of
“sensitivity” is via derivatives, there is a clear relationship between these results.

6 General Result

Let us now formulate, in precise terms, a general procedure for extrapolating as function f(z1,...,z,) of n
propotional variables z; € {0,1} into a function of n fuzzy variables z; € [0, 1]:

e For a function of a single variable (n = 1), the reconstruction is straightforward:

e we know the value f(0), and

e we require that for every value x;, we have

of _ Df _ :
92 = Doy =1 W 1O (5)
o thus, we get f(z1) = f(0) + (f(1) — f(0)) - 21, ie,
fl@) = f0)- (A =z1) + f(1) - 21 (6)



e Let us now assume that we already know how to extrapolate functions of n — 1 variables. Then, we can
determine the values of f(x1,...,2,) for all z4,...,z,, if we find, for every z1,...,2, 1, the function

£
gm,---,wn_l(xn) - f@1,-. , Zn_1,%n) (7)
as follows:

o The initial value gg,,....z,_,(0) = f(21,...,2n—1,0) of the auxiliary function g is a function of n—1
variables 1, ..., T,_1, S0, according to our assumption, we already know how to use extrapolation
to find these values.

e We require that for every value z,,, we have

of _ Dy
61’ =D$ =f($1,...7.’ll'n_1,1)—f(.Z'l,...,Z'n_l,O). (8)
n n
Here, f(x1,...,2,-1,1) is also a function of n — 1 variables, so, according to our assumption, we

already know how to use extrapolation to find these values.

e Thus, we get

f@e,. o xp1,20) = f(®1,. -, Tp1,0) + f(@1, ..oy Tp—1,1) = f(z1,.. ., Tpn-1,0) - Ty, 9)
ie.,
f@ry.o 1, 20) = f(®1,- -+, Zp—1,0) - (1 —25) + f(21,. .., Tp—1,1) - Ty (10)
The result of applying this procedure is easy to describe:
Proposition. As a result of applying the above procedure, we get the following multi-linear function

flz1,...,2,) = Z Z f(sl,...,sn)-x§61)-...-;csf"), (11)

e1€{0,1} en€{0,1}

where £V means z, and £(©) means 1 — z.
This result is easy to prove by induction over n. This results shows, in particular, that although the procedure
depends on which of the variables we select first, the resulting function f(z1,...,z,) does not depend on
the order in which the variables z; are selected.
All three above results are a particular case of this general proposition. Indeed, for negation, for which
f(0) =1 and f(1) = 0, this proposition implies that
f@1) = £0) -2 + (1) -2l = f(0) - (1 —&1) + f(1) - 21 = 1 a1, (12)
For an “or” operation, for which f(0,0) = 0 and f(0,1) = f(1,0) = f(1,1) =1, we get
flz1,m2) = £(0,0)- (1 —x1)- (1 —z2) + £(0,1)- 1 —x1) -2 + f(1,0) 21 - (1 —x2) + f(1,1) - 21 - T2 =
(1—z1) wo+oz-(1—32) + 21 -T2 =1 + T2 — T1 - T2- (13)
We can apply this result to other classical logic operations as well:

e for implication, for which f_,(1,0) = 0 and f(0,0) = f,(0,1) = f-(1,1) = 1, we get f-(a,b) =
1 —a + a - b; this expression can be represented in terms of other “algebraic” operations is we assume
that f_(a,b) = fv(f=(a),b) (i-e., that we have an S-implication);

o for exclusive or fg(a,b), we get fg(a,b) =a+b—2-a-b;
e for equivalence f=(a,b), we get f=(a,b)=1—a—b+2-a-b.

It is worth mentioning that, in contrast to the expression for implication, expressions for “exclusive or” and
for equivalence cannot be expressed as compositions of the algebraic operations “and”, “or”, and “not” [4].
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