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Abstract—We
derivation of centroid defuzzification.

describe a new symmetry-based

The Need for Defuzzification. Fuzzy logic and fuzzy
control start with the knowledge expressed by experts in
terms of words from a natural language, and end up with
control or decision recommendations; see, e.g., [1],[2], [4]-

As a result of the standard fuzzy control methodology,
we get a fuzzy set (membership function) u(u) which de-
scribes, for each possible control value u, how reasonable
it is to use this particular value. In automatic control
applications, we want to transform this fuzzy recommen-
dation into a single value @ of the control that will actu-
ally be applied. This transformation from a fuzzy set to
a (non-fuzzy) number is called a defuzzification.

What defuzzification should we apply?

The Standard Choice of a Defuzzification is:

_ Ju-p(u)du
"= Ty de M

This formula is called centroid defuzzification, because
it resembles a formula from mechanics that describes the
center of mass T of a system of several points with masses
m; at locations 7; as
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here, u is the analog of a location, and p(u) is the analog
of the mass.

This formula has been successfully used in fuzzy con-
trol.
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Warning: Centroid Defuzzification Is Only a Ba-
sis, It Does Not Always Work By Itself. In most
real-life situations, centroid defuzzification leads to a
meaningful control, but in some cases, it may lead to
an unreasonable control.

Let us give a simple example. Suppose that we are
designing an automatic controller for a car. If the car is
traveling on an empty wide road, and there is an obstacle
straight ahead (e.g., a box that fell from a truck), then a
reasonable idea is to swerve to avoid this obstacle. Since
the road is empty, there are two possibilities: we can
swerve to the right, we can swerve to the left.

For swerving, the control variable u is the angle to
which we steer the wheel. Based on the distance to the
obstacle and on the speed of the car, an experienced
driver can describe a reasonable amount of steering ug.
(In reality, uo will probably be a fuzzy value, but for
simplicity, we can assume that ug is precisely known.)

Thus, as a result of formalizing expert knowledge, we
conclude that there are two possible control values: the
value ug with degree of confidence p(ug) = 1, and the
value —ug, with degree of confidence u(—ug) = 1. If we
apply the defuzzification formula (1) to this situation,
we get @ = 0. So, the recommended control means that
no swerving will be applied at all, and the car will run
straight into the box.

To avoid such situations, we must modify the centroid
defuzzification. We could have screened out the value
@ = 0 because for this value, u(a) = 0. Thus, instead
of using a simply centroid defuzzification, we can do the
following;:

e First, we apply defuzzification to the original mem-
bership function p(u).

e Then, we check whether the resulting control value u
is reasonable, i.e., whether the degree of confidence
u(@) is big enough (e.g., larger than some pre-defined
value pyo).

o If u(@) > pg, then we apply the control a.

o If u() < po, this means that there are several ar-
eas of reasonable control separated by a gap, and @
happens to be in this gap. In this case, instead of
applying the the centroid defuzzification to the en-
tire membership function p(u), we select one of the
areas, and then apply centroid defuzzification only
to value u from this area.

This idea was first proposed and successfully imple-
mented by J. Yen [5]-{7].

A Related Probabilistic Derivation of Centroid
Defuzzification. The above formula can be naturally
reformulated in probabilistic terms. Indeed, according
to the standard probabilistic decision making approach,
we must select the value @ for which the average loss
J(@—wu)?- p(u) du is the smallest possible, where p(u) is
the probability density characterizing the probability of
different values of u. We cannot apply this criterion di-
rectly, because we do not know the values p(u). Instead,
we know, for each value u, the degree u(u) to which this
value u is possible. We need to “translate” these degrees
into a subjective probability distribution p(u).

It is reasonable to assume that the larger our degree,
the larger the probability. The simplest way to express
this assumption would be to assume that p(u) = p(u),
but we cannot do that, because the probability density
must be normalized ([ p(u) du = 1), while the member-
ship function may be not normalized at all. Thus, we



have to use the next simplest way, by using p(u) = ¢-u(u)
and selecting the constant ¢ so as to guarantee the nor-
malization.

For this choice of the density function, minimizing the
average loss is equivalent to minimizing the expression
J(@—u)?- p(u) du, which, as one can easily see, leads to
centroid defuzzification.

