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Abstract

Geospatial databases often contain erro-
neous measurements. For some such databases
such as gravity databases, the known methods
of detecting erroneous measurements – based
on regression analysis – do not work well. As a
result, to clean such databases, experts use man-
ual methods which are very time-consuming. In
this paper, we propose a (natural) “localized”
version of regression analysis as a technique for
automatic cleaning. We illustrate the efficiency
of this technique on the example of the gravity
database.
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1 Introduction

In many application areas, researchers and
practitioners have collected a large amount of
geospatial data. For example, geophysicists
measure values of the gravity and magnetic
fields, elevation, and reflectivity of electromag-
netic energy for a broad range of wavelengths
(visible, infrared, and radar) at different points;
see, e.g., [7]. Each type of data is usually
stored in a large geospatial database. Based
on these measurements, geophysicists generate
maps and images and adjust geophysical mod-
els which fit these measurements. For example,
the geophysical use of gravity databases is de-
scribed, e.g., in [3].

The main problem with the existing geospa-
tial databases is that they are known to con-
tain many erroneous points; see, e.g., [2], [4],
[6]. For example, there are several reasons why
gravity measurements can be erroneous:

� there can be measurement errors in gravity
and in elevation;

� there can be transcription errors;
� there may be an error in the instrument cal-

ibration;
� finally, there may be base station problems

(gravity measurements are always relative
to some “known” value).

Such erroneous values can corrupt the results
of data processing. In addition, many existing
databases contain data from hundreds or even
thousands of sources that may not be consis-
tent with each other. So, before processing the
measurements, it is important to clean them by
eliminating obvious errors, and by marking sus-
picious data points.

The main goal of this research was to
“clean” a gravity database. At present, the
cleaning of gravity databases is done mainly
“by hand”, by a professional geophysicist look-
ing both at the raw measurement data, at the
preliminary results of processing these raw
data, and at other types of information such as
geological maps. There are many useful map
overlay and statistical techniques to help with
this manual analysis (see, e.g., [6]), but even
with these techniques, the manual cleaning is
very time-consuming and subjective.

To overcome these two problems – i.e., to
make the cleaning process less time-consuming
and less subjective – it is necessary to design
an automated method for eliminating erroneous
measurements.

2 Case Study: Gravity Database

Gravity measurements are one of the most
important sources of geophysical and geologi-
cal information. There are two reasons
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for this importance. First, in contrast to
more widely used geophysical data (like ultra-
sound waves) which mainly reflect the condi-
tions on the Earth’s surface, gravitation comes
from the whole Earth (see, e.g., (Heiskanen
and Meinesz, 1958), (Heiskanen and Moritz,
1967)). and thus, contains, in particular, infor-
mation about much deeper geophysical struc-
tures. Second, in contrast to many types of geo-
physical data, which usually cover a reasonably
local area, gravity measurements cover broad
areas and thus, reflects also the areas which are
not well covered by more traditional geophysi-
cal methods.

Since the gravity value is determined by the
integral of the Earth’s mass distribution over
a large area, the measured value is almost the
same in all the places. If we take into consider-
ation natural physical differences caused by the
difference in latitude and elevation, we get an
almost perfect description of the measurements.
Specific information about each site is therefore
provided by the difference between the mea-
sured gravity value and the gravity value pre-
dicted on the basis of the known latitude and
elevation. This difference is called Bouguer
anomaly (BA).

In the present research, we used two data
sets:

� a data set which contains all the measure-
ments from the region around El Paso,
with latitude from 32.5 to 33 and longitude
from � �������	� to � �
��� ;

� a data set which contains all the measure-
ment from Mojave desert and surrounding
region, with latitude from 33 to 38 and lon-
gitude from � ���
�
� � to � ����� .

The first data set contains 550 measurements,
the second data set contains 63,144 measure-
ments.

We asked experts to look at these two data
sets. According to the experts, the first data
set does not contain any erroneous measure-
ments, while the second data set contains sev-
eral measurements which are clearly “dirty” (er-
roneous).

In short, El Paso was a “clean” region, so
it was seeded for testing the methods. Af-
ter we tested our method of the seeded data,
we move to Mojave desert region. We added
three seeded measurements to the El Paso re-
gion. Here are these measurements (latitude
and longitude are measured in degrees, Bouguer
anomaly in mGals, i.e., in

�
�����
cm/s � ):

� latitude 32.5, longitude � �
���
� � , Bouguer
anomaly ��� ��� ;

� latitude 32.6, longitude � �
���
� � , Bouguer
anomaly � �
��� ;

� latitude 32.9, longitude � �
���
� � , Bouguer
anomaly � ��� .

These values contrast with values in the region
which mostly range from � ����� to � ����� .

