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Abstract
Predictive accuracy is the sum of two kinds of

uncertainty–natural variability and modeling
uncertainty.  This paper addresses the quantification
of predictive accuracy of complex simulation models
from two perspectives.  First, it recognizes that there

is a difference between variability and modeling
uncertainty; the former can not be reduced with more
test information, while the latter can.  We suggest
that variability is a natural form of uncertainty that

can be quantified with probability theory, but that
modeling uncertainty is a form that is better
addressed by a theoretical foundation that is not

based on random variables, but rather random
intervals.  We suggest possibility theory as the
formalism to address modeling uncertainty.  The
paper discusses the two different methods, and

illustrates the power of their integration to address
predictive accuracy with a recent case study
involving the crushing load of axially loaded metallic
spheres.

1.   Introduction
Predictive accuracy can be defined as the degree to

which a model of a complex system is able to foretell
the state of that system under conditions for which
the model has not been validated experimentally.  In
general, the lack of predictive accuracy that results

from the random character of a variable, such as in
games of chance or in the natural variability of things
due to manufacturing processes, is often termed

variability.  Variability can not be reduced, but rather
only quantified.  The size of grains of sand or the
specific shapes of a maple leaf are things that exhibit

natural variability.  If we want to predict either of these
quantities we can only do so in an average sense for the
population of grains or leaves.  There have been many

numerous, accurate characterizations of this form of
uncertainty.

Another form of uncertainty is that due to a lack of
specific information, and this has been generally called
uncertain–to distinguish it from variability.  There are
various forms of uncertainty; uncertainty can arise

from ignorance, from scare data, from misleading data,
from unknown biases, or from our inability to
understand complex systems.  Collectively, we shall
use the term modeling uncertainty to describe these

various forms of non-random forms of imprecision,
ambiguity, vagueness or unknowingness.  Uncertainty
and variability generally result in a loss of predictive

accuracy.  The question is how can the predictive
accuracy of a model be quantified?

An interesting question arises: how can one contend

with gaps in knowledge that cannot be represented
probabilistically or statistically?  Examples of the latter
might include the degree of confidence placed in

certain modeling assumptions before they can be
validated experimentally, or the degree of confidence
placed in extrapolating laboratory experiments to field
conditions. Reasonably simplified assumptions are

often made that render the problem tractable for
engineering computations or simulation modeling.
Assumptions are made with respect to the analyst's
preferences, the available information, or other factors,

which are generally approximate and embedded in the
modeling uncertainty.  In addition, engineering



judgment is commonly involved in checking and

modifying the predictions to make sure that the
system behaves satisfactorily in some predetermined
sense.  Moreover, the engineering models are posed
such that they adhere to necessary functions and to

impose constraints such as boundary conditions or
total computation time.

In this work we have proposed to use possibility

theory as the mathematical form for characterizing
modeling uncertainty.  We do so for two very good
reasons: first, this theory contains probability theory

as a special case and second, the implementation of
the theory is computationally simple and easy to
understand.  In the simplest sense a possibility
distribution arises from the random selection of

intervals, as opposed to a probability distribution
which arises from the random selection and ranking
of point-valued quantities.

To illustrate the utility of the possibility theory
approach we discuss the prediction and modeling of
the buckling load of metallic, spherical pressure

vessels, i.e., the crushing capacity of axially loaded
manufactured marine floats.  In this approach we use
a finite element code to predict the buckling load of
the spheres in a numerical simulation environment,

and then compare both a probabilistic and
possibilistic assessment of the prediction to test
results gleaned from testing numerous quantities of
these floats.

2.   Case Study:  Traditional Approach
As mentioned in the introduction, we discuss the

prediction and modeling of the buckling load of
metallic, spherical pressure vessels, i.e., the crushing
capacity of axially loaded manufactured marine
floats.  In the traditional approach we use a finite

element code to predict the buckling load of the
spheres, along with a probabilistic simulation tool
that is used to assess the degree of uncertainty in the

buckling load as a function of the uncertainty in key
parameters of the finite element model.

One hundred marine floats were purchased from a

commercial vendor [1]. Though the vessels were

intended to be spherical by the manufacturer, they

possess variations in their geometry and material
properties. The classic modeling approach would have
been to generate a single nominal model of a sphere
and assert that however this nominal model behaved in

analysis, so would all the individual floats.  Since the
floats are manufactured units, subjected to specified
levels of tolerance and quality control, they all deviate
to some extent from the idealized model used in the

analysis, and thus the uncertainty surrounding the
analysis results needs to be modeled and quantified.