The Above Derivations Were Heuristic; We Need
a More Justified Derivation. Most known derivations
of centroid justification are heuristic. For example, in the
probabilistic justification, we could as well take p(u) =
f(p(u)) for some nonlinear monotonic function f(z), and
end up with a different expression for defuzzification.

It is known that different versions of fuzzy control
methodology lead to different control quality (see, e.g.,
[3]), so it is important to try our best in selecting this
methodology. We would therefore like either to get a
more precise (and more confidence-bringing) justification
for centroid defuzzification, or, alternatively, to find a
better defuzzification procedure.

In this paper, we provide a more justified derivation
of centroid defuzzification (thus showing that alternative
defuzzification procedures may not be so good). This jus-
tification will be done in terms of invariance, in the same
style in which in [2], we justified different operations and
properties of fuzzy logic. Before we describe our result,
let us list and motivate the corresponding invariance re-
quirements.

First Invariance: With Respect to Rescaling of
Certainty Degrees u(u). One of the natural methods
to ascribe the degree of confidence d(A) to a statement
A is to take several (N) experts, and ask each of them
whether he or she believes that A is true. If N(A) of them
answer “yes”, we take d(A) = N(A)/N as the desired
certainty value. If all the experts believe in A, then this
value is 1 (=100%), if half of them believe in A, then
t(4) = 0.5 (50%), etc.

Knowledge engineers want the system to include the
knowledge of the entire scientific community, so they ask
as many experts as possible. But asking too many ex-
perts leads to the following negative phenomenon: when
the opinion of the most respected professors, Nobel-prize
winners, etc., is known, some less self-confident experts
will not be brave enough to express their own opinions,
so they will rather say nothing. How does their presence
influence the resulting uncertainty value?

Let N denote the initial number of experts, N(A) the
number of those of them who believe in A, and M the
number of shy experts added. Initially, d(4) = N(A)/N.
After we add M experts who do not answer anything
when asked about A, the number of experts who believe
in A is still N(A), but the total number of experts is

bigger (M + N). So the new value of the uncertainty

ratiois d'(A) = ]\%7‘4}\)4 = c-d(A), where we denoted ¢ =

N/(M + N). Thus, the same confidence expressed by a
membership function p(u) can be alternatively expressed
by a membership function p'(u) = ¢ - p(u).

The result of defuzzification should not change if we
simply change the way the same confidence is expressed.

In mathematical terms, this requirement means that the
defuzzification procedure should be invariant with re-
spect to the transformation p(u) — ¢ - p(u). To dis-
tinguish this invariance requirement from several other
invariances which we will introduce later, we will call
this invariance p-invariance.

Because of This Invariance, We Cannot Have
an Analytical Defuzzification Operation, We Can
Only Have a Fractionally Analytical One. It turns
out that the above requirement directly affects a mathe-
matical formalization of our problem.

Indeed, a defuzzification operation D should trans-
form a function p(u) into a value @. A function p(u)
can be viewed as a sequence of its values, so a de-
fuzzification operation, in effect, maps the sequences
(u(u), - -, u(uy)) into values 4. From this viewpoint,
selecting D is equivalent to selecting a function of n vari-
ables & = D(u(u1), - - -, p(uy))-

It seems natural to consider analytical functions, i.e.,
functions which can be expanded into Taylor series:

ﬂ=a0+2ai-u(ui)+zzaij () - pug) + ..

i=1 j=1

In reality, there are infinitely many possible values u. To
get a formula for this realistic case, we must take more
and more points and then tend this number of points to
infinity. Then, the sums tend to integrals, and we get the
following formula:

%= D(u) = ag +/a(u) - p(u) du+

//a(u,u') cp(u) - p(u) dudu' + ... (3)

Since the result should not change under the transforma-
tion g — ¢ - u, we should have D(c - u) = D(u) for an
arbitrary constant ¢. Since the value D(c - u) does not
depend on ¢ at all, in particular, when ¢ — 0, the value
D(c- p) tends to exactly the same constant value D(u),
i.e., we have D(c- p) = D(p).

However, if we substitute ¢ - g into the expression (3)
and tend ¢ to 0, we can easily see that D(c- u) — ao.
Thus, for the expression (3), the above invariance leads
to a meaningless conclusion that for every membership
function u, the value D(u) is equal to the same constant
ag. We want the defuzzification procedure to be non-
trivial in the sense that D(u) should not be equal to the
same constant. This result shows that, due to the above
invariance requirement, we cannot have an analytical de-
fuzzification operation.

