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Abstract

In order to adequately process satellite and
radar information, it is necessary to find the ex-
act correspondence between different types of
images and between these images and the exist-
ing maps. In other words, we need to reference
these images. In this paper, we propose new
methods for automatic referencing of satellite
and radar images.
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1 Introduction

In order to adequately process satellite and
radar information, it is necessary to find the ex-
act correspondence between different types of
images and between these images and the exist-
ing maps. In other words, we need to reference
these images. There exist automatic methods of
referencing satellite images. These methods are
based on using Fast Fourier Transform (FFT).
They work well because different image of the
same area differ mainly by a shift and/or by a
rotation, and so, their Fourier transforms are re-
lated in a known way, from which we can deter-
mine the exact rotation and shift.

However, these methods do not work well
when we attempt to reference radar images, or
a satellite image with a road map. The reason
why these methods do not work well is that
the corresponding images reflect different as-
pects of the geographic area, and the resulting
differences are much stronger than the similari-
ties caused by the fact that we are observing the
same area.

In this paper, we describe new techniques
which make it possible to automatically refer-
ence satellite images, radar images, and road
maps.

2 Automation is necessary

At present, referencing is done semi-
automatically: once we find the matching points
on the two images, we can use imaging tools
to find the most appropriate transformation
(rotation and/or shift) which maps one im-
age into another. The problem is that finding
such matching points is a difficult and time-
consuming tasks, especially for images of the
Southwest.

The most efficient way is to match road
intersections. Many nearby road intersections
look similar, so we need several trial-and-error
iterations before we can get a good referencing.
Even an experienced imaging specialist must
spend at least an hour or so on referencing an
image. Since new satellite images are produced
every few seconds, we cannot afford to spend an
hour of referencing each new image. We need
automatic referencing techniques.

3 The existing FFT-based
referencing algorithms

To decrease the referencing time, re-
searchers have proposed methods based on Fast
Fourier Transform (FFT). The best of known
FFT-based referencing algorithms is presented
in [3]. The main ideas behind FFT-based refer-
encing in general and this algorithm in particu-
lar are as follows.
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3.1 The simplest case: shift detection
in the absence of noise

Let us first consider the case when two im-
ages differ only by shift. It is known that if two
images

�������� and
�	�
������ differ only by shift, i.e.,

if
�	�
������
� �������� ���� for some (unknown) shift�� , then their Fourier transforms

�����������������  ! �������� ��"$#�%'&)( *+(-,/.0 (1.2�3)4 � 465�7
� � ���������������  ! � � ������ ��"8#�%9&�( *:(-,/.0 (1.2�3	4 � 4�5�7

are related by the following formula:� � �������� " %9&)( *+(-,;.2 (:.<=3 � ���>����=? � � �
Therefore, if the images are indeed obtained
from each other by shift, then we have@ � ������A� @B������ 7 � � �
where we denoted@B������A�DC ���>����EC 7 @ � �>����A�DC � � ������ECF? �HG �

The actual value of the shift
�� can be ob-

tained if we use the formula (1) to compute the
value of the following ratio:

IJ������A� �
�K�>�������>��A� ? �1L �
Substituting (1) into (4), we getIJ�������� ">%9&)( *+(-,;.2 (:.<=3 ? �KM �
Therefore, the inverse Fourier transform N ������
of this ratio is equal to the delta-functionO ����QP ���� .

In other words, in the ideal no-noise situ-
ation, this inverse Fourier transform N ������ is
equal to 0 everywhere except for the point

��R��� ; so, from N ������ , we can easily determine the
desired shift by using the following algorithm:S first, we apply FFT to the original images�������� and

�	�
������ and compute their Fourier
transforms

��� ��� and
�T�
� ��� ;S on the second step, we compute the ra-

tio (4);S on the third step, we apply the inverse FFT
to the ratio

IJ������ and compute its inverse
Fourier transform N ������ ;S finally, on the fourth step, we determine
the desired shift

�� as the only value
�� for

which N �'����VU�XW .

