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Abstract

There exist several computer programs which successfully model the discovery pro-
cess in science. There are successful expert systems in medicine and other areas. But
one area is a real challenge for such systems: theoretical physics. The most advanced
knowledge discovery programs (like BACON written under the supervision of the No-
belist Herbert A. Simon) successfully reproduce only 17, 18, and 19 century physics,
but stop short of explaining the very first formula of the 20 century: Planck’s law of
black body radiation. This law, discovered by an insight, led to the modern Quantum
Physics. The programs stop short not because the computers are not fast enough: as
Simon emphasized, we need new ideas — not only new computers.

In the present paper, we present the natural symmetry ideas which lead directly to
Planck’s formula. Possible other applications of these ideas are discussed.



1 A Challenge of Physics

Expert systems are efficiently used by medical doctors, by engineers, in many other spheres,
but (alas!) theoretical physics is still out of their scope. We have programs that come to the
same (or even better) conclusions about diagnoses and possible treatment as doctors but we
have no programs that can come to the same conclusions as physicists.

One can hide behind the results like that of [2, 3] that physical problems are NP-hard or
in some other sense undecidable, but in many other cases there are programs that efficiently
solve some instances of the problems that are in general undecidable, so what’s wrong here?

OK, maybe modern physics is very complicated but the problem is that we cannot even
get the formulas that the physicists have discovered long ago. The most advanced system
especially aimed at computer modeling of scientific discovery, the BACON system [5] man-
aged to deduce from data the main laws of 17, 18 and even 19 century physics, but failed to
reconstruct historically the first law of 20 century physics: Planck’s 1900 law of black-body
radiation. As Simon stresses in his paper, this is not because we ran out of time or space:
but because the system was badly in need of a new idea. The ideas of monotonicity and
conservation laws that were ingeniously incorporated into the BACON system did not work
in this case. This means that we are missing an idea, and so maybe adding this idea will
help? We present a new idea, that enables to deduce Planck’s formula. Crudely speaking,
this idea combines symmetry groups theory (originally a typical physical idea, but with
lots of nontrivial applications to computer science [4]) with algebraic complexity (from the
computer science side).

2 Why Was Planck’s Formula So Important?

The 19 century physics failed to explain the radiation of an absolutely black body: it pre-
dicted that the energy density FE(v) of radiation must increase as a square of frequency
C-v2. This formula was good for small v, but failed for large ones. For large v, an empirical
formula v® - exp(—v/kT) was discovered, but this formula, in its turn, did not work for small
v. So we need to find an expression that would work for all ¥ and have given asymptotics
for v tending to 0 and to oo. In principle, there exist lots of such functions, so the problem
of choice at first glance must be resolved experimentally. But Planck managed to find the
expression, namely, v®/(exp(v/kT) — 1), which is not only experimentally confirmed by all
the experimental data of the last 100 years, but actually formed a foundation of new physics:
quantum mechanics.

It is not the problem that the physicists know how this formula was discovered, and we
cannot reproduce that sequence of steps in a computer. The problem is worse: the physicists
cannot explain that discovery in understandable terms.

3 Group Symmetry Idea

In order to understand Planck’s formula let’s analyze the simpler cases, when the path to
discovery is known (see, e.g., [1]).



For example, for many astrophysical sources the dependence of energy density on wave-
length is described by a simpler formula E(r) = A - v~% where A and « are constants.
Feynman explains it in such a way: of course, the real processes are not scale invariant in
the sense that some processes have fix spatial sizes, so when we describe them in ¢m or in
meters, we get completely different formulas. However, when the frequency is sufficiently
big, we can consider these fixed sizes to be infinitely big and thus our expressions to be
invariant with respect to the change of length unit (v — X - v, where )\ is a ratio of those
units). This invariance demand in mathematical terms is E(\-v) = C()\) - E(v), where C is
a constant; one can mathematically prove that the only solutions of this equation are A-v=¢
(see, e.g., [4]).

Other simple formulas can be obtained from different symmetry considerations. Our
example is energy distribution in astrophysical sources, i.e., asymptotic formulas describing
the dependence of N(F) on E, where N(F) - dFE is the number of particles per unit volume
with energies from E to E + dE.

