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Abstract

How is fuzzy logic usually formalized? There are many seemingly rea-
sonable requirements that a logic should satisfy: e.g., since A&B and
B& A are the same, the corresponding and-operation should be commu-
tative. Similarly, since A& A means the same as A, we should expect that
the and-operation should also satisfy this property, etc. It turns out to be
impossible to satisfy all these seemingly natural requirements, so usually,
some requirements are picked as absolutely true (like commutativity or
associativity), and others are ignored if they contradict to the picked ones.

This idea leads to a neat mathematical theory, but the analysis of
real-life expert reasoning shows that all the requirements are only ap-
proximately satisfied. we should require all of these requirements to be
satisfied to some extent. In this paper, we show the preliminary results of
analyzing such operations. In particular, we show that non-associative op-
erations explain the empirical 7+ 2 law in psychology according to which
a person can normally distinguish between no more than 7 plus minus 2
classes.
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1 Introduction

In many application areas, there are tasks which take a lot of expert’s time;
example: interpreting the satellite photos. It is desirable to automate these
time-consuming tasks.

One of the main obstacles to automating expert activity is the fact that
experts often cannot express their activity in precise terms, they use vague
(fuzzy) terms from natural language to describe it. For example, in satellite
photo interpretation, an expert may follow a rule like “if an object is very small,
it is probably a speckle unless a similar object appears on different photos of
the same area”; here, “very small” and “similar” are examples of fuzzy terms
from natural language.



To describe such fuzzy words, L. Zadeh proposed to use a special general-
ization of 2-valued logic called fuzzy logic, in which a statement, in addition to
being absolutely true and absolutely false, can also take additional truth values
corresponding to uncertainty. How is fuzzy logic usually formalized [5, 10])?
There are many seemingly reasonable requirements that a logic should satisfy:
e.g., since A&B and B& A are the same, the corresponding and-operation should
be commutative. Similarly, since A& A means the same as A, we should expect
that the and-operation should also satisfy this property, etc. It turns out to be
impossible to satisfy all these seemingly natural requirements, so usually, some
requirements are picked as absolutely true (like commutativity or associativity),
and others are ignored if they contradict to the picked ones.

This idea leads to a neat mathematical theory, but the analysis of real-life
expert reasoning shows that all the requirements are only approximately satis-
fied. Therefore, to achieve a more adequate representation of expert reasoning,
instead of fixing some requirements as absolute and ignoring the others, we
should require all of these requirements to be satisfied to some extent. In this
paper, we show the preliminary results of analyzing such operations.

In particular, we show that non-associative operations explain the empirical
7 £+ 2 law in psychology according to which a person can normally distinguish
between no more than 7 plus minus 2 classes.

2 First Approach

If we know the degrees of certainty (subjective probabilities) p(S;) and p(Ss) in
two statements S; and Sa, then possible values of p(S; & S») form an interval

b= [ma'x(pl +p2 — 1,0),min(p1,p2)].
As a numerical estimate, it is natural to use a midpoint of this interval:

def
p1& D2 =

1 1

5 -max(py +p2 —1,0) + 5 - min(py, pa); (1)
Similar, for the “or”-operation, we can take the midpoint of the corresponding
interval [max(p, p2), min(p1 + p2,1)]:

def 1 1.
p1Vpy = i-max(pl,p2)+§-m1n(p1 +p2,1). (2)

There is a problem with these operations. Indeed, any “and” operation p; & p
enables us to produce an estimate for P(S; & S3) provided that we know esti-
mates p; for p(S1) and ps for p(S3). If we are interested in estimating the degree
of belief in a conjunction of three statements Sy & Ss & S3, then we can use the
same operation twice:

o first, we apply the “and” operation to p; and p, and get an estimate
p1 & po for the probability of S & Sa;



e then, we apply the “and” operation to this estimate p; & p» and p3, and
get an estimate (p1 & p2) & ps for the probability of (S & S3) & S3.

Alternatively, we can get start by combining S, and Ss, and get an estimate
p1 & (p2 & p3) for the same probability p(S; & S2 & S3). Intuitively, we would
expect these two estimates to coincide: (p1 & p2) & ps = p1 & (p2 & p3), i.e., in
algebraic terms, we expect the operation & to be associative. Unfortunately,
midpoint operations are not associative: e.g.,

(0.4&0.6) & 0.8 = 0.2& 0.8 = 0.1,

while
0.4&(0.6&0.8) =0.4& 0.5 =0.2 #0.1.

