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Abstract. A natural approach to designing an intelligent system is to
incorporate expert knowledge into this system. One of the main ap-
proaches to translating this knowledge into computer-understandable
terms is the approach of fuzzy logic. It has led to many successful appli-
cations, but in several aspects, the resulting computer representation is
somewhat different from the original expert meaning. In this paper, we
overview several such situations, and describe how to modify the fuzzy
logic approach so that its results become closer to the original expert
meaning,.

1 Introduction

A natural approach to designing an intelligent system is to incorporate expert
knowledge into this system.

One of the main approaches to translating this knowledge into computer-
understandable terms is the approach of fuzzy logic [24,52]. This approach has
led to many successful applications, but in several aspects, the resulting com-
puter representation is somewhat different from the original expert meaning. In
this section, we overview several such situations, and describe how to modify
the fuzzy logic approach so that its results become closer to the original expert
meaning.

Some of these results first appeared in [17,22, 26,27, 47]

2 How to Make Fuzzy Arithmetic Closer to Common
Sense: 1

Intuitive property of commonsense arithmetic. To explain the problem
that we try to solve in this section, let us start with a joke. A museum guide
tells the visitors that a dinosaur that they are looking at is 14,000,005 years old.
An impressed visitor asks how scientists can be so accurate in their predictions.
“T don’t know how they do it, — explains the guide — but 5 years ago, when I



started working here, I was told that this dinosaur is 14,000,000 years old, so
now it must be 5 years older”.

This is clearly a joke, because from the common sense viewpoint, a dinosaur
which was approximately 14,000,000 years old 5 years ago is still 14,000,000 years
old. In more precise terms, if we add 5 to a “fuzzy” number “approximately
14,000,000”, we should get the answer “approximately 14,000,000”.

Similarly, if a person weighs, say, approximately 100 kg, and he gains 1 kg,
he still weighs approximately 100 kg. So, if we add 1 to a “fuzzy” number “ap-
proximately 100”, we should get the answer “approximately 100”.

In general, if a is much larger than b (a > b), and we add b to “approximately
a”, we should get “approximately a”. It is therefore natural to expect formal
systems which formalize commonsense reasoning to have this property.

Fuzzy arithmetic: a natural formalization of commonsense arithmetic.
A natural way of dealing with approximately known values (such as “approxi-
mately a”) is fuzzy arithmetic. In fuzzy arithmetic, each such value is represented
by a membership function u(z) describing, for each real number z, to what ex-
tent z matches the description (see, e.g., [24,52]).

For example, if the value that we want to formalize is “approximately a” (for
some given real number a), then the value = a matches the described property
perfectly well (u(a) = 1), while the more distant the value z from a, the smaller
the degree of matching. In other words, a natural way to represent a property
“approximately a” is to have a membership function p(z) which:

— attains its maximum value 1 for z = a,
— increase for x < a, and
— decreases for x > a.

In practical applications, researchers have used membership functions u(z) of
different shape to represent the property “approximately a”: Gaussian, piece-
wise linear, etc.; all these shapes have a clear maximum at z = a.

Vice versa, if we have a membership function p(z) which:

— has a clear maximum at some point z = a,
— is increasing for z < a, and
— is decreasing for x > a,

it is natural to interpret this function as describing a property “approximately a”.
When several numbers A, B, etc., are described by membership functions,
we can use the extension principle to describe the result of applying an arith-
metic operation to these numbers. For example, if a number A is described by
a membership function pa(z), and the number B is described by a member-
ship function pg(z), then their sum C = A 4+ B is described by the following
membership function:
pe(r) = max min(ua(y),ns(2))- (1)
We can also have a more general formula, if we use an arbitrary t-norm instead
of the minimum.



Whether we use min or a more general t-norm, in the simple case when
the number B is crisp (B = b), the resulting membership function is equal to
po(x) = pa(x — b); in other words, it has the same shape as the membership
function for A — but it is shifted by b.