3.2 Shift detection in the presence of
noise

In the ideal case, the absolute value of the
ratio (4) is equal to 1. In real life, the measured
intensity values have some noise in them. For
example, the conditions may slightly change
from one overflight to another, which can be
represented as the fact that a “noise” was added
to the actual image.

In the presence of noise, the observed val-
ues of the intensities may differ from the actual
values; as a result, their Fourier transforms also
differ from the values and hence, the absolute
value of the ratio (4) may be different from 1.

We can somewhat improve the accuracy of
this method if, instead of simply processing the
measurement results, we take into consideration
the additional knowledge that the absolute value
of the actual ratio (4) is exactly equal to 1. Let
us see how this can be done.

Let us denote the actual (unknown) value of
the value " %'&)( *+(-,;.2 (+.<Y3 by Z . Then, in the absence
of noise, the equation (1) takes the form� � �>������ Z � ���>����=? �KM �
In the presence of noise, the computed values�������� and

�
�[������ of the Fourier transforms can
be slightly different from the actual values, and
therefore, the equality (5) is only approximately
true: � � �>�����\ Z � ���>����=? �H] �
In addition to the equation (6), we know that the
absolute value of Z is equal to 1, i.e., thatC Z C % � Z � Z8^ � � 7 �[_ �
where Z ^ denotes a complex conjugate to Z .

As a result, we know two things about the
unknown value Z :S that Z satisfies the approximate equation

(6), andS that Z satisfies the additional constraint (7).

We would like to get the best estimate for Z
among all estimates which satisfy the condition
(7). To get the optimal estimate, we can use
the Least Squares Method (LSM). According to
this method, for each estimate Z , we define the
error ` � � � �>����aP Z � ���>���� �Hb �
with which the condition (6) is satisfied. Then,
we find among all estimates which satisfy the
additional condition (7), a value Z for which the
square C ` C % � ` � ` ^ of this error is the smallest
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possible.
The square C ` C % of the error

`
can be refor-

mulated as follows:` � ` ^ ��H� � �>����aP Z � ���>����;� �� � � ^ �>���� P Z8^ � � ^ ��������V�� � �>���� � � � ^ ������aP Z ^ � � ^ ������ � � � �>����=P
Z � ���>���� � � � ^ �>������ Z � Z8^ � �������� � � ^ ������Y? ��� �

We need to minimize this expression under the
condition (7).

For conditional minimization, there is a
known technique of Lagrange multipliers, ac-
cording to which the minimum of a function� � ��� under the condition � � ��� �!W is attained
when for some real number � , the auxiliary
function

� � ���V� � � � � ��� attains its uncondi-
tional minimum; this value � is called a La-
grange multiplier.

For our problem, the Lagrange multiplier
technique leads to the following unconditional
minimization problem:� � �>���� � � � ^ ������aP Z ^ � � ^ ������ � � � �>����=P
Z � ���>���� � � � ^ ������ � Z � Z ^ � ���>���� � � ^ ������9�

� � � Z � Z8^ P � �	��

���
? � � W	�
We want to find the value of the complex vari-
able Z for which this expression takes the small-
est possible value. A complex variable is, in
effect, a pair of two real variables, so the mini-
mum can be found as a point at which the partial
derivatives with respect to each of these vari-
ables are both equal to 0. Alternatively, we can
represent this equality by computing the partial
derivative of the expression (10) relative to Z
and Z ^ . If we differentiate (10) relative to Z ^ ,
we get the following linear equation:P � ^ �>���� � � � ������ � Z � �������� � � ^ �>����9�

� � Z �XW6? � �8� �
From this equation, we conclude that

Z � � ^ ������ � �
�[�>������������ � � ^ ������ � �
? � � � �

The coefficient � can be now determined from
the condition that the resulting value Z should
satisfy the equation (7). The denominator�������� � � ^ �>���� � � of the equation (12) is a real
number, so instead of finding � , it is sufficient
to find a value of this denominator for which