By itself, a small non-associativity may not be so bad:

e associativity comes from the requirement that our reasoning be rational,
while

e it is well known that our actual handling of uncertainty is not exactly
following rationality requirements; see, e.g., [12].

So, it is desirable to find out how non-associative can these operations be.

To be more precise, we know that the midpoint operations are non-
associative, i.e., that sometimes, (a&b) & c # a& (b&c). We want to know
how big can the difference (a & b) & ¢ — a & (b& c) can be.

Theorem 1 [3, 13].

max |[(a&b)&c—a& (b&c)| =

a,b,c

Theorem 2 [3, 13].

max|(aVb)Ve—aV (bVe)| =

a,b,c

Human experts do not use all the numbers from the interval [0,1] to de-
scribe their possible degrees of belief; they use a few words like “very prob-
able”, “mildly probable”, etc. Each of words is a “granule” covering the en-
tire sub-interval of values. Since the largest possible non-associativity degree
[(a&b) & c—a& (b& c)| is equal to 1/9, this non-associativity is negligible if the
corresponding realistic “granular” degree of belief have granules of width > 1/9.
One can fit no more than 9 granules of such width in the interval [0,1]. This
may explain why humans are most comfortable with < 9 items to choose from
— the famous “7 plus minus 2” law; see, e.g., [7, 8].

This general psychological law has also been confirmed in our specific area
of formalizing expert knowledge: namely, in [2], it was shown that this law



explains why in intelligent control, experts normally use < 9 different degrees
(such as “small”, “medium”, etc.) to describe the value of each characteristic.

Instead of selecting a midpoint, we can make a more general selection of a
value in the interval p. By a choice function, we mean a function s that maps
every interval u = [u~,u"] into a point s(u) € u so that for every ¢ and A > 0:

o s(fu” +c,ut +c]) = s([u",u™]) + ¢ (shift-invariance);

o s(A-u=, A-ut])) =X s([u,u")) (unit-invariance).
Proposition 1 [9]. Every choice function has the form s(fu,ut]) =a-u™ +
(1—a)-u™ for some a € [0,1].

The combination p = a-p~ + (1 —a) - p* (first proposed by Hurwicz [4]) has
been successfully used in areas ranging from submarine detection to petroleum
engineering [9]; in [16, 17], this approach is applied to second-order probabilities.

With this approach, we get the following formulas which generalize the above
definitions:

pr&ps E a-max(pi +ps — 1,0) + (1 — @) - min(pr, pa); (3)

p1Vps € a-max(pr, ps) + (1 — a) - min(ps + ps, 1). (4)

Theorem 3 [3, 13].

o a-(l-a)
I;}iliq(a&b)&c—a&(b&c)'—ﬂa—(l_a),
_a-(1-a)
$a§|(avb)Vc—aV(ch)|——2+a‘(1_a).

Comment. This non-associativity degree is the smallest (= 0) when a = 0 or
a =1, and the largest (= 1/9) for midpoint operations (a = 0.5).

Comment. In our proof, it was useful to first show that the new operations
have some properties of associativity: namely, it turns out that for every a,

both operations are semi-associative in the sense that a < b < ¢ implies that
ad(b&c) > b& (a&c) > c& (a&d).

3 Second Approach

A t-norm a & b describes the degree to which two conditions A and B are both
satisfied if we know that the first condition A is satisfied with a degree a, and
the second condition B is satisfied with a degree b.

In effect, t-norms describe the situations when both conditions are absolutely
necessary, so that if one of the conditions is not satisfied, we completely reject
the corresponding alternative. There are many such situations, but there are



also many other situations, in which, although we say that we want the first
condition to be satisfied and the second condition to be satisfied, etc., but if
one of these conditions is not satisfied, we may still consider the corresponding
alternative.

For example, a computer science department may be looking for a person
who is a brilliant researcher and a very good lecturer and is knowledgeable in all
the areas of computer science, i.e., in data structures and in operating systems
and in software engineering etc. Ideally, all these conditions should be met.
However, if a brilliant researcher with a reputation of a good lecturer applies for
a position, then, even if he does not know anything about operating systems, a
department would most probably not definitely reject him.