2.1 Probabilistic Simulation
In the numerical simulation of the buckling sphere
problem the DYNA3D code, a nonlinear, three-
dimensional dynamic finite element continuum code, to

conduct the stochastic analysis.  There are two primary
approaches to a probabilistic simulation: a direct Monte
Carlo simulation, or simpler sampling methods (of
which there are many…mean value analysis, stratified

sampling, response surface, Latin hypercube, and
advanced mean value analysis to name a few).  In a
Monte Carlo simulation the DYNA3D code is run for a

single combination of the input parameters, which have
been randomly sampled from pdfs for each of the input
variables.  For the sphere, the input variables would
include the sphere radius, thickness, modulus of

elasticity, yield strength, and other material properties.
This process is done 103 to 106 runs of the DYNA3D
code and the output values (in this case, the failure load
of the sphere when it buckles) are stored and plotted in

histogram form to develop a pdf of the failure variable.
Of course, if a single run of the DYNA3D code can
take say one hour, then this method of producing the

output, while very effective, is simply not practical,
unless vast computational resources are available at
low cost.

A more effective solution is to use one of the other
sampling methods.  For example, in a mean-value
sampling the input distributions are sampled–not at
random–but at pre-specified values.  In this study, the

values were the mean of each input parameter and 10%
of the standard deviation above the mean, i.e., at µi and

µi + 0.1σi.  If the standard deviation is assumed to be

10% of the mean, this sampling occurs at µ and 1.01µ.



Since the deviation from the mean is so close, we can

justify a linear mean-value analysis.

In our study, we looked at 6 parameters in our
simulation model, such as Young's modulus, radius

of the spherical float, and thickness of the spherical
wall. All these parameters were modeled as random
variables using lognormal distributions.  In the mean-
value analysis there were 7 simulation runs: one with

all parameters being held to their mean values, one
each where 5 of the 6 parameters were at their mean
value and a sixth was at µ and 1.01µ.  The output of

this simulation is shown in Figure 1, which is a plot
of the cumulative distribution function (CDF) of the
maximum force seen by the sphere at buckling (i.e.
the output variable). In another simulation the 6 input

parameters were sampled at the mean (µ) and at µ  ±

1.01µ, for a total of 13 simulation runs. The result of

these simulations is shown in Figure 1 as the light-
curve CDF.  The results in Figure 1 show that the

variance in the output decreases as more points near
the mean values of the parameters are sampled.

Figure 1. Cumulative distribution functions (CDF)
for traditional solution to the variability in the
sphere buckling load [2].

2.2 Some problems in Predictive Accuracy
The purpose of simulation is obviously to avoid the
high cost of physical testing and to provide an

environment where many exploratory iterations and
tradeoff studies can be conducted.  However, in order
to assess the predictive accuracy of a simulation there

must be a way to assess the fidelity of its output.

Experience in comparing simulations with physical
tests represents the essential knowledge for an analyst
in being able to assess this fidelity.  But, there are
problems associated with any simulation, that even

experts have trouble foreseeing.  The analyst has to
make many assumptions to conduct the simulations
according to intuition and desired economies.  For
example, in our case with the marine floats the

simulation assumes a loading speed of 5 m/sec.  This is
a tradeoff resulting from the cost of simulation on the
one hand and the computational noise in the resulting

data on the other.  The actual load speed in the testing
of the spheres is 5 cm/sec.  Unfortunately, if a
simulation were to use this loading speed, the resulting
computation would consume many months of

computer time.  Even a load speed of 1 m/sec takes one
week of computer time.  Alternatively, loading speeds
greater than 5 m/sec produce simulation results whose
noise obliterates the output of interest, hence 5 m/sec is

seen as a compromise by the analyst.  But what is the
degradation in simulation accuracy when this tradeoff
is made?  Such an assessment can't be made

probabilistically.

3.   Case Study: Possibility Distribution
Approach
Previous efforts on the derivation of possibility
distributions are few, especially in the derivation of
empirical possibility distributions [3]. Possibility

theory has long been confused with fuzzy set theory, in
that possibility distributions were considered to be
membership functions [4]. Possibility distributions
were also viewed as resulting from consonant crisp sets

in fuzzy measure theory.  This perception arises from
Dempster and Shafer's evidence theory when the
evidence focuses on consonant support functions [5].

Previous methods for deriving possibility distributions
[3] do not assist modeling empirical interval data.  In
the case of deriving empirical possibility distributions

it is more natural to consider random sets (or intervals)
and build a distribution based on the original set of
interval data. This interpretation is more realistic as
experimental observations are usually recorded as

ranges of numbers.  Joslyn [6] has developed a method



that calculates a possibility histogram from random

sets. Joslyn's method, however, derives possibility
measures based on only consistent random sets rather
than consonant sets. It is important to note that the
property of consonance (i.e., nesting of sets) is

essential in not only calculating possibility measures
but also for combining two or more possibility
distributions using interval arithmetic.  Donald [7]
developed a new method to take random sets that are

consistent and derive from this a consonant set of
empirical intervals.