C Z C % � � . One can easily see that to achieve this
goal, we should take, as this denominator, the
absolute value of the numerator, i.e., the valueC � ^ ������ � � � �>����EC8� C � ^ �������C � C � � ������ECF? � � G �
For this choice of a denominator, the formula
(11) takes the following final form:

Z � � ^ ������ � �
�K�>����C � ^ �������C � C � � �������C ?
� � L �

So, in the presence of noise, instead of using the
exact ratio (4), we should compute, for every

�� ,
the optimal approximation

IJ�>����A� � ^ ������ � � � ������C � ^ �>����EC � C � � �>����EC ?
� � M �

In the ideal non-noise case, the inverse
Fourier transform N ������ of this ratio is equal to
the delta-function

O ���� P ���� , i.e., equal to 0 ev-
erywhere except for the point

�� � �� . In the
presence of noise, we expect the values of N ������
to be slightly different from the delta-function,
but still, the value C N �'��6��C should be much larger
than all the other values of this function. So, we
arrive at the following algorithm for determin-
ing the shift

�� :S first, we apply FFT to the original images�������� and
�	�[������ and compute their Fourier

transforms
��� ��� and

� � � ��� ;S on the second step, we compute the ratio
(15);S on the third step, we apply the inverse FFT
to the ratio

IJ������ and compute its inverse
Fourier transform N ������ ;S finally, on the fourth step, we determine
the desired shift

�� as the point for whichC N ������EC takes the largest possible value.

3.3 Reducing rotation and scaling to
shift

If, in addition to shift, we also have rotation
and scaling, then the absolute values

@��;�>���� of
the corresponding Fourier transforms are not
equal, but differ from each by the correspond-
ing rotation and scaling.

If we go from Cartesian to polar coordinates� Z 7�� � in the
�� -plane, then rotation by an angle���

is described by a simple shift-like formula� � � � � �
.
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In these same coordinates, scaling is also
simple, but not shift-like: Z � � � Z . If we go to
log-polar coordinates

� � 7�� � , where �J������� � Z � ,
then scaling also becomes shift-like: � ��� �	� ,
where � �
����� � � � . So, in log-polar coordi-
nates, both rotation and scaling are described by
a shift.

3.4 How to determine rotation and
scaling

In view of the above reduction, in order to
determine the rotation and scaling between

@
and

@ �
, we can do the following:S transform both images from the original

Cartesian coordinates to log-polar coordi-
nates;S use the above FFT-based algorithm
to determine the corresponding shift� � �	7 ����� � � �;� ;S from the corresponding “shift” values, re-
construct the rotation angle

� �
and the

scaling coefficient � .

Comment. The main computational problem
with the transformation to log-polar coordinates
is that we need values

@B��� 7�
 � on a rectangular
grid in log-polar space

� ����� � ��� 7�� � , but comput-
ing

� ����� � ��� 7�� � for the original grid points leads
to points outside that grid. So, we need interpo-
lation to find the values

@B��� 7�
 � on the desired
grid. One possibility is to use bilinear interpo-
lation. Let

� � 795 � be a rectangular point corre-
sponding to the desired grid point

� ����� � ��� 7�� � ,
i.e.,��� "�� ����,�� 3 ��� ��� � � � 7 5 � "�� ����,�� 3 � ��� � � � �Y?
To find the value

@B� � 795 � , we look at the inten-
sities

@����
,
@���� �"! �

,
@���! �"� �

, and
@���� �"! �"� �

of
the four grid points

��# 7�$ � , ��# � � 7�$ � , ��# 7�$ � � � ,
and

��# � � 7%$ � � � surrounding
� � 7;5 � . Then, we

can interpolate
@B� � 795 � as follows:@B� � 7;5 �A� � � P�&;� � � � P�'�� � @ ��� �

& � � � P�'�� � @ ��� �"! � �� � P�&;� � ' � @ ��! �"� � �& � ' � @ ��� �"! �"� � 7
where & is a fractional part of � and ' is a frac-
tional part of

5
.