In short, in many real-life situations, even if one of the conditions A, B
is not satisfied at all, e.g., if @ = 0, we may still have some non-zero degree
of belief in the conjunction A&B — in direct contrast to the fact that for a
t-norm, in this case, 0& b = 0. This difference between the formal notion of
a t-norm and the human use of “and” was noticed several decades ago, in the
experiments of H.-J. Zimmermann and P. Zysno described in [18]. To get a more
adequate description of human “and”-operations, the authors of [18] propose to
use, instead of t-norm, a combination (e.g., linear combination) of a t-norm and
a t-conorm, e.g., to use a combination

p&p®a- min(py,p2) + (1 — a) - max(p1, p2). (5)

Such a combination is also not associative. How non-associative can it be? To
answer this question, we prove that it is semi-associative:

Proposition 2. If a > b > ¢, then

a& (b&c) > b& (a&c) > c& (a&b).

Theorem 4.
max |[(a&b)&c—a& (b&c)|=a-(1—a).

a,b,c

Comment. These results were previously announced in [1, 6].

Proof of Proposition 2 and Theorem 4. Let a > b > c.
1°. Let us first prove that

a& (b&c) > b& (a&c).

Indeed, in this case, b&c= (1 —a)-b+ a-c¢. Since b < a and ¢ < a, we can
conclude that b& ¢ < a. Therefore,

a& (b&ec)=(1-a)-at+a-(b&c) =

(1-a)-a+a-(1-a)-b+a®-c (6)



Similarly, a& ¢ = (1 — @) - a + a - ¢. The expression for b& (a & ¢) depends on
whether b > (a & ¢) or not. Correspondingly, let us consider both cases.

1.1°. Let us first consider the case when
b> (a&c).
In this case,
b>(1-a)-a+a-c (7

hence

b& (a&c)=a-(a&c)+(1—a)-b=
a-(1—a)-a+(1—a)-b+a®-c. (8)

The difference between the expressions (6) and (8) is equal to (1 —«)? - (a — b),
so this difference is non-negative. For this case, the desired inequality is proven.

1.2°. Let us now consider the case when
b< (a&ec).
In this case,
b<(l—a)-a+a-c, (9)

hence
b& (a&c)=(1-0a) - (a&c)+a-b=

1-a)?-a+a-b+a-(1-a)-c (10)
The difference between the expressions (6) and (10) is equal to:
a-(1—a)-a—a®-b+a-2a—-1)-c=a-o,
where by o, we denoted the expression
l-a)-a—a-b+(2a—-1)-c
Due to (9), we have
a-b<a-(1-a)-a+a?-c
hence
c>(1-a)-a—a-(1-a)-a—a’-c+(2a—-1)-c=
A-a)?-a—(1-a)?-c=010-a)’ (a—c).
Since a > ¢, we conclude that ¢ > 0, hence the difference between (6) and

(10) is also non-negative. So, for this second case, the desired inequality is also
proven.

2°. Let us now prove that

b& (a&c) > c& (a&b).



Since a > b, we have a& b= (1—a)-a+a-b. From a > ¢ and b > ¢, we conclude
that
a&kb=(1-a)-a+a-b>c

Thus,
c& (a&bd)=(1-0a) (a&bd)+a-c=
1-a)l-a+a-(1—a)-b+a-c. (11)
To prove the desired inequality, we consider the same two cases as in Part 1 of
this proof.
2.1°. Let us first consider the case when

b> (a&c).

In this case, b& (a & c¢) is described by the expression (8). The difference be-
tween the expressions (8) and (11) is equal to

1-a)-2a=1)-a+(1-a)? b—a-(1-a)-c=(1-a)-o0,
where by o, we denoted the expression:
2a—1)-a+(1—-a)-b—a-c.
Due to (7), we have
1-a)-b>(1-a)?-a+a-(1-a)-c
hence
o>Qa—-1)-a+(1-a)-a+a-(1—a)-c—a-c=
o (a—c).
Since a > ¢, we conclude that o > 0, hence the difference between (8) and (11)

is also non-negative. So, for this case, the desired inequality is proven.
2.2°. Let us first consider the case when

b< (a&c).

In this case, b& (a&c¢) is described by the expression (10). The difference

between the expressions (10) and (11) is equal to a2 - (b — ¢). Since b > c, this

difference is non-negative, hence the desired inequality holds in this case too.
This completes the proof of Proposition 2.

3°. Let us now prove Theorem 4.

Since every three real numbers can be sorted in the order a > b > ¢, to prove
Theorem 4, it is sufficient to consider all possible differences between the terms
a& (b&c), b& (a & c), and c& (a & b) that correspond to a > b > c.