3.1 Possibility Distributions using the New Method
[7]
Many of the assumptions made in the traditional
approach can be addressed in a less computationally

expensive, and perhaps more epistemologically
appropriate, environment using possibility theory.  In
this approach, modeling assumptions like the EOS
selected, the size of the finite element grid, the type

and extent of boundary conditions, and the loading
speed can be implemented into the theory as upper
and lower bound judgments on the typical

assumptions. The upper and lower bound levels are
represented simply as intervals in the theory.  For
purposes of illustration of our method, we considered
the following ranges for input variables which are not

normally modeled as random pdfs in conventional
reliability analysis, but which nonetheless are very
important to the prediction of the crushing load of the
spherical vessels:

1. Mesh Density: 7,500 elements – 15,000
elements
2. Static coefficient of friction – 0.10 – 0.35

3. Material Model - #24, piecewise linear
strain hardening - #18 power law isotropic elastic
plastic
4. Shell Thickness – varies from 0.57” to 0.43”

at the pole and equator of the sphere
5. Loading speed of Platens – 10m/s – 50 m/s

If we consider the peak crushing load data as non-

consonant intervals, expressing the imprecision in the
data from the outputs of the finite element code for
the various choices for variables listed above, we can

determine the possibility distribution that would

quantify this modeling uncertainty.  Information such

as this are common in the real world wherein they are
presented as a range of possible numbers given within
a certain error value.  Through the new method
developed by Donald [7] we compute a possibility

distribution from non-consonant information, for our
sphere buckling problem:

Figure 2. Possibility distribution for output intervals
relating to the 5 modeling variables

3.2  Comments about the Possibility Approach
What is most interesting in Figure 2 is that the region

represented by π(A)=1, under which a probability

assessment of the same variables should exist, is
approximately the same region bounded by the
probabilistic results shown in the Figure 1, within ± 2-

sigma bounds, even though the same variables were not
assessed in both methods (i.e., both methods assessed
variations in thickness, but only the probabilistic
assessment looked at variations in Young's modulus).

Possibility distributions, such as the specific one
illustrated in Figure 2, or the generic one illustrated in

Figure 3, relate to probability distributions in the sense
that a region of unit possibility spans the space of a
non-zero probability distribution (e.g. a probability
density function or pdf), while outside of that interval

some possibility may still exist in the face of
conflicting (or dissonant) evidence.  As more data are
acquired, the dissonance (represented by the sloping
regions of the possibility distribution) diminishes and

the side boundaries of the possibility distribution
become steeper.  One possible use of possibility
distributions might be, for example, to test whether the

predictive accuracy of a model based on generic
uncertainty data is valid for a model of a newly
designed component or system.
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Figure 3.  Relationship between probability and
possibility distributions

4.   Conclusions
In this paper we propose the use of the possibility
distribution approach to affect three main objectives

in the assessment of the predictive accuracy of
simulation codes:
• to be used initially for all assessments to

determine the regions into which more focus

should be placed by subsequent probability
computations

• to be used to quantify all variables in the
simulation for which little or no data exists, or

for modeling assumptions for which a
probabilistic evaluation simply is not warranted
since the underlying structure of the variable is

non-random
• to assess those regions of the output where

dissonance, or disagreement exists in previous
data or existing analytic judgments or knowledge.

Using these three objectives we believe that the
assessment of predictive accuracy can be streamlined
in terms of cost savings and the efficient use of

valuable historical data.  It also allows for the
judgments and knowledge of the analyst's making the
predictions more flexibility in embedding all their

knowledge–not just the numeric information–into
their analyses.  The use of historical data to guide our
analytic judgments has been used primarily in
establishing a sort of classification of the appropriate

methods and models to apply to any physical system.

As a final note, the possibility distribution can
ultimately be used as a guide in determining how

well an analyst understands the extent of the
relationship between modeling uncertainty and
variability.  We surmise that a probability density

function (pdf) reflects the amount of variability in a

simulation.  In contrast, the possibility distribution

reflects the amount of predictive uncertainty (which,
again, is the sum of variability and modeling
uncertainty) in the simulation. In Figure 3 we see two
different distributions that can be used to assess the

differences between modeling uncertainty and
variability.  On the one hand, the predictive uncertainty
and the variability could be almost the same if the
aprons on the possibility distribution function are have

a near vertical slope (the pdf is a large part of the
possibility distribution).  On the other hand, the
predictive uncertainty and the variability could be

vastly disparate if the aprons on the possibility
distribution function are have very low slopes (the pdf
is a small part of the possibility distribution).  Hence,
in a sort of graphical way, the difference in the regions

mapped by the variability (pdf) and the possibility
distribution is a quantitative assessment of the
modeling uncertainty in a problem.  In this sense, the
boundary regions of the possibility distribution can be

used as a guide about where, specifically, we need
more information in any planned future testing to
reduce total uncertainty.
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