Strictly speaking, in general case, there are no symmetries between different values of
energy, because there is always a fixed value of energy Ey = myg - ¢, corresponding to the
rest mass my of the particles which form this astrophysical object. However, when E > Ej,
we can ignore the rest mass in comparison with the total particle energy, and with great
accuracy, we can view these particles as massless. For massless particles, there is no fixed
energy, therefore equations, describing their distribution, must be invariant with respect
to the change of the unit in which energy is measured. If we change energy units to A
times smaller ones then numerical values (measured w.r. to those units) increase A times:
E — )\- E. Of course, if we change the unit of energy, then, for the equations to remain
valid, we must change the other units accordingly.

In particular, a unit of volume can change. Therefore, in the new units, the distribution
of particles per volume and per energy is described by the formula C'- N(\- E), where C'is a
constant. Since we have the exact same distribution but expressed in two different units, we
must therefore have C'- N(A- E) = N(E), hence so N(A- E) = c¢- N(F) for some constant c.

One can easily prove that the only continuous (or even measurable) functions satisfying
this property have the form N(E) = A-E®: indeed, from N(A-E) = ¢(A)-N(E) = ¢(E)-N()),
we conclude that N(F)/c(F) is a constant. Dividing both sides of the original equation
by this constant, we conclude that c¢(\ - E) = ¢()\) - ¢(F) hence ¢(F) = E®. Therefore,
N(E) = A- E° for some constant A.

Indeed, asymptotics of the type N(E) ~ A - E® is typical for hot matter energy distribu-
tions (i.e. for large F).

In the opposite case of small E(E — 0), the situation is quite different: E << myq - ¢?,
therefore we can assume that m, - ¢ &~ oco. Here there is no absolute initial point for
measuring energy, therefore the energy distribution must be invariant with respect to energy
shift, i.e. N(E+Ey) = ¢(Ey)- N(E). From this equation one can conclude that ¢(Ey+ E;) =
c(Ep)-c(E;) hence In(c(FE)) is an additive function, so In(c¢(E)) = k-F and ¢(E) = exp(—k-E),
N(E) = A-exp(—k- E). This is a typical energy distribution for nonrelativistic case (small
E) — the well-known Gibbs distribution.

These examples motivate the following approach.



4 Main Idea

Although in reality processes are not precisely symmetric, but there are often approximate
symmetries that are the more precise the closer we come to some critical value of some
parameter x. In case we neglect symmetry violations we obtain symmetric expressions which
can be called basic asymptotics.

Real-life processes can be more complicated because each process is influenced by several
factors. Even when each factor is described by a single asymptotic, their combination makes
the result more complicated. This joint effect can be described as a combination of basic
asymptotics.

Which combinations shall we use? The combination is an operation transforming func-
tions into functions f(x), g(z) — h(z). First of all it seems natural to demand that this
combination rule be local, i.e., the value of h(z) should depend only on the values of f(x)
and ¢(z) only in the same point z, i.e. h(z) = f(z) x g(z), where * is some real function of
2 variables. (Simplest case — linear superposition: the field of two charged particles is the
sum of the fields, induced by each of them, here x = +.) Due to this “composition” idea this
operation must satisfy the natural demands like a xb = b*a and (a*b) xc = a* (b*c) (it
should not matter in what order we combine these solutions); so, it must be a commutative
semigroup. Moreover, it is natural to assume that the combination result really depends on
both inputs, i.e., that if b # ¢ then a * b # a * c. As a result, we conclude that a xb = a * ¢
implies b = c¢. Therefore, * can be extended to a commutative group operation.

The main reason why the combination is necessary is that different combined processes
have different symmetries. Therefore it is natural to require that when the combined pro-
cesses have the same symmetry then the combination a * b should be of the same symmetry
itself.

We show that these demands lead to * = + (or a * b = (a? + b*)'/?) or x = product.

Then the natural partial ordering meaning “A is less complicated than B” is introduced
(for example, basic functions are less complicated than their combinations; combination
using three operations i, %o, *3 is more complicated than the one using its subset {x;,*5}
etc.), and we prove that Planck formula is indeed simplest in this sense.