3 Regression Analysis as an
Approach to Cleaning Geospatial
Databases

The main idea of detecting outliers by us-
ing regression analysis is as follows: Based
on the measurements, we can usually conclude
that the value of the measured quantity y de-
pends on the values of other physical quantities��� ����� ��� at this location, e.g., on the elevation,
latitude, and/or longitude. In other words, we
can usually conclude that for each location, �
is approximately equal to �! �"� �
��� �#��$ for some
known function �! �"� �
��� �#��$ . Since this depen-
dence is confirmed by numerous experimental
data points, we can conclude that this depen-
dence is not a mathematical artifact, it is ac-
tually a physically meaningful dependence. In
view of this conclusion, we can detect all the
erroneous measurements as follows:

� first, we extract, from the measurements,
the dependence �&%'�! �"� �
��� �#��$ ; this ex-
traction is usually called regression;

� second, we compare the values of the
residual errors (*)+� � �! ��� ���
� ����$ at dif-
ferent locations; if at some location, the
value of the residual is much larger than
for all the others, this means that the mea-
surement corresponding to this location is,
most probably, erroneous.

In the simplest possible case, � does not de-
pend on any of the known physical quantities��� ����� ��� , i.e., the function �! ��� ���
� ����$ is simply
a constant).

In many real-life situations, data are nor-
mally distributed, with a mean , and a standard
deviation - . In this case, most measurements.�/ lie within a certain number of standard de-
viations from the mean. For example, 99.9%
of all the data lies within the “3 sigma” interval0 , � � - � ,21 � -�3 ; all but

������4
% of the data lies

within the “six sigma” interval
0 , �65 - � ,71 5 -�3 ,

etc.; see, e.g., [1]. Thus:
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� if a data point . / is outside the three sigma
interval, then this data point is most prob-
ably erroneous;

� if a data point . / is outside the six sigma
interval, then this data point is definitely
erroneous.

The choice of the multiples of sigma depends on
the size of the database. If the database contains
550 measurements, then, since the probability
of a more than three sigma deviation is less than�
�����

, we should reasonably expect that no mea-
surement is outside the corresponding interval.
Thus, if

� . / � , ��� � - , we expect .�/ to be erro-
neous. In other words, for such a database, we
take � ) �

.
If the database contains 63,144 measure-

ments, then, to get the expected number of out-
side values to be around 0.5 (less than 1), we
should select � ) �

; for � ) �
, the probability

of a more than five sigma deviation is less than�
�����
. Thus, we should reasonably expect that

no measurement is outside the corresponding
interval

0 , � � - � , 1 � -�3 . Thus, if
� . / � , ��� � - ,

we expect .�/ to be erroneous. In other words,
for such a database, we take � ) �

.

4 Testing Traditional Regression
Techniques on Gravity Database

First, we tested the above method on the
gravity database for the El Paso region, with the
three seeded erroneous measurements added.
As measurements, we took the values of the
Bouguer anomaly.

Since El Paso database contains about 500
points, we selected � ) �

. As a result, we
got an average � � 5 ��� ��� and the standard de-
viation 9.92. The only values outside the cor-
responding three sigma interval are the three
seeded points. So, for the gravity database with
the seeded points, this method works perfectly
well.

To test this method further, we applied this
same method to the gravity database with the
three seeded measurements removed (i.e., to the
original cleaned gravity database). Since all the
values in this database are clean, we expected
this method to not eliminate any of these mea-
surements. Instead, we got a mistaken elimina-
tion of two good measurements.

We also tested this method on the measure-
ments from the Mojave desert region. For this
region, the average is � ��� � � � 5 , the standard

deviation is 52.89, and no suspicious measure-
ments were reported at all, in spite of the fact
that some measurements are erroneous. This re-
sult confirms that the above method is not work-
ing well.

5 Towards Localized Regression
Techniques: Main Idea

The traditional regression techniques are
based on the assumptions that the measured val-
ues are normally distributed. In this case, we
should indeed expect less than 1 out of 550
measurement to be outside the three sigma in-
terval. The fact that we have two measurements
outside the interval shows that the overall dis-
tribution is not normal.

One of the main reasons why the overall dis-
tribution is not Gaussian is that the region com-
bines several zones with different geophysical
structure. Within each zone, the distribution
seems to be Gaussian, but when we put together
measurements coming from different zones, we
thus combine Gaussian distributions with dif-
ferent values of mean and standard deviation.
The resulting combination is not Gaussian.

To overcome this difficulty, we can, there-
fore, instead of considering the overall mean
and standard deviation, localize the computa-
tions, i.e.:

� subdivide the original region into subre-
gions, and then

� check whether a given measurement is er-
roneous or not, we compare it with the
mean and standard deviation for the cor-
responding subregion.

To make sure that the data within our analyzed
subregion is as homogeneous as possible, we
must select these subregions to be as small as
possible.