Problem: traditional fuzzy arithmetic does not have the desired prop-
erty. In many practical applications, the traditional fuzzy arithmetic works well.
Unfortunately, the traditional fuzzy arithmetic does not satisfy the desired in-
tuitive property.

Indeed, let A mean “approximately a” (e.g., “approximately 100”). Then,
the corresponding membership function pa(z) has a maximum at z = a, is
increasing for x < a and decreasing for x > a. When we add, to A, a crisp
number B = b (e.g., 1), we get a shifted membership function which has a
maximum at x = a + b, is increasing for < a 4+ b and decreasing for z > a + b.
In accordance with the above interpretation, we thus interpret the sum A + B
as “approximately a + b”. Thus, the sum “a 100”+1 is equal not to ~ 100 as we
would intuitively expect, but to ~ 101.

How can we modify fuzzy arithmetic to make sure that the desired property
is satisfied, and the sum of “~ 100” and 1 is equal to =~ 1007

Main idea. When we only know a (crisp of fuzzy) interval of possible values
of a certain quantity (or a more general set of possible values), it is desirable to
characterize this interval by supplying the user with the “simplest” element from
this interval, and by characterizing how far away from this value we can get. For
example, if, for some unknown physical quantity x, measurements result in the
interval [1.95, 2.1] of possible values, then, most probably, the physicist will pub-
lish this result as y = 2. Similarly, a natural representation of the measurement
result = € [3.141592,3.141593] is = ~ 7.

So, intuitively, if we know the membership functions for A and for B, we
should:

compute the membership function puc(z) for C = A + B;

— find the interval of possible values of C' (e.g., as all the values for which
e (z) > dy for some value dp);

— pick the simplest value ¢ on this interval, and then

— return “approximately ¢” as the result of adding A and B.

In particular, when A is “approximately 14,000,000” — meaning that the interval
of possible values is probably [13,500,000; 14,500,000] — and B is a crisp value
5, then for A + B, the interval of possible values is [13,500,005; 14,500,005]. On
this interval, 14,000,000 is probably still the simplest value, so we conclude that
the sum of “approximately 14,000,000” and 5 is — as we expected — equal to
“approximately 14,000,000”.

Similarly, in this new definition, if we add 1 kg to a weight of approximately
100 kg, we still get approximately 100 kg as the result.
How to formalize this definition? In order to formalize the above definition,
we must formalize what “simplest” means. Intuitively, the simpler the description
of a real number, the simpler this number. Thus, to define relative complexity



of different real numbers, we fix some logical theory T in which we will describe
real numbers.

We will consider languages in which the list of sorts S contains two sym-
bols: “integer” and “real”, and which contain standard arithmetic predicates
and function symbols such as 0, 1, +, —, -, /, =, <, <, both for integers and
for reals. We will assume that this theory contains both the standard first order
theory of integers (Peano arithmetic [4, 13, 56]) and a standard first order theory
of real numbers [7,12, 57, 60]. One of the possibilities is to consider, as the theory
T, axiomatic set theory (e.g., ZF), together with explicit definitions of integers,
real numbers, and standard operations and predicates in terms of set theory.

Once a theory T is fixed, we can define a complezity D(x) of a real number
z as the shortest length of a formula F(y) in the language L which defines this
particular number z, i.e., which is true for y = 2 and false for y # x.

To clarify this definition, let us give examples of formulas which define dif-
ferent real numbers:

— A formula (y -y = 14+ 1) &y > 0 is true if and only if y = v/2; thus, this
formula defines the number /2.

— Similarly, a formula Vz (z -y =  + « + z) defines a real number 3.

— If the language of the theory T' contains the sine function sin, and if the
corresponding theory contains the standard definition of the sine function,
then the formula sin(y) = 0 & 3 <y < 4 defines a real number 7.

Comment 1. This definition is similar to the so-called Kolmogorov complexity
C(z) (invented independently by Chaitin, Kolmogorov, and Solomonoff), which
is defined as the smallest length of the program that computes = (for a current
survey on Kolmogorov complexity, see, e.g., [32]). In our case, however, we do
not care that much about how to compute: computing 3.141592 may be easier
than computing 7; we are more interested in how easy it is to describe x. Due
to this difference, we cannot simply use the original Kolmogorov’s definition: we
have to modify it.