Let’s now turn to formal definitions.

5 Main Definitions and Results

In the following text, by a function we understand a continuous function f : R — R from
real numbers to real numbers.

Definition 1.

e We say that a function f is shift-invariant if for every z, there exists a constant c(zo)
such that f(z + zo) = c(zo) - f(x).

e We say that a function f is scale-invariant if if for every A > O there exist a constant
c(A) such that f(A-z) =c(A) - f(z).



We’ll say that a function is basic if it is either shift-invariant or scale-invariant.

Proposition (see, e.g., [4]) . A function f is shift-invariant if and only if it has the form
f(z) = A-exp(—k - z); a function is scale-invariant iff it has the form f(z) = A - z°.

Corollary. The only functions that are both shift- and scale-invariant are constants.

Comment. We can express this result by saying that constants are maximally symmetric
hence they are the simplest basic functions. So we arrive at the following definition.

Definition 2. We say the f = const is simpler than any non-constant basic function f’,
and denote it by f < f'.

Comment. Assume * is a commutative group operation on R. It is well known that all such
operations are of the type z xy = ¢ (¢(x) + ¢ (y)) for some function 4, so we assume that
zxy =97 (¥(z) +P(y)).

Definition 3. We say that two basic functions f, g have the same symmetry if either they are
both shift-invariant with one and the same function c(x,), or they are both scale-invariant
with one and the same function c()).

Proposition 1. If x is such that whenever f(x) and g(x) have the same symmetry then
h(z) ¥ f(z) x g(x) has the same symmetry then x = + or a x b= (a? + bP)1/?

Comment. This is the most symmetry preserving combination rule (therefore the simplest
one — because the simplest case is also the most symmetric case). We can also consider less
symmetric combination rules.

Proposition 2. If x is such that whenever fi(z),..., fu(z) are shift-invariant and have
the same symmetry then f1 * ... x f, is also shift-invariant (but not always have the same
symmetry as each of f;) then x =product.

(The same is true for scale-invariance.)
Comments. So all operations are either (a? + t*)'/?, or a - b. Turning if necessary to new
units a — a? (e.g. from length to area, etc.) we can now conclude that possible combining
operations are + and - (correspondingly, — and :).

So, an arbitrary asymptotic expression can be obtained from basic ones by addition and
multiplication, i.e., in mathematical terms, it is a rational expression in basic functions.

Remark 1. Another way to restrict ourselves to p = 1 is to assume that the operation * is
an analytical function at 0 (from physical viewpoint, it is a very natural demand).

Remark 2. One can also consider unary operations, i.e. mappings ¢ : R — R. Here likewise
propositions are true.

Proposition 3. If ¢ is such that for every basic f(x) the function ¢(f(z)) has the same
symmetry then ¢(x) = A - .

Proposition 4. If ¢ is such that for every basic f the function ¢(f(x)) is also basic, then
¢(x) = A- 2P for some A, p.



6 Complexity Considerations

We have already mentioned that most symmetric is simplest, all complexity is due to symme-
try violations. Therefore constants are simpler than other basic functions, +(—) is simpler
(because it preserves more symmetry than -(:)). So, we arrive at the following definitions:

Definition 4. By an asymptotic expression we mean arbitrary formula P obtained from
basic functions by using +(—) and -(:).

Denotations. In this paper, we will denote asymptotic expressions by P, @, ... By add(P),
we mean the total number of additions and subtractions in P, by mult(P) — the total number
of multiplications in P, by const(P) — the total number of constants among basic functions
used in P.

Definition 5. We say that P and @ are of the same structure if P(z) = R(ei(x), ..., e,(7))
and Q(z) = R(f1(x),..., fu(x)), where R is one and the same rational expression and e;, f;
— basic functions. For each i we say that e; and f; are correspondent basic functions.

Definition 6. We say that a constant f is simpler that any other basic function g (and
denote it by f < g), and that if f,g are both constant, or both non-constant exponents, or
both non-constant degrees, then they are of same complexity (f ~ g).

Definition 7. We say that P is simpler or of same complexity as Q (and denote it P < Q) if
add P < add ), mult P < mult ) and one of the following 3 properties are true: either add
P < add Q, or mult P < mult QQ, or P and @) are of the same structure and corresponding
basic functions satisfy e; ~ f; for all i.

