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Abstract

How is fuzzy logic usually formalized?
There are many seemingly reasonable require-
ments that a logic should satisfy: e.g., since
A& B and B& A are the same, the correspond-
ing and-operation should be commutative. Sim-
ilarly, since A& A means the same as A, we
should expect that the and-operation should also
satisfy this property, etc. It turns out to be im-
possible to satisfy all these seemingly natural
requirements, so usually, some requirements are
picked as absolutely true (like commutativity
or associativity), and others are ignored if they
contradict to the picked ones.

This idea leads to a neat mathematical the-
ory, but the analysis of real-life expert reason-
ing shows that all the requirements are only ap-
proximately satisfied. we should require all of
these requirements to be satisfied to some ex-
tent. In this paper, we show the preliminary re-
sults of analyzing such operations. In partic-
ular, we show that non-associative operations
explain the empirical 7 &+ 2 law in psychology
according to which a person can normally dis-
tinguish between no more than 7 plus minus 2
classes.
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1 Introduction

In many application areas, there are tasks
which take a lot of expert’s time; example: in-
terpreting the satellite photos. It is desirable to
automate these time-consuming tasks.

One of the main obstacles to automating ex-
pert activity is the fact that experts often cannot
express their activity in precise terms, they use

vague (fuzzy) terms from natural language to
describe it. For example, in satellite photo inter-
pretation, an expert may follow a rule like “if an
object is very small, it is probably a speckle un-
less a similar object appears on different photos
of the same area”; here, “very small” and “sim-
ilar” are examples of fuzzy terms from natural
language.

To describe such fuzzy words, L. Zadeh
proposed to use a special generalization of 2-
valued logic called fuzzy logic, in which a state-
ment, in addition to being absolutely true and
absolutely false, can also take additional truth
values corresponding to uncertainty. How is
fuzzy logic usually formalized ([4], [8])? There
are many seemingly reasonable requirements
that a logic should satisfy: e.g., since A&B
and B& A are the same, the corresponding and-
operation should be commutative. Similarly,
since A& A means the same as A, we should
expect that the and-operation should also sat-
isfy this property, etc. It turns out to be impos-
sible to satisfy all these seemingly natural re-
quirements, so usually, some requirements are
picked as absolutely true (like commutativity
or associativity), and others are ignored if they
contradict to the picked ones.

This idea leads to a neat mathematical the-
ory, but the analysis of real-life expert reasoning
shows that all the requirements are only approx-
imately satisfied. Therefore, to achieve a more
adequate representation of expert reasoning, in-
stead of fixing some requirements as absolute
and ignoring the others, we should require all
of these requirements to be satisfied to some ex-
tent. In this paper, we show the preliminary re-
sults of analyzing such operations.
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In particular, we show that non-associative
operations explain the empirical 7 + 2 law in
psychology according to which a person can
normally distinguish between no more than 7
plus minus 2 classes.

2 First Approach

If we know the degrees of certainty (sub-
jective probabilities) p(S1) and p(S2) in two
statements S; and Ss, then possible values of
p(S1 & S2) form an interval

p= [ma*x(pl +P2 - lao)amin(plap2)]-

As a numerical estimate, it is natural to use a
midpoint of this interval:

def
pr&ps =

1 1 .
§-maX(p1 +p2—1,0)+§-mm(p1,pz); (1)

Similar, for the “or”-operation, we can take
the midpoint of the corresponding interval
[max(p1, p2), min(p1 + p2,1)]:

def
VP =

1 1 .
5 "max(pL,p2) + 5 -min(py +p2,1). (2)

There is a problem with these operations. In-
deed, any “and” operation p; & p- enables us to
produce an estimate for P(S; & S») provided
that we know estimates p; for p(S1) and p, for
p(S2). If we are interested in estimating the de-
gree of belief in a conjunction of three state-
ments S & S» & S3, then we can use the same
operation twice:

o first, we apply the “and” operation to p;
and p-» and get an estimate p; & p, for the
probability of Sy & Ss;

o then, we apply the “and” operation to this
estimate p; & p, and ps, and get an esti-
mate (p1 & p2) & ps3 for the probability of
(S1 & S2) & Ss.

Alternatively, we can get start by combining
S, and Ss3, and get an estimate pq & (p2 & ps3)
for the same probability p(S; & S» & Ss3). Intu-
itively, we would expect these two estimates to
coincide: (p1 & p2) & ps = p1 & (p2 & ps3), i€,
in algebraic terms, we expect the operation &
to be associative. Unfortunately, midpoint op-
erations are not associative:

e.g.,
(0.4&0.6) & 0.8 =0.2& 0.8 = 0.1,
while
04&(0.6&0.8) =0.4&0.5=0.2 #0.1.