Due to Proposition 2, the largest possible difference d between these three
terms is the difference between the expressions a & (b& ¢) and c& (a & b). The
first expression is described by the formula (6), the second by the formula (11),



thus, the difference between these expressions is equal to the difference between
these formulas, i.e., to:

d=a-(1—-a)-a—a-1-a)-c=a-1—-a) - (a—c).

Since a > ¢, the difference a — ¢ can take values between 0 and 1, the largest
value 1 attained when a =1 and ¢ = 0. Thus,d < a-(1—a),andd=a- (1 —a)
when a = 1 and ¢ = 0. Hence, the desired maximum of the difference d is indeed
equal to a - (1 — a). The theorem is proven.

4 Third Approach

In the above text, we only talked about “and” and “or” operations. What about
more complex logical operations? If we fix “and”, “or”, and “not” operations,
then we can, in principle, knowing the degree of belief in the basic statements,
determine the degree of belief in their logical combination ). To do that, we
represent the given formula ) as a combination of &, V, and —, and then
consequently use our chosen operations with degrees of belief instead of these
logical symbols.

There is a problem with this approach: Every expression can be described
in several different ways in terms of the basic logical operations &, V, and
—. For example, A — B can be represented as BV —A, (A& B) V -4 etc.
These expressions are equivalent in normal Boolean (2-valued) logic, but if we
use these expression to compute degrees of belief, we sometimes end up with
different results. E.g., in the above case, if d(A) = 0.6 and d(B) = 0.7, and we
use min, max, and x = 1 — z for &, V, and —, then the first expression leads to
max(d(B),1 — d(A)) = 0.7, while the second leads to

max(min(d(A),d(B)),1 — d(A)) =

max(0.6,0.4) = 0.6.

So, for as given expression F, instead of a single value of d(F'), we end up with
different possible values pr(a,...,b) of d(F'). It is therefore desirable to describe
the interval formed by the smallest and the largest possible values of d(F’) for all
F that correspond to a given formula. This idea was first described by Tiirkgen
in [14]. It turns out that if we use min and max, then the smallest and the
largest values can be explicitly described.

By a propositional formula in a DNF' (disjunctive normal form), we mean a
formula of the type C1 V...V Cy,, where each Cj is of the type 1 & ... &z,
and x; are either the basic statements or their negations. We say that we have
a complete DNF if each Cj; contains all variables from the formula.

By a propositional formula in a CNF (conjunctive normal form), we mean a
formula of the type D1 & ... & Dy, where each Dj is of the type z1 V...V zp,
and x; are either the basic statements or their negations. We say that we have
a complete CNF' if each D; contains all variables from the formula.



Every propositional formula can be transformed into a unique complete CNF
or into a uniquely defined complete DNF form. These unique formulas will be
denoted by CNF(F) and DNF(F). For example, A — B can be transformed
into a complete CNF form
—AV B, or into a complete DNF form (A& B)V (mA& B) V (mA & —B).

Proposition 3 [19]. Let & = min, V = max, and —(z) = 1 — . Then, for
every propositional formula F(A,...,B), and for all values a, ... ,b,

pDNF(F)(aJ“‘Jb) SPF(G;---;b) SpCNF(F)(aJ“"b)'

So, for every formula F', we can take

[pDNF(F)(a: - ab)apCNF(F)(aa o5 b)]

as the desired interval. In particular, for the F' = A& B, we get the interval
[p~,p*], where: p~ = min(a,b), and p* is equal to

min(max(1 — a,b), max(a,1 — b), max(a, b)),
and for F' = AV B, we get the interval [p~, pT], where p~ is equal to
max(min(1 — a, b), min(a, 1 — b), min(a, b)),

and pt* = max(a, b). For these intervals, Hurwicz criterion leads to the following
operations:

a&bdga-min(a,b)—}—(l—a) -(a®b), (12)
where
a®b® min(max(1 — a,b), max(a, 1 — b), max(a, b)),
and
avbdga-(aeab)—}—(a—a)-max(a,b), (13)
where .
a®b™ max(min(1 — a,b), min(a, 1 — b), min(a, b)).
Theorem 5.
(1 —
max|(a&eb) &e—ak (b&o)| = %;
(1 —
max|(aVh)Ve—aVv (Vo) = w

Comment. This theorem was first announced in [15].



Proof of Theorem 5.

1°. One can easily check that our operations & and V are “dual” in the sense
that
aVb=1—(1-a)& (1 -10).