Definition 8. We say that an expression P is simplest in the class P of expressions if
whatever Q € P we take either P < ), or P ~ Q.

Comment. Our definition of P <~ Q seems rather restrictive. For example, it can seem
reasonable to say that P < ) if add P = add @), mult P = mult ) and const P > const Q).
But remember that our main objective is to prove that the Planck formula is the simplest
possible one. The weaker definition of “simple” we take, the stronger the theorem. So we
prove the theorem for the weakest notion of complexity — namely, for the the above one —
bearing in mind that as soon as the theorem is proved, we can strengthen this definition as
we wish — and the theorem will still remain true.

Let’s now turn to the precise formulation of main theorem (its proof is in the appendix).

Theorem. Among all asymptotic expressions which are asymptotically equivalent to
VeV T for v — oo and to Cv? for v — 0 there is a unique simplest expression, and
it 1s the Planck formula.

Comments.

e Of course, Planck formula is very simple, and one can always choose weights of alge-
braic operations so that from the viewpoint of the correspondingly weighted algebraic
complexity Planck formula is the simplest. What we prove is not that trivial result.
We prove that, crudely speaking, whatever weights we take, Planck formula is always
the simplest — so it is really simplest (“most symmetric”).



e We spent some time to prove that the operations are + and - are the simplest. What if
we supposed that from the very beginning? These are the natural operations, normally
used in algebraic complexity considerations. Of course we could do so; but then the
result that Planck formula is the simplest would be quite natural from a computer
scientist viewpoint, but completely mystical from the physicists’ one: indeed, why
should real world (and what we wish to describe in physics is namely real world) be
constructed in such a way that it simplifies the calculations connected with it? It’s
hard to think of examples in favor of this strange hypothesis; moreover, the extremely
complicated formulas of modern physics seem to disprove this hypothesis. On the other
hand, if we demand that nature be symmetric or close to symmetric—this demand is
(from physicists viewpoint) quite natural, because group symmetry considerations form
one of the most productive ideologies of modern | physics. So our justifications of why
+ and - are the simplest were not in vain.

e In many cases the so-called 2-point Padeé approximation is useful, when one uses known
asymptotics for £ — 0 and £ — oo in order to reconstruct the function for all z as a
rational function of minimal possible degree. However this approach is applicable only
when known asymptotics are of the type A-z* with integer k. So our approach can be
considered as a generalization of Pade ideology to arbitrary functions. For example,
often f(x) ~ A-2% for x — 0 and ~ B - 2 for £ — oo, but a, 3 are not integers.
Here if @ < 8 then (as one can easily see) the simplest possible expression with these
asymptotics is Az® + Bx? (one cannot do without addition at all). If « > 3— addition
is not sufficient, and one can prove that the simplest is

1
A-lg—o 4 B-1g—F

(1 addition, 1 multiplication).

Open Problems

e We defined only a partial ordering on the set of all possible asymptotic expressions.
How to extend it to a total ordering? For example, if in one expression 3 multiplications
and 2 additions are used, and in another 2 multiplications, and 5 additions — which
expression is simpler?

Is it possible to define this total complexity ordering relation in such a way that
for arbitrary given asymptotics at finite many points (finite or infinite) there is a
unique simplest expression with these very asymptotics?

e In Planck formula example we had no problem with finding at least one expression
with given asymptotics — it is already known.

But in general case —is there an algorithm allowing to give such as expression? Or,
in view of the first open problem — an efficient algorithm (and not just enumerating
all possible expressions) giving the simplest expression? Of course if we aim at
Al we need algorithms not theorems.
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e We considered only the case when basic functions are z® and exp x, because this is
the case sufficient for Planck formula. However, in other situations there can be other
basic asymptotics, e.g. sin or cos (corresponding to complex symmetries), log (inverse
function to exp) etc. Our analysis of possible operations should be extended to these
cases also.
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Appendix: Proofs

Proof of Proposition 1

It’s easy to see that shift-invariant functions have the same symmetry iff they are A-exp(—k-
z) and B - exp(—k - z) for the same k. So the demand on * is that for some C:

Aexp(—k - z) x Bexp(—kz) = Cexp(—kzx)
for all z. For x = 0 we have A x B = C, therefore

Aexp(—kz) * Bexp(—kz) = (A * B) exp(—kx).