By itself, a small non-associativity may not
be so bad:

e associativity comes from the requirement
that our reasoning be rational, while

e itis well known that our actual handling of
uncertainty is not exactly following ratio-
nality requirements; see, e.g., [9].

So, it is desirable to find out how non-
associative can these operations be.

To be more precise, we know that the mid-
point operations are non-associative, i.e., that
sometimes, (a&b)&c # a&(b&c). We
want to know how big can the difference
(a&b) & c— a& (b& c) can be.

Theorem 1[2] .

max|(a&b)&c—a& (b&c)| =

a,b,c

O~

Theorem 2 [2] .

max|(aVb)Ve—aV (bVe)| =

a,b,c

Human experts do not use all the num-
bers from the interval [0,1] to describe their
possible degrees of belief; they use a few
words like “very probable”, “mildly proba-
ble”, etc. Each of words is a “granule” cov-
ering the entire sub-interval of values. Since
the largest possible non-associativity degree
[(a&b)&c — a& (b&c)| is equal to 1/9, this
non-associativity is negligible if the corre-
sponding realistic “granular” degree of belief
have granules of width > 1/9. One can fit
no more than 9 granules of such width in the
interval [0,1]. This may explain why humans
are most comfortable with < 9 items to choose
from — the famous “7 plus minus 2” law; see,
e.g., [5,6].

This general psychological law has also
been confirmed in our specific area of formal-
izing expert knowledge: namely, in [1], it was
shown that this law explains why in intelligent
control, experts normally use < 9 different de-
grees (such as “small”, “medium”, etc.) to de-
scribe the value of each characteristic.
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Instead of selecting a midpoint, we can
make a more general selection of a value in
the interval p. By a choice function, we mean
a function s that maps every interval u =
[u~,uw™] into a point s(u) € u so that for every
cand A > 0:

o s([u” +cut +cf) =s(fu,ut]) +c
(shift-invariance);
o s um, A ut]) = X s(fum, ut))
(unit-invariance).
Proposition 1 [7] . Every choice function has
theforms(u™,u™)) =a-u=+ (1 —a) - ut
for somea € [0, 1].

The combinationp=a-p~ + (1 —a) - p*
(first proposed by Hurwicz [3]) has been suc-
cessfully used in areas ranging from submarine
detection to petroleum engineering [7]; in [11],
this approach is applied to second-order proba-
bilities.

With this approach, we get the following
formulas which generalize the above defini-
tions:

def
p1&ps = a-max(pr + ps — 1,0)+

(1 —a) - min(py, p2); (3)
p1Vpa e max(p1, p2)+

(1 — @) - min(p; + po, 1). 4)

Theorem 3[2] .
max |[(a&b)&c—a& (b& )| =

a,b,c
a-(1-a)
24+a-(1—a)’
mlz;mx|(avb)Vc—aV(ch)|=
a-(1-a)
24+a-(1—a)

Comment. This non-associativity degree is the
smallest (= 0) when o« = 0 or @ = 1, and the
largest (= 1/9) for midpoint operations (« =
0.5).

In our proof, it was useful to first show that
the new operations have some properties of as-
sociativity: namely, it turns out that for every
«a, both operations are semi-associative in the
sense thata < b < cimpliesthat a & (b& c) >
b& (a&c) > c& (a&b).

3 Second Approach

A t-norm a& b describes the degree to
which two conditions A and B are both satisfied
if we know that the first condition A is satisfied
with a degree a, and the second condition B is
satisfied with a degree b.

In effect, t-norms describe the situations
when both conditions are absolutely necessary,
so that if one of the conditions is not satisfied,
we completely reject the corresponding alterna-
tive. There are many such situations, but there
are also many other situations, in which, al-
though we say that we want the first condition to
be satisfied and the second condition to be sat-
isfied, etc., but if one of these conditions is not
satisfied, we may still consider the correspond-
ing alternative.

For example, a computer science depart-
ment may be looking for a person who is a bril-
liant researcher and a very good lecturer and
is knowledgeable in all the areas of computer
science, i.e., in data structures and in operating
systems and in software engineering etc. lde-
ally, all these conditions should be met. How-
ever, if a brilliant researcher with a reputation
of a good lecturer applies for a position, then,
even if he does not know anything about operat-
ing systems, a department would most probably
not definitely reject him.