From measurement theory, it is known that
we need at least 40 points to make a valid statis-
tical estimate of , and - and make a justified de-
cision on the error; see, e.g., [5]. So, we divide
the geographical region into subregions each of
which contains at most 40-50 points, and apply
the above regression analysis techniques not to
the entire region, but only to these subregions.
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6 Second Idea: Tracing
Problematic Data Sources

In the above text, we discussed the possibil-
ity of detecting individual erroneous measure-
ments. However, as have mentioned earlier, one
of the main reasons why measurements occur is
that some data sources are problematic. It there-
fore makes sense not only to look at the mea-
sured values, but also to look at the data source.
If it turns out that a certain data source in-
deed contains erroneous measurements, then it
makes sense to mark all measurements coming
from this particular data source as suspicious.
This natural idea was successfully used in [6] to
detect erroneous measurements in groundwater
database.

A typical way in which a problematic data
source errs is by having a consistent bias. Thus,
to detect such a data source, we can do the fol-
lowing:

� For each zone (subregion) � which con-
tains the values from this particular data
source, we compute the average �  � $ of
all the measurements from this zone �
coming from this data source, and compute
the bias

�  � $ as the difference between the
average �  � $ and the average ,  � $ of all
the other measurements performed in this
zone:

�  � $ )��  � $ � ,  � $ .
� If the absolute value of the resulting bias�  � $ exceed some threshold (30 in the case

of a gravity database), then we declare all
the measurements in this zone which come
from this particular data source to be sus-
picious.

We have already mentioned that a statistical es-
timation only make sense if we have at least 40-
50 different values. Thus, to have a meaningful
estimate of a bias corresponding to a given data
source, we must only consider data sources who
have made at least 50 measurements in a given
geographical region.

7 Third Idea: Suspicious Zones

In the original idea, we assumed that there
are very few “dirty” points, and most measure-
ments are correct. In this case, the estimated
mean and standard deviation mainly reflect the
correct points.

In some cases, however, in some geograph-
ical zones, the relative number of dirty points
is higher than usual. As a result, the esti-
mated standard deviation reflects not only the
correct points, but the erroneous points as well.
Since the resulting estimate for standard devia-
tion comes from two different populations with
drastically different measurements, the result-
ing estimate becomes large, and so, we may not
be able to use a “ � sigma” criterion to detect the
dirty points in the analyzed zone.

For example, if, in the degenerate case, we
have an equal number of correct and erroneous
measurements, all correct measurement are ap-
proximately 0 and all erroneous measurement
are approximately 1, then the estimated average
is 0.5, and the estimate standard deviation is 0.5.
Hence, in this situation, all the points (both cor-
rect and the erroneous ones) lie within the three
sigma interval.

How can we detect such zones? As we have
mentioned, in such zones, the estimated stan-
dard deviations are unusually large. So, to de-
tect such zones, we can use the same idea as we
used to detect the erroneous measurements in
the first place: we compute the average � and
standard deviation � of the estimated standard
deviations -  � $ orresponding to different zones.
If for some zone � , -  � $ is outside the corre-
sponding “ � sigma” interval

0
� � ��� � � � 1	�
� � 3 ,

we declare this zone to be suspicious.

8 Last Idea: Suspicious
Neighboring Zones

We have mentioned that one reason for er-
roneous measurements is the fact that we have
problematic data sources.

If several suspicious zones are neighbors to
each other, this probably indicates that in the en-
tire connected area, there are problematic data
sources affecting these zones. Since the bor-
ders between zones are rather arbitrary, it is
quite possible that the same problematic data
source contributed to the zones which are close
to this area. Therefore, if we have detected a
connected block of zones with erroneous mea-
surements, it makes sense to also check zones
which are direct neighbors to these ones.

To avoid accidental groupings of two zones,
it makes sense to consider only connected areas
which consist of at least three zones.
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These neighbors should be classified as
“somewhat suspicious”, to indicate that they are
not as highly suspicious as the original zones.

If a zone is a “diagonal” neighbor to the con-
nected area (i.e., if it only has a common edge
with one of the zones from the area), then we
still consider it suspicious, but we consider it
even less suspicious - “mildly suspicious”.

As a result, we arrive at the following
method.

9 Localized Regression Analysis as
a Method for Detecting
Erroneous Measurements in
Geospatial Databases

1) First, we use the total number
�

of measure-
ments to select the parameter � in the “ � sigma”
interval. Specifically, we select � in such a way
that the probability of getting a normally dis-
tributed variable outside the “ � sigma” interval
should be smaller than

��� �
and thus, the ex-

pected number of values outside this interval is
less than 1. For example, for

� % �����
, we use

� ) �
; for

� % ��� � ����� , we get � ) �
; for� % ��� � ����� , we get � ) �

.
2) Second, we subdivide the geographic region
into approximately square subregions (zones)
each of which contains, on average, approxi-
mately 50 measurements.
3) For each zone � , we apply the standard re-
gression analysis techniques to detect the out-
liers. In particular, in the degenerate the follow-
ing:

1. We estimate the average ,� � $ and standard
deviation -  � $ of all the measured values
from this zone.

2. measurements outside the interval0 ,  � $ � � �
-  � $ � ,  � $ 1 � �
-  � $ 3
5 are considered to be outliers.