The next natural choice is to have fractional analyti-
cal functions, i.e., ratios D(u = D(u) = D*(u)/D~ (i),
where:

Dt (p) =ag + /a(u) - p(u) du+
//a(u,u') cu(u) - pu') dudu’ + ... (4a)

D~ () = bo + / b(w) - pa(u) du+



//b(u,u') cp(u) - p(u) dudu' + ... (4b)
For such expressions, invariance is possible: e.g., centroid
defuzzification is of this type and is invariant.

We will restrict ourselves to non-degenerate ratios of
this type, in which linear terms (a(u) and b(u)) in the
numerator and in the denominator are not identically 0.

Additional Invariances. The numerical value of the
control u changes if we change the unit for measuring
control and if we change the starting point. For example,
if u is the moment of time at which we have to start the
spaceship’s engine for a descent, then the numerical value
of u depends on what units we use for measuring time
(seconds, days, etc.), and what starting point we take
(we get different numerical values depending on whether
we use astronomical time or time from the beginning of
this particular spaceflight).

If we change the unit to a one which is k times smaller,
then the numerical value u is replaced by v — k- u. If
we change the starting point, we get u — uw + c. It is
reasonable to require that the defuzzification result do
not depend on this selection of units.

How does this change of units influence membership
functions? For a change of units, the value u in the new
units corresponds to the value u/k in the old units. Thus,
in new units, the new membership function expressing
the same degrees of confidence is equal to ' (u) = p(u/k).
After applying defuzzification to this new function, we
should get the same value as before — but expressed in
new units. In other words, we the value D(p(u/k)) in
new units should be equal to D(u(u)) in the old units,
i.e., we should have D(u(u/k))/k = D(u(u)), i.e., equiv-
alently, D(u(u/k)) = k - D(pu(u)).

Similarly, changing the starting point means replacing
the original membership function pu(u) by a new function
#'(u) = p(u — ¢). The requirement that the defuzzifi-
cation result should not depend on this change can be
similarly expressed as D(u(u — ¢)) = D(u(u)) + c.

Thus, in mathematical terms, we require that
D(u(u/k)) = k- D(p(u)) (i-e., that D is scale-invariant)
and that D(u(u—c)) = D(u(u)) +c (i-e., that D is shift-
invariant)

We also want to make sure the operation D is consis-
tent, in the sense that in the almost crisp case, when p(u)
is only different from 0 in an interval [u~,u™], we should
get D(u) within this interval.

It turns out that these requirements uniquely deter-
mine the centroid defuzzification:

Theorem. Centroid defuzzification is the only con-
sistent shift-invariant scale-invariant p-invariant non-
degenerate fractional-analytical defuzzification procedure.

Proof. Let us assume that D is a consistent
shift-invariant scale-invariant y-invariant non-degenerate
fractional-analytical defuzzification procedure, and let us
show that D coincides with a centroid.

1. First, let us show that for D, the values of ag and by
in the expansion (4) are both equal to 0.

We will prove this by reduction to a contradiction. Sup-
pose that at least one of the values ag and bg is different
from 0. We assumed that D is p-invariant, i.e., that
D(c- pu) = D(u) for every constant c¢. When we substi-
tute ¢’ = ¢ p instead of p into the formula (4) and take
¢ — 0, the numerator tends to ag and the denominator
tends to by. Thus, since at least one of the values a¢ and
b is different from 0, we would conclude that the ratio
D(c - p) tends to a constant limit ag/by (finite or infi-
nite) which, thus, does not depend on the membership
function p(u). Due to p-invariance, this ratio is equal to
D(u). Thus, we conclude that D(u) does not depend on
p at all.

This conclusion contradicts to our assumption that the
operation D is consistent and thus, cannot be constant:
indeed, for different membership functions p and p' lo-
cated on different non-intersecting intervals, the values
D(u) and D(p') belong to these non-intersecting inter-
vals and are, therefore, different.

This contradiction shows that ag = bg = 0.

2. We have just shown that the expression (4) for D(u)
does not contain constant terms. Let us now show that
D can be expressed in the form (4) with only linear terms
present.