In short, in many real-life situations, even if
one of the conditions A, B is not satisfied at all,
e.g., if a = 0, we may still have some non-zero
degree of belief in the conjunction A&B - in
direct contrast to the fact that for a t-norm, in
this case, 0& b = 0. This difference between
the formal notion of a t-norm and the human
use of “and” was noticed several decades ago,
in the experiments of H.-J. Zimmermann and
P. Zysno described in [12]. To get a more ad-
equate description of human “and”-operations,
the authors of [12] propose to use, instead of t-
norm, a combination (e.g., linear combination)
of a t-norm and a t-conorm, e.g., to use a com-
bination

def

pL&py =
a-min(py, p2) + (1 — a) - max(p1,p2). (5)
Such a combination is also not associative. How

non-associative can it be? To answer this ques-
tion, we prove that it is semi-associative:

Proposition 2. If a > b > ¢, then
ad& (b&c) > b&(a&c) > c& (a&b).

Proceedings of the 2001 | EEE Systems, Man, and Cyber netics Conference
Copyright (©2001



Theorem 4.
mbax|(a&b)&c—a&(b&c)| =a-(1-a).

Proof of Proposition 2 and Theorem 4. Let
a>b>ec.

1°. Let us first prove that
a& (b&c) > b& (a&c).

Indeed, inthiscase, b&c=(1—-a)-b+a-c.
Since b < a and ¢ < a, we can conclude that
b& ¢ < a. Therefore,

a& (b&c)=(1-a)-a+a-(b&c)=

(1-a)-at+a-(1-a)-b+a’-c. (6)

Similarly, a&c¢ = (1 —a) -a+ a-c. The
expression for b & (a & c¢) depends on whether
b > (a & c) or not. Correspondingly, let us con-
sider both cases.

1.1°. Let us first consider the case when
b> (a&c).
In this case,
b>1—-a)-ata-c, (7)

hence

b& (a&c)=a-(a&kec)+(1—a)-b=

a-(1-a)-a+(1—a)-b+a’-c. (8)
The difference between the expressions (6) and
(8) isequal to (1 — a)? - (a — b), so this differ-

ence is non-negative. For this case, the desired
inequality is proven.

1.2°. Let us now consider the case when
b< (a&c).
In this case,
b<(l—a)-a+a-c, (9)
hence
b& (a&c)=(1—a) - (a&kec)+a-b=

1-a)-a+a-b+a-(1-a)-c (10)

The difference between the expressions (6) and
(10) is equal to:

a-(1—-a)-a—a® - b+a-2a-1)-c=
a-o,

where by o, we denoted the expression

l-a)-a—a-b+(2a—-1)-c

Due to (9), we have
a-b<a-(1-—a)-a+a®-c,

hence

o> (1—a)-a—a-(1—a)-a—a?-c+(2a—1)-c =

1-a)?a—(1-a)?-c=(1-a) -(a—c).
Since a > ¢, we conclude that ¢ > 0, hence
the difference between (6) and (10) is also non-
negative. So, for this second case, the desired
inequality is also proven.

2°. Let us now prove that
b& (a&c) > c& (a&b).

Sincea > b,wehavea& b= (1-a)-a+a-b.
Froma > cand b > ¢, we conclude that

a&kb=(1-a)-at+a-b>c
Thus,
c&(a&b)=(1-a) (a&kb)+a-c=

1-a)?-a+a-(1-a)-b+a-c. (11)

To prove the desired inequality, we consider the
same two cases as in Part 1 of this proof.

2.1°. Let us first consider the case when
b> (a&c).

In this case, b& (a & c) is described by the ex-
pression (8). The difference between the ex-
pressions (8) and (11) is equal to

(1-a)-(2a=1)-a+(1—-a)*-b—a-(1—a)-c =
(1-a)-0,

where by o, we denoted the expression:

2a-1)-a+(1—a)-b—a-c.
Due to (7), we have
l1-a)-b>(1-a)-a+a-(1-a)-c

hence

o > (2a—1)-a+(1—a)*a+a-(1—a)-c—a-c =
o (a—c).

Since a > ¢, we conclude that & > 0, hence
the difference between (8) and (11) is also non-
negative. So, for this case, the desired inequal-
ity is proven.
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2.2°. Let us first consider the case when
b< (a&c).

In this case, b& (a & c) is described by the ex-
pression (10). The difference between the ex-
pressions (10) and (11) is equal to a2 - (b — ¢).
Since b > ¢, this difference is non-negative,
hence the desired inequality holds in this case
too.

This completes the proof of Proposition 2.

3°. Let us now prove Theorem 5.