But ¢t = exp(—kx) is an arbitrary positive real, so tA x tB = t(A x B) for all ¢, A and B.
If we substitute A x B = ¥~ (¢(A) + ¥(B)) we obtain that if 1»(A) + ¥(B) = (C) then
P(tA) + (tB) = ¥(tC) Likewise if

P(A) + -t P(A) =(B) + -t Y(B)

~

i.e. nyY(A) = my(B) then ny(tA) = ¥(tB).

In other words,
P(tA) _ y(A)

¥(tB)  ¢(B)

whenever this is rational. Going to a limit we obtain the same equality for arbitrary ratio,
i.e. for arbitrary A, B and ¢. Hence

P(At) _ ¢(Bt)

¥v(4)  ¢(B)
does not depend on A and B, and is a function only of ¢: ¢(At) =

Y(At) _ (Bt)

W(A)  ¢(B)
¥(A)c(t) hence 1(t) = Cyt? for some C, and p. Therefore

axb=9¢7 (Ya+yb) = (a + 1)

for some p.
For scale-invariant functions the proof is essentially the same. QED.

Proof of Proposition 2

Let’s consider first shift-invariant case. We demand that in case we combine Ae ** and

Bexp(—kz), we obtain Cexp(—lz) for some C and [. Denoting ¢t = exp(—kz) (as in propo-
sition 1), we obtain that At + Bt = (A * B)tP2(where po = l/k), for all A, B, t. In terms of ¢:
if p(A)+¢(B) = ¥(C) then ¥ (tA)+v(tB) = (tP>C). If po = 1 we obtain the case of propo-
sition 2, where f* g is always of the same symmetry as f and g¢; but we consider only the case
where there can be another symmetry, so ps # 1. Likewise, considering combination of three
terms we conclude that if YA+ ¢B + ¢ D = ¢E then ¢(tA) + ¢ (tB) + ¥(tD) = ¢(tP*E).
So if YA + 1A = C then due to ¥ (tA) + ¥ (tB) = (t?>C) we obtain that

$("C) + ¢ (tD) = (I E).

On the other hand, since ¥/C + ¥ D = ¢ F we obtain that ¢ (tC) + ¥ (tD) = ¥ ("2 F).
Calculating the difference between these two equations, we conclude that

Y(t"™C) — —y(tC) = Y(t"E) — —p(t” E).



For arbitrary C, F we can find such A, B, D, so this is true for arbitrary C, F, t.

The right-hand side does not depend on C, therefore the left-hand side also does not
depend on C and is a function of ¢ only: ¥(t72C) — (tC) = 2(t).

Denoting C' = tC and £ = P2, we obtain that for all £, C :

$(IC) — —p(C) = Z(%),

where E(f)défz(t) and t = (f)j/(pgl). Hence Y(tC) = ¥(C) + Z(?) and ¥ (IC) = 1 (C?) implies
that ¢(C) = Z(t) = ¥t +Z(C), hence (C) — —z(C) = ¢(t) — —Z(f) so 1) — —Z = const, and

Z(tc) = Z(t) + Z(C). Hence Z(t) = Int and ¥ (t) = Int+ C, and a b = ab, i.e. *x = product.
For scale-invariance the proof is similar. QED.

Proof of Propositions 3 and 4

Just like in proposition 1 from the demand that ¢(Aexp(—kzx)) = Bexp(—kx) we conclude
that ¢(At) = Bt ie. ¢(tA) = td(A), hence for A = 1 : ¢(t) = const x t. Likewise
¢(Aexp(—kz)) = Bexp(—Iz) implies that ¢(t) = const t*. QED

Proof of the Theorem

For Planck formula 5

x
P(z) = T 1

add (P) = 1 (one addition), mult (P) = 1 (one division) and const (P) = 1. Let’s prove
that whatever other expression () with this asymptotics we take — then always P < () i.e.
add @Q > 1, mult () > 1 and either add () > 1 or mult ) > 1, or the third case of > occurs.