Comment 2. It is worth mentioning that not all real numbers are definable:
indeed, there are only countably many formulas, so there can be no more than
countably many definable real numbers, while the total cardinality of the set of
all real numbers is known to be larger (N; > o).

This new definition solves the above problem, but — in full accordance with
the saying “there is no free lunch” — it comes with drawbacks. We will see that
these drawbacks do not mean that our solution is bad, they seem to be implied
(surprisingly) by the very properties that we try to retain.

First drawback: addition is no longer always associative. This drawback
is the easiest to describe and to explain. Both standard arithmetic and traditional
fuzzy arithmetic are associative: if we add several numbers A; + ... + A,, the
resulting sum does not depend on the order in which we add them; in particular,

(A +A) +A) +.. )+ A, =
A+ (Ap+ (As+ (.. + 4n)..0)). @)



Let us show that for the newly defined addition, this formula is no longer always
true.

Indeed, suppose now that we want to formalize the idea that, say “~ 100" +
1 is equal to ~ 100 (this is just an example, but any other example can be used
to illustrate non-associativity). Let us take n = 101, “approximately 100” as Aj,
and A = ... = A, =1 (crisp numbers). In terms of the newly defined numbers
A;, the desired property takes the form A; + Ay = Ay (similarly, 41 + A3 = Ay,
etc.). Thus, A; + A2 = A, hence (A; + Ay) + A3 = A; + A3 = A4, etc., and
hence the left-hand side of the formula (2) is equal to “approximately 100”:

(. ((Ar+ As) + As) +...) + A, = Ay

On the other hand, since A, ..., A, are crisp numbers (equal to 1 each), their
sum Ay + (A3 + (... + Ay)...) is simply a crisp number 1+ ...+ 1 = 100. Thus,
the right-hand side of the formula (2) is equal to

“approximately 100” + 100

which, intuitively, should be rather “approximately 200” than “approximately
100”. Thus, the left-hand side of (2) is clearly different from its right-hand side.
Hence, the newly defined addition is not associative.

Second drawback: addition is no longer always easily computable. Tra-
ditional fuzzy arithmetic — defined by the extension principle — provides an ex-
plicit formula for computing the sum C' = A + B of two fuzzy numbers A and
B. So, we can still find the interval of possible values for C. Unfortunately, as
we will now show, the next step — finding the simplest possible real number on
this interval — is no longer easily computable.

Theorem 2.1 [27]. No algorithm is possible that, given an interval with definable
endpoints, would return the simplest real number from this interval.

A similar result holds for computable real numbers. A similar result holds
if we restrict ourselves to computable real numbers, i.e., real numbers that can be
computed with an arbitrary accuracy (see, e.g., [5,8,9,11]). To be more precise,
a real number z is called computable if there exists an algorithm (program) that
transforms an arbitrary integer k into a rational number z; that is 2~ % —close
to z. It is said that this algorithm computes the real number z.

Every computable real number is uniquely determined by the corresponding
algorithm and is, therefore, definable.

Theorem 2.2 [27]. No algorithm is possible that, given an interval with com-
putable endpoints, returns the simplest computable real number from this interval.

Conclusion. From the commonsense viewpoint, if 5 years ago, a dinosaur
was approximately 14,000,000 years old, it is still approximately 14,000,000
years years old. Unfortunately, when we formalize the notion “approximately
14,000,000” in traditional fuzzy arithmetic, we do not get this property. In this
section, we have described a natural modification of fuzzy arithmetic which does



have this property. This modification is closer to commonsense reasoning, but
this closeness comes at a cost: addition is no longer always associative and no
longer always easily computable.