In other words, if ¢ = a& b, then ¢’ = a' V V', where we denoted o defy a,
p e b, and ¢ df e

We can therefore conclude that the difference [(a & b) & ¢ — a & (b& ¢)| cor-
responding to a, b, and c is equal to the difference |(a’' V')V ' —a' VvV (b' V')
corresponding to the values a’, b, and ¢'. Thus, any possible value of non-
associativity for & is also a possible value of non-associativity for V.

Vice versa, any difference [(aVb) Vc—aV (bV ¢)| is equal to the difference
[(a' &b') & ' — a' & (V' & ¢')| corresponding to the values o', V', and ¢’. Thus,
any possible value of non-associativity for V is also a possible value of non-
associativity for & .

So, the set of possible values of non-associativity is the same for both op-
erations & and V. We want to prove, for each of these sets, that the largest
possible value of the difference is equal to a - (1 — @)/2. Since the two sets are
equal, it is sufficient to prove this result for only one of these sets. In other
words, it is sufficient to consider only one of the two operations & and V. In
the following proof, we will provide the proof for & .

2°. We have already given an example that shows that the difference between
(a&b)&c and a& (b& ¢) can be equal to a - (1 — «)/2. Thus, to prove our
theorem, it is sufficient to prove that for all other possible values of a, b, and ¢,
the difference cannot exceed a - (1 — @) /2.

3°. Let us give a general idea of how we will prove our result.
In general, the values a, b, and ¢ must be from the interval [0, 1]:

0<a<1l; 0<b<1 0<e<L . (14)

Formulas for & contain the operations min and max applied to linear func-
tions. Thus, we can consider different cases depending on which of the corre-
sponding linear functions is larger and which is smaller. Each case is therefore
described by a system of inequalities between linear functions, i.e., by a system
of linear inequalities. In each case, both expressions (a & b) & ¢ and a & (b& ¢)
are linear, hence the difference between these expressions is also linear. To prove
that the absolute value of this difference cannot exceed « - (1 — a)/2, we must
prove two conclusions:

e that this difference cannot be larger than a - (1 — a)/2, and
e that this difference cannot be smaller than o - (1 — a)/2.

For each of these conclusions, we must prove that the system of linear inequali-
ties formed by inequalities describing the case and the inequality describing the
difference (a & b) & ¢ — a & (b & ¢) is inconsistent.
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For this proof, we will use the Fourier—Motzkin elimination method (see, e.g.,
[11]). In this method, we eliminate the variables one by one. Specifically, we
pick one variable z, and then describe each inequality containing this variable
in an equivalent form z < ... or ... < z. The value z satisfying all these
inequalities exists if and only if each lower bound for z does not exceed (or is
smaller, depending on whether the bound is strict or not) each upper bound
for . These inequalities between the bounds + the original inequalities that
did not contain x form a new system of linear inequalities. This new system is
consistent if and only if the old system was consistent — but which contains one
fewer variable.

After eliminating the variables one by one, we get the desired contradiction.

4°. Let us illustrate this general idea on a single case — the case that contains
the above values a = 0 and b = ¢ = 0.5.

4.1°. Let us start with the expression (12) for a&b. The first term in this
expression is min(a, b). Therefore, in accordance with our general idea, we must
consider two possible cases: a < b and a > b. We will consider only one case:
when

a<b. (15)

In this case, min(a, b) = a.

The next term in min(a, 1 —b). We therefore have to consider two subcases:
when a <1 -0 (i.e., a+ b < 1), and when a + b > 1. We will consider the
subcase

a+b<1. (16)

For this subcase, max(a,1 — b) = 1 — b. For this subcase, also 1 — a > b, hence
max(l — a,b) = 1 — a, and max(a,b) = b (since we are considering case (15)).
Thus, the expression

min(max(a,1 — b), max(1 — a, b), max(a, b))

takes the form min(1 —b,1—a,b). Due to (15), we have 1 —b < 1 —a, hence this
expression takes the form min(1—b,b). The value of this expression depends on
whether b < 1 — b, i.e., equivalently, whether b < 0.5. We will have to consider
both subsubcases. To illustrate our approach, we consider the subsubcase when

b<0.5. (17)

In this case, a&b=a-a+ (1 —a) - b.

When b < 0.5 and a < b, the automatically ¢ < 0.5 and hence a + b < 1.
Hence, to describe this subcase, it is sufficient to consider only the inequalities
(15) and (17).