1.° First let’s prove that add @) > 1, i.e. add @ is not 0, i.e. it is impossible to construct
the expression () with given asymptotics by pure multiplication or : . Indeed, multiplication
of AxP -type expression is again Az®; multiplication or division of shift-invariant expression
leads also to A exp(—kz). So arbitrary expression with add @ = 0 is Az exp(—kx). Asymp-
totic equivalence for x — oo implies that a = 3, & = 1/kt, but then asymptotic in z — 0 is
wrong. So add ) = 0 is impossible hence add @ > 1.

2.° Prove now that mult () > 1. Indeed, if mult () = O then we should have Q = X A;z% +
Y.B; exp(—k;x) (— can be changed into + by changing signs of corresponding A; or B;). This
expression cannot give correct asymptotics for x — oo, so mult @@ > 1.

Let’s now prove that if mult () = 1 and add () = 1 then () has the same structure as P.

3.° mult (P) = 1 can mean either multiplication or division. Prove that it cannot be
multiplication.

Indeed, in this case @@ = ejes + €3 or Q = ej(es + e3) for some basic functions e;. In
the first case, if ey, e; had symmetries of not different types then their product would have
the same type of symmetry, so e;e; would be basic, hence we could obtain an expression
with mult () = 0 - and we proved that it is impossible. So they are of different types hence
erea = Az®exp(—bz).
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Here ez is either Cz¢, or Cexp(—cx). In the first case Q@ = Az®exp(—bzr) + Cx°; so
asymptotics for oo implies that

g}i_}I&[Axa’g’ exp ((kiT — —b)aj) + Cz 3 exp(x/kT)] = 1.
The second term tends to oo. If b > 0 then the first term is asymptotically smaller so this
sum — oo. If b < 0 then, vice versa, the second term can be neglected and the result is +c0
(dependent on the sign of A).

In the second case @ = Az®exp(—bzr) + C exp(—cz) and asymptotics for oo implies that
a = 3,b = 1/kt, but then at 0 asymptotics is wrong.

Likewise, simply analyzing all possible cases, we can prove that Q = e1(ex + e3) is also
impossible.

So () must contain division.

4.° There are three ways to combine division and addition: @ = e; +es/e3, Q@ = (e1 +e€2)/e3
and @ = e;/(ez + e3). Due to the fact that for arbitrary basic function e(z) its inverse
e !(z) = 1/e(x) is also basic, the first two expressions are of the type Q = e; + es€3 and
Q = (e1 + €2)&3, where & = e3*(z), i.e. of the already rejected types. So the only possibility
remains — when @ = e;/(ey + e3) i.e. @ is of the same structure as P.

5.° Now dependent on which of e; are exponents and which are not we obtain the following
cases:

a. all e; are exponents. Then, dividing all parts by e;, we obtain that
1

~ ~
62+€3

where €,, €3 are again exponents. For 2 — 0 we get either const or 1/czx and not z°.

b. e;,e3 — —exp, e3— not. Then
Q = Aexp(ax)
Bexp(bz) + Cze.
When z — 0, this tends to A/B if ¢ > 0 and to

A A ifc <0
=—x if e .
Czxe C
It should be 22, so ¢ = — — 2. For x — oo, if b > 0, then the asymptotics is purely

exponential; if b < 0 then for z — oco: Bexp(br) << Cx72, s0 Q ~ const -z exp(ax)—
the wrong asymptotics. So this case also cannot occur.

Cc. e; — —exp, eo,e3 —not. Then
_ Aexp(ax)

@= Bz + Cze’
Without losing generality we can assume that b > ¢. Then for z — oo : Bz? >> Ca¢,
hence asymptotically @ ~ (A/B)exp(az)z™, so b = —3, a = 1/(kT). But when
r — 0, Bx® << Cx¢, so asymptotic is ~ A/C 27¢, hence ¢ = —2, and this contradicts
to our assumption that b > ¢. So this case is also impossible.
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We have enumerated all cases when e; = exp, so e; is a degree. Likewise to a. — all three
degrees are impossible, therefore one of e; is an exponent. In all these cases P < ). QED.
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