3.5 Final algorithm: determining shift,
rotation, and scaling

S First, we apply FFT to the original images�������� and
� � ������ and compute their Fourier

transforms
��� ��� and

�T�[� ��� .S Then, we compute the absolute values@B������R� C ��������EC and
@ �K�>����R� C �
�[�>����EC

of these Fourier transforms.S By applying the above algorithm and scal-
ing detection algorithm to the functions@B� ��� and

@ �K� ��� , we can determine the
rotation angle

���
and the scaling coeffi-

cient � .S Now, we can apply the corresponding rota-
tion and scaling to one of the original im-
ages, e.g., to the first image

�������� . As a
result, we get a new image (�������� .S Since we rotated and re-scaled one of the
images, the images (�������� and

�	�
������ are al-
ready aligned in terms of rotation and scal-
ing, and the only difference between them
is in an (unknown) shift. So, we can again
apply the above described FFT-based algo-
rithm for determining shift: this time, ac-
tually to determine shift.

As a result, we get the desired values of shift,
rotation, and scaling; hence, we get the desired
referencing.

4 Referencing multi-spectral
satellite images

4.1 Formulation of the problem

With the new generation of multi-spectral
satellites, for each area, we have several hun-
dred images which correspond to different
wavelengths. At present, when we reference
two images, we only use one of the wavelengths
and ignore the information from the other wave-
lengths. It is reasonable to decrease the refer-
encing error by using images corresponding to
all possible wavelengths in referencing.

Similarly, in detecting the known text in col-
ored web images, we would like to take into
consideration all color components.

In this paper, we present an algorithm for
such optimal referencing.
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4.2 Derivation of the new algorithm

For multi-spectral imaging, instead of a sin-
gle image

���>���� , we get several images
� � ������ ,� �������

, which correspond to different wave-
lengths. So, we have two groups of images:S the images

� �9�>���� which correspond to one
area, andS the images

�)�� �>���� which correspond to an
overlapping area.

Let us first consider the case when two images
differ only by some (unknown) shift

�� . For ev-
ery wavelength

�
, the corresponding two im-

ages
� �9������ and

�	�� ������ differ only by shift, i.e.,�	�� ������ � � � ���� � ��)� . Therefore, for every wave-
length

�
, their Fourier transforms

� �9�>����A���� � �   � �9������ ��" #�%9&�( *:(-,/.0 (1.2)3 4 � 4�5�7
� � � ������A� ������   � �� ������ ��"$#�%9&)( *+(-,/.0 (1.2)3)4 � 4�5�7
are related by the formula:� � � �������� ">%9&�( *:(-,9.2 (+.<=3 � � � ������=? � � ] �
In the ideal no-noise situation, all these equa-
tions are true, and we can determine the valueZ � " %'&)( *+(-,;.2 (:.<=3 from any of these equations. In
the real-life situations, where noise is present,
these equations (16) are only approximately
true, so we have the following problem instead:
find Z for which, for all

�
,� � �'������A\ Z � � �'������Y? � � _ �

and which satisfies the condition (7).
We would like to get the best estimate for Z

among all estimates which satisfy the condition
(7). To get the optimal estimate, we can use the
Least Squares Method, according to which, for
each estimate Z and for each

�
, we define the

error ` � � � � � ������aP Z � � � �>���� � � b �
with which the condition (17) is satisfied. Then,
we find among all estimates which satisfy the
additional condition (7), a value Z for which the
sum of the squaresC ` � C % � ?�?E?Y� C `�� C % � ` � � ` ^� � ?E?E?=� `�� � ` ^�
of these errors is the smallest possible.

The square C ` � C % of each error
` �

can be re-
formulated as follows:

` � � ` ^� � �H� � �'������aP Z � � �'������9� �
� � � ^� �>��A� P Z ^ � � ^� �>���� � �� � �;�>���� � � � ^� �>���� P Z ^ � � ^� ������ � � � �'������YP

Z � � �'������ � � � ^� �>����$� Z � Z ^ � � �'������ � � ^� �>����=? � � � �
We need to minimize the sum of these expres-
sions under the condition (7).