Indeed, since ag = bg = 0, due to u-invariance, for every
¢, we have D(u) = D(c- u). Here,

DY (c-p)=c- /a(u) - p(u) du+

c2-//a(u,u')-,u(u)-u(u')dudu'+...; (5a)
D (c-p) = c-/b(u) - p(u) du+
c -//b(u,u') cp(u) - p(u)dudu' + ... (5b)

If we divide both expressions D¥(c- u) and D~ (c- u) by
C, the value of the ratio D(c- ) will not change, so from
D(u) = D(c- p) we conclude that

_ Ja()-pu)du+c- [ [a(u,u)...
Jb(u) - p(uw)du+c- [ [blu,w)...°

When ¢ — 0, all the terms in the numerator and in the
denominator tend to 0 except for the linear terms. So,
in the limit ¢ — 0, the equation (6) leads to the desired

formula
_ [ () - plu) du
Jb(w) - plu) du”

D(p) (6)

D(p) (7)
3. Let us now use the scale-invariance property.

Scale-invariance means that D(u(u/k)) = k- D(u(u)).
Substituting u(u/k) into the formula (7), we conclude

that
_ Ja(w) - p(u/k) du
[(u) - plufk)du’

We can somewhat simplify this formula if we introduce
an auxiliary variable v’ = u/k; for this variable, u = k-u/,

D(p(u/k))

®)



du =k - du’, and so, the formula (8) takes the following
form:

k-Ja(

- fbk u’

u(u') du’
( ) du’”

D(u(u/k)) = 9)

Dividing both the numerator and the denominator by k,
and renaming the integration variable by u, we conclude

e ol
a(k-u) - p(u) du
D) = [y de 0
Thus, scale-invariance means that
fa(k-u) w)du k- [a(u) du
UGrRTor s vopr o
or, equivalently, that
(/ a(k - u) - p(u) du) . (/ b(u) du) =
(/k-a(u) ) (/bk u) du) (12)

Both sides of the equation (12) represent a quadratic
form (in terms of the variable u(u)) which is a prod-
uct of two linear forms. This representation is known to
be unique modulo a multiplicative constant. Thus, the
form related to a(k-u) is either proportional to b(u) or to
a(u). For k close to 1, it cannot be proportional to b(u)
— otherwise, in the limit ¥ — 1, we would conclude that
the ratio D(u) is a (trivial) constant. Thus, a(k-u) must
be proportional to the form related to a(u). Hence, for
every k, there must exist a multiplicative constant C; (u)
for which a(k - u) = Ci (u) - a(u).

A general solution to this functional equation is known
(see, e.g., [2]), it is a(u) = a; - u® for some constant c;
and a. (One way to get this solution is to differentiate
both sides of the above functional equation by k£ and then
set k = 1; the resulting differential equation leads to this
formula.)

Similarly, we get b(u) = by - u® for some constants b;
and f.

4. Let us now exploit the property of shift-invariance.

For shift-invariance, similar arguments lead to the
functional equations a(u + ¢) = Cs(c) - (a(u) + ¢) and
b(u + ¢) = Cy(c) - b(u).

For b(u) = by - uP, we thus get (u + ¢)? = Cy(c) - v?,
i.e., that the ratio (u + ¢)?/u® should be equal to Cy(c)
and thus, do not depend on u at all. This is only possible
when 8 = 0. Hence, b(u) = const. By dividing both the
numerator and the denominator of the expression (1) by
this constant, we can get b(u) = 1.

The equation about a(u) leads to (u + ¢)* = Cs(c) -
(u* + ¢) for all u and ¢. This is only true for @ = 1, so
a(u) = a1 - u. Thus,

Ju-p(u)du

D(p) = ay - T () du (13)

5. To complete the proof, we must show that a; = 1.

We can prove that a; = 1 by using the consistency re-
quirement. Indeed, when p(u) is different from 0 only
on the interval [u~,u"], then the centroid is located
within the same interval. In particular, for 4~ = 1 and
uT =1+ ¢, we conclude that the centroid value @ is be-
tween 1 and 1+-¢. Since the value (13) — which is obtained
by multiplying by a; — must be within this same interval,
the value a; must be positive. Thus, 1 <a; -4 <1+¢,
hence,

1
<a < —TE

]
Since 1 < u < 1+ ¢, we thus conclude that

(14)

S| =

1
<
14¢ ~

S| =

and oy
—<1+E
U

Thus, from the inequality (14), we can conclude that

1
—— <ay<l+te
T+e— ' =

When € — 0, we conclude that a; = 1.
The theorem is proven.
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