Since every three real numbers can be sorted in
the order a > b > ¢, to prove Theorem 5, it
is sufficient to consider all possible differences
between the terms a & (b& ¢), b& (a & ¢), and
c& (a & b) that correspondto a > b > c.

Due to Proposition 2, the largest possible
difference d between these three terms is the
difference between the expressions a & (b& c)
and c& (a&b). The first expression is de-
scribed by the formula (6), the second by the
formula (11), thus, the difference between these
expressions is equal to the difference between
these formulas, i.e., to:

d=a-1l-a)-a—a-(1—a)-c=
a-(1-—a)-(a—c).
Since a > ¢, the difference a — ¢ can take val-
ues between 0 and 1, the largest value 1 attained
whena =1andc=0. Thus,d < a- (1 — @),
andd = a- (1 —a)whena = 1and ¢ = 0.
Hence, the desired maximum of the difference

d is indeed equal to « - (1 — «). The theorem is
proven.

4 Third Approach

In the above text, we only talked about
“and” and “or” operations. What about more
complex logical operations? If we fix “and”,
“or”, and “not” operations, then we can, in prin-
ciple, knowing the degree of belief in the ba-
sic statements, determine the degree of belief
in their logical combination Q. To do that, we
represent the given formula ) as a combination
of &, Vv, and —, and then consequently use our
chosen operations with degrees of belief instead
of these logical symbols.

There is a problem with this approach: Ev-
ery expression can be described in several dif-
ferent ways in terms of the basic logical opera-
tions &, v, and —. For example, A — B can
be represented as B V —A, (A& B) vV - A etc.
These expressions are equivalent in normal

Boolean (2-valued) logic, but if we use these ex-
pression to compute degrees of belief, we some-
times end up with different results. E.g., in the
above case, if d(A) = 0.6 and d(B) = 0.7,
and we use min, max, and ¢ — 1 — z for
&, Vv, and —, then the first expression leads to
max(d(B),1 — d(A)) = 0.7, while the second
leads to

max(min(d(A4),d(B)),1 —d(A)) =
max(0.6,0.4) = 0.6.

So, for as given expression F, instead of a sin-
gle value of d(F"), we end up with different pos-
sible values pr(a,...,b) of d(F). Itis there-
fore desirable to describe the interval formed
by the smallest and the largest possible values
of d(F) for all F' that correspond to a given for-
mula. This idea was first described by Tirksen
in [10]. It turns out that if we use min and max,
then the smallest and the largest values can be
explicitly described.

By a propositional formula in a DNF (dis-
junctive normal form), we mean a formula of
the type Cy v ...V Cp,, where each C; is of the
type 21 & ... & xzp, and z; are either the basic
statements or their negations. We say that we
have a complete DNF if each C; contains all
variables from the formula.

By a propositional formula in a CNF (con-
junctive normal form), we mean a formula of
the type D1 & ... & D, where each D; is of
the type =1 V...V z,, and z; are either the ba-
sic statements or their negations. We say that
we have a complete CNF if each D; contains
all variables from the formula.

Every propositional formula can be trans-
formed into a unique complete CNF or into a
uniquely defined complete DNF form. These
unique formulas will be denoted by CNF(F')
and DNF(F). For example, A — B can be
transformed into a complete CNF form
—A VvV B, or into a complete DNF form
(A&B) \% (ﬂA&B) \% (—|A&—|B).

Proposition 3[13] . Let & = min, V = max,
and —-(z) = 1 — z. Then, for every proposi-
tional formula F'(4, ..., B), and for all values
a,...,b,

pDNF(F)(aa"'ab) SpF(aayb) <

pCNF(F)(aa oy b).

So, for every formula F', we can take
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[PDNF(F) (a7 LR b)apCNF(F) (a7 LR b)]

as the desired interval. In particular, for the
F = A& B, we get the interval [p~,p*],
where: p~ = min(a, b), and p* is equal to

min(max(1 — a, b), max(a, 1 — b), max(a, b)),
and for F = AV B, we get the interval [p~, p*],
where p~ is equal to

max(min(1 — a,b), min(a, 1 — b), min(a, b)),

and p™ = max(a, b). For these intervals, Hur-
wicz criterion leads to the following operations:

a&b® a-min(a,b) + (1—a)-(a®b), (12)

where

a®b="
min(max(1 — a, b), max(a, 1 — b), max(a, b)),
and

avh a-(a®b)+ (a—a)-max(a,b), (13)

where

aGBbd:ef

max(min(1 — a, b), min(a, 1 — b), min(a, b)).

Theorem 5.
max|(a&b) &e—ak (b& )| = @
mgmx|(aVb)Vc—aV(ch)| = w.
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