For this conditional minimization, we will
use the Lagrange multipliers technique, which
leads to the following unconditional minimiza-
tion problem:�
�
�
	 �

� � � � �>���� � � � ^� ������ P Z8^ � � ^� ������ � � � � ������YP
Z � � � �>��A� � � � ^� �>���� � Z � Z ^ � � � ������ � � ^� ������ � �

� � � Z � Z ^ P � �	��

� � ? � � W$�
Differentiating (20) relative to Z ^ , we get the
following linear equation:

P
�
�
��	 � � ^� ������ � � � � �������� Z �

�
�
��	 � � � �>���� � � ^� ������'�

� � Z � W6? � � � �
From this equation, we conclude that

Z �

�
�
�
	 � � ^� �>���� � � � �9�>�����

�
��	 � � �9�>���� � � ^� ������ � �

? � �8� �

The coefficient � can be now determined from
the condition that the resulting value Z should
satisfy the equation (7). The denominator�

�
�
	 � � �'������ � � ^� �>���� � �

of the equation (22) is a real number, so instead
of finding � , it is sufficient to find a value of
this denominator for which C Z C % � � . One can
easily see that to achieve this goal, we should
take, as this denominator, the absolute value of
the numerator, i.e., the value�����

�
�
��	 � � ^� ������ � � � �9������

����� ? � � G �
For this choice of a denominator, the formula
(21) takes the following final form:
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Z �

�
�
�
	 � � ^� �>���� � � � � �>����
�����

�
�
�
	 � � ^� �>���� � � � � �>����

�����
? � � L �

So, for multi-spectral images, in the presence
of noise, instead of using the exact ratio (4), we
should compute, for every

�� , the optimal ap-
proximation

IJ�>����A�

�
�
��	 � � ^� ������ � � � � ������
�����

�
�
��	 � � ^� ������ � � � �'������

�����
? � � M �

Hence, we arrive at the following algorithm:

4.3 A new algorithm for determining
the shift between two
multi-spectral images

If we have images
� �9�>���� and

�$�� ������ which
correspond to different wavelengths, then, to
determine the shift

�� between these two multi-
spectral images, we do the following:S first, we apply FFT to the original images� �'������ and

�	�� ������ and compute their Fourier
transforms

� � � ��� and
� � � � ��� ;S on the second step, we compute the ratio

(25);S on the third step, we apply the inverse FFT
to the ratio

IJ������ and compute its inverse
Fourier transform N ������ ;S finally, on the fourth step, we determine
the desired shift

�� as the point for whichC N ������EC takes the largest possible value.

For rotation and scaling, we can use the
same reduction to shift as for mono-spectral im-
ages. As a result, we get the desired values of
shift, rotation, and scaling; hence, we get the
desired referencing.

5 Referencing a satellite image
with a road map

In order to reference a satellite image with a
road map, we propose to use ENVI tools to re-
place the original satellite image with the image
consisting of its edges. The resulting edge map
is similar to the roadmap and therefore, FFT-
based technique can reference these maps.

6 Referencing radar images

The problem with radar images is that they
contain parallel lines, speckles, and other ar-
tifacts which are caused by the inaccuracy of
radar imaging and are not related to the origi-
nal image. So, in order to reference a radar im-
age with the satellite image, we must first delete
the corresponding parallel lines and speckles.
This can be done by applying FFT and remov-
ing strong components which are not typical for
images:S peaks for parallel lines,S high-frequency noise for speckles, etc.

The resulting cleaned image can now be auto-
matically referenced with the original satellite
image.

7 Future work

At present, we have formalized and auto-
mated only some of experts’ referencing tech-
niques. Since some of their techniques are de-
scribed by words from a natural language (like
“if a pixel is drastically different from its neigh-
bors, it is probably a speckle”), it is desirable
to use a formalism specifically designed to de-
scribe such properties – the formalism of fuzzy
logic.
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