If the standard regression analysis did not detect
any outliers, we proclaim the zone to be (so far)
clean, and move to other zones.

On the other hand, if some measurements
from the zone � were detected as outliers,
we count the overall number of measurements�  � $ in the zone � . If

�  � $�� ���
, then

we further subdivide the zone � into approxi-
mately square sub-subregions (subzones) each
of which contains, on average, approximately
50 measurements.

For each of the resulting subzones � , we
again apply the standard regression analysis es-
timate the, and check whether the measure-
ments originally marked as outliers are marked
as outliers by the new analysis. If they are so
marked, we declare them suspicious.
4) Select all data sources that contributed at
least 50 measurements in the given geograph-
ical region. For each of these data sources, we
do the following:

1. We mark all the zones which contain mea-
surements from this data source. For each
such zone (subregion) � , we:

i) compute the average �  � $ of all the
measurements from the zone � which
comes from this data source;

ii) compute the bias
�  � $ )��  � $ � ,  � $

(where ,� � $ is the average of all the
other measurements performed in this
zone).

2. If the absolute value
� �  � $ � of the result-

ing bias
�  � $ exceed a pre-defined thresh-

old, then we declare all the measurements
in this zone which come from this particu-
lar data source to be suspicious.

5) We compute the average � and standard de-
viation � of the estimated standard deviations-  � $ corresponding to different zones.
6) We check, for each zone � , whether -  � $ is
outside the corresponding “ � sigma” interval0
� � � � � � � 1 � � � 3 . If it is, we declare this

zone to be suspicious.
7) If the list of suspicious zones contains a con-
nected block of three or more zones, we should
also mark:

� as somewhat suspicious, all the zones
which are direct neighbors to these ones;

� as mildly suspicious, all the zones which
are diagonal neighbors to these ones.

As a result of this algorithm, we have three
group of zones: zones marked as suspicious,
zones marked as somewhat suspicious, and
zones marked as mildly suspicious.

10 Testing the Proposed Method on
the Actual Gravity Database

According to our algorithm, all the measure-
ments from the El Paso region data set seem to
be correct – exactly as the experts suggested.
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For Mojave desert region, according to the
original expert estimates, out of 1,350 zones,
22 contain hard-to-detect erroneous measure-
ments. Our algorithm detected 39 suspicious
zones, 18 somewhat suspicious zones, and 10
mildly suspicious zones.

Of the 39 suspicious zones, 14 were marked
originally by an expert as containing erroneous
measurements, 23 were not originally marked
by an expert, but, on close analysis, turned out
to contain erroneous measurements, and 2 sus-
picious zones turned out, on expert analysis, to
be OK.

Overall, out of 22 originally marked zones
with erroneous measurements, all were success-
fully detected. In addition to these 22 zones, 23
new zones with erroneous measurements were
detected. Overall, out of 67 zones marked as
suspicious, somewhat suspicious, or mildly sus-
picious, 45 (more than two third) turned out to
be actually dirty.

11 Future Work
1) In addition to using statistical techniques
for eliminating erroneous measurements, we
can also some preliminary detection by simply
comparing the measurements in two neighbor-
ing points (this idea was, in effect, described in
[6]. If the ratio between this difference and the
distance exceeds a certain threshold (decided by
experts), then it is highly probable that one of
these measurements is erroneous. Preliminary
results show the prospectiveness of this idea.
2) Instead of simply eliminating biased mea-
surements, it may be more advantageous to cor-
rect them by correcting for this bias.

This can be done in a manner similar to how
bias is corrected in astronomy when we com-
bine several catalogs into a single one. Specif-
ically, to correct the bias, we can select all data
sources which contain at least 50 measurements
in the given geographical region. For each of
these data sources, for each zone � which con-
tain measurements coming from this particular
data source, we compute the average �  � $ of
all the measurements in the zone � which come
from this data source, and then compute the bias�  � $ ) �  � $ � ,  � $ (where ,� � $ is the aver-
age of all the measurements performed in this
zone). Then, we compute the bias

�
of this data

source as an average of all the biases
�  � $ for all

the zones � which contain measurements from
this data source.

To correct the measurements, we subtract
this average bias

�
from all the measurements

coming from this particular data source. This
correction may change the averages ,  � $ , so
it makes sense to repeat this procedure several
times until the corrected values stop changing.
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