3 How to Make Fuzzy Arithmetic Closer to Common
Sense: 11

Granularity Approach. People often need to make crude estimates of a quan-
tity, e.g., estimating the size of a crowd or someone’s salary. When people make
these crude estimates, they usually feel reasonably comfortable choosing between
alternatives which differ by a half order of magnitude (HOM). For example, a
person can reasonably estimate whether the size of a crowd was closer to 100,
or to 300, or to 1000. If we ask for an estimate on a more refined scale, e.g., 300
or 350, people will generally be unable to make it. If we ask for an estimate on
a coarser scale, e.g., 100 or 1000, people may be able to answer, but they will
feel their answer is uninformative.

A particularly striking case of the utility of HOMs is presented by coinage
and currency. Most countries have, in addition to denominations for the powers
of ten, one or two coins or bills between every two powers of ten. Thus, in the
United States, in addition to coins or bills for $.01, $.10, $1.00, $10.00, and
$100.00, there are also coins or bills in common use for $.05, $.25, $5.00, $20,00,
and $50.00. These latter provide rough HOM measures for monetary amounts.

It is natural that people should categorize the sizes of physical objects in
terms of how they must interact with them. When two objects are roughly of
the same size, we manipulate them or navigate about them in roughly the same
way. But when one object is about three times larger in linear dimension than
another, it must be handled in a different manner. Thus, an orange can be held
in one hand, whereas a basketball is more easily held with two, A carton is held
in our arms rather than our hands, and carrying a table often requires a second
person. For further arguments along these lines, see [21].

These observations lead naturally to the following question: If we are to have
a rough logarithmic classification scheme for quantities, what is the optimal
granularity for commonsense estimates?

There are three requirements we would like the classification scheme to have.

— The categories should be small enough that the types of our interactions with
objects are predictable from their category; that HOMs accomplish this is
argued above and in [21].

— The categories should be large enough that ordinary variation among objects
in a class do not usually cross category boundaries and that aggregation
operations have reasonably predictable results; we show that HOMs satisfy
these requirements.

Thus we describe two different models for commonsense estimation and show
that in both models the optimal granularity is in good accordance with observa-
tions about the utility of HOMs. We thus provide a theoretical explanation for
the importance of half orders of magnitude in commonsense reasoning.



Main idea behind Gaussian model. We are interested in the situation where
we estimate a quantity which can only take non-negative values. To estimate the
values of this quantity, we select a sequence of positive numbers ... < ey < €1 <
es < ... (e.g., 1,3, 10, etc.), and every actual value z of the estimated quantity
is then estimated by one of these numbers. Each estimate is approximate: when
the estimate is equal to e;, the actual value z of the estimated quantity may
differ from e;; in other words, there may be an estimation error Ax = e; —x # 0.

What is the probability distribution of this estimation error? This error is
caused by many different factors. It is known that under certain reasonable
conditions, an error caused by many different factors is distributed according
to Gaussian (normal) distribution (see, e.g., [62]; this fact — called central limit
theorem — is one of the reasons for the widespread use of Gaussian distribution in
science and engineering applications). It is therefore reasonable to assume that
Az is normally distributed.

It is known that a normal distribution is uniquely determined by its two
parameters: its average a and its standard deviation o. Let us denote the aver-
age of the error Ax by Ae;, and its standard deviation by o;. Thus, when the
estimate is e;, the actual value ¢ = e; — Az is distributed according to Gaussian
distribution, with an average e; — Ae; (which we will denote by €;), and the
standard deviation o;.

For a Gaussian distribution with given a and o, the probability density is
everywhere positive, so theoretically, we can have values which are as far away
from the average a as possible. In practice, however, the probabilities of large
deviations from a are so small that the possibility of such deviations can be
safely neglected. For example, it is known that the probability of having the
value outside the “three sigma” interval [a — 30, a + 30] is & 0.1% and therefore,
in most engineering applications, it is assumed that values outside this interval
are impossible.

There are some applications where we cannot make this assumption. For
example, in designing computer chips, when we have millions of elements on
the chip, allowing 0.1% of these elements to malfunction would mean that at
any given time, thousands of elements malfunction and thus, the chip would
malfunction as well. For such critical applications, we want the probability of
deviation to be much smaller than 0.1%, e.g., < 1078, Such small probabilities
(which practically exclude any possibility of an error) can be guaranteed if we
use a “six sigma” interval [a — 60, a + 60]. For this interval, the probability for
a normally distributed variable to be outside it is indeed a 1078.