4.2°. Similarly, when describing b & ¢, we consider the case when

b<e, (18)

11



and
¢<0.5. (19)

In this case, b&c=a-b+ (a —a)-c.
4.3°. Let us now find the expression for (a & b) & c.
4.3.1°. The first term in this expression is proportional to min(a & b,c). We
know that in our case, a&b = a-a+ (1 — @) - b, and that b < ¢ and (since
a < band b < ¢) also a < ¢. Multiplying the inequality a < ¢ by a and the
inequality b < ¢ by 1 —a and adding the resulting inequalities, we conclude that
a-a+(1—a)-b<e¢ hence the minimum is equal to a&b=a-a+ (1 —a)-b.
4.3.2°. The second term in the desired expression is proportional to the minimum
of max(a&b,1 — ¢), max(1 — (a&b),c), and max(a & b, c).

For the first of these max terms, from a < b and b < 0.5, we conclude that
a < 0.5 and therefore, that a&b=a-a+ (1 —a) - b < 0.5. Since ¢ < 0.5, we
have 1 — ¢ > 0.5 and therefore, a& b < 1—¢, so max(a&b,1—¢) =1-c > 0.5.

Similarly, max(1 — (a&b),c) = 1 — (a&b) > 0.5. We already know that in
our case, a&b < ¢, so max(a& b,c) = ¢ <0.5.

Of the three max terms, one (c¢) is < 0.5, and the other two are > 0.5.
Therefore, the smallest of these three terms is c.

4.3.3°. Now, we can get the final expression for (a & b) & ¢: it is
(a&b)&c=a-(a&b)+(1—a)-c=

-ata-(1-a)-b+(1-a)-c

4.4°. Let us now find the expression for a & (b&c).

4.4.1°. The first term in this expression is proportional to min(a, b & c), where
b&c=a-b+ (1 —a)-c. Since a < b and a < ¢, we conclude (similarly to Part
4.3.1 of this proof) that a < a-b+ (1 —a)-c and therefore, the desired minimum
is equal to a.

4.4.2°. The second term in the desired expression is proportional to the minimum
of max(a,1—(b&c)), max(1l—a,b& c), and max(a, b& c). Similarly to Part 4.3.2
of this proof, by comparing values with 0.5, we conclude that this minimum is

equal to
min(l — (b&c),1 —a,b&c) =b&e.

4.4.3°. Now, we can get the final expression for a & (b& ¢): it is
a& (b&c)=a-a+(1—a)-(b&c) =

a-at+a-(1-a)-b+(1-a)-c

4.5°. Subtracting the above expressions for (a & b) & ¢ and a & (b & ¢), we con-
clude that the difference is equal to a-(1—a)-(c—a). To illustrate our approach,

12



let us show that the system consisting of linear inequalities (14), (15), (17), (18),
(19), and
a-(1-a)-(c—a)>a-(1-a)/2, (20)

is inconsistent.

First, let us simplify this system. We do not need all the inequalities (14):
since a < b and a < ¢, it is sufficient to require that a > 0, then automatically
b > 0 and ¢ > 0. Similarly, since b < 0.5, ¢ < 0.5, and a < b, we automatically
get a <1,b <1, and ¢ < 1. Thus, the only inequality left from (14) is:

a>0. (14a)

Re (20): if a = 0 or @ = 1, we get known associative operators, so we are only
interested in the values @ € (0,1). For these values, the product « - (1 — «)
is positive. Dividing both sides of (20) by this product, we get an equivalent
inequality

c—a>0.5. (20a)

Let us now eliminate variables — starting with ¢ — from the resulting system
(14a), (15), (17), (19), and (20a). There are three inequalities containing c:
b<c (18), ¢ < 0.5 (19), and to which ¢ > a + 0.5 (20a). So, we have two lower
bounds for ¢: b and a+0.5, and one upper bound — 0.5. According to the general
algorithm, we require that every lower bound must be smaller than every upper
bound. This leads to two new inequalities: b < 0.5 (which is already covered by
the inequality (17)) and

a+ 0.5 <0.5, (21)

or, equivalently, a < 0.
There is a clear contradiction (inconsistency) with (14a).

Comment. In this particular case, we could get this inconsistency easier, but
we wanted to show how the general variable elimination approach works.

5°. Due to size limitations, we cannot present here the proofs for all cases, but
we hope that the reader gets a good understanding of how this proof was done.

We have analyzed all possible cases, and in all the cases, Fourier—-Motzkin elimi-
nation method does prove the desired inequalities. Thus, the theorem is proven.
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