Within this Gaussian model, what is the optimal granularity?

Optimal granularity: informal explanation. In accordance with the above
idea, for each e;, if the actual value z is within the “three sigma” range I; =
[€; — 303, €; + 30;], then it is reasonable to take e; as the corresponding estimate.

We want a granulation which would cover all possible values, so each positive
real number must be covered by one of these intervals. In other words, we want
the union of all these intervals to coincide with the set of all positive real numbers.



We also want to makes sure that all values that we are covering are indeed
non-negative, i.e., that for every i, even the extended “six sigma” interval

[€i — 304, €; + 30]

only contains non-negative values.

Finally, since one of the main purposes of granularity is to decrease the num-
ber of “labels” that we use to describe different quantities, we want to consider
optimal (minimal) sets of intervals. Formally, we can interpret “minimal” in
the sense that whichever finite subset we pick, we cannot enlarge their overall
coverage by modifying one or several of these intervals. Let us formalize these
ideas.

In the following definitions, we will use the fact that an arbitrary interval
[a=,a™] can be represented in the Gaussian-type form [a — 30,a + 30]: it is
sufficient to take a = (a~ +a*)/2 and 0 = (a* —a™)/6.

Definition 3.1.

— We say that an interval I = [a — 30, a + 30] is reliably non-negative if every
real number from the interval [a — 60, a + 60] is non-negative.

— Aset {I;},i=1,2,..., of reliably non-negative intervals I; is called a gran-
ulation if every positive real number belongs to one of the intervals I;.

— We say that a granulation can be improved if, for some finite set {i1,...,i5},
we can replace intervals I;; with some other intervals I, for which

k k k k
UrcUrn Un#UL,
7j=1 j=1 j=1 j=1

and still get a granulation.
— A granulation is called optimal if it cannot be improved.

Theorem 3.1 [22]. In an optimal granulation, I; = [a;, a; 1], where a;+1 = 3a;.

So, half-orders of magnitude are indeed optimal.

Uniform model: motivations. In the Gaussian model, we started with a 3o
bound, and we ended up with a sequence of granules [a;,a;+1] in which the
boundary points a; form an arithmetic progression: a;y1 = q-a; and a; = aq - ¢*,
with ¢ = 3. We could start with a bound of 2.5¢, then we would have got a
geometric progression with a different g. Which value of ¢ is indeed optimal?

To find out, let us take into consideration the fact that a granulation is not
just for storing values, it is also for processing these values. Of course, when
we replace the actual value by the granule to which it belongs, we lose some
information. The idea is to choose the ¢ for which this loss is the smallest.

To estimate the loss, we will consider the simplest data processing operation
possible: addition. If we know the exact values of two quantities A and B, then
we can compute the exact value of their sum A 4+ B. In the granulated case,
we do not know the exact values of A and B, we only know the granules to



which A and B belong, and we want to find out to which of the granules the
sum belongs. For example, in the above half-order granulation, we know that
the first room has about 10 books, the second about 30, and we want to express
the total number of books in the two rooms in similar terms.

The trouble with this problem is that the sum may belong to two different
granules. Let us take an example in which we use granules [1,3], [3,9], [9,27],
etc. Let us assume that all we know about the first quantity A is that A € [1, 3],
and all we know about the second quantity B is that B € [3,9]. In this case, the
smallest possible values of A + B is 1 + 3 = 4, and the largest possible value of
A+ Bis 349 = 12. In general, the sum A + B can thus take any value from
the interval [4,12]. So, it could happen that the sum is in the granule [3, 9], but
it could also happen that the sum is in the granule [9, 27].

If we want the granulation to be useful, we must assign a certain granule to
the sum A + B. Since in reality, the value A + B may belong to two different
granules, no matter which of the two granules we assign, there is always a prob-
ability that this assignment is erroneous. We would like to select ¢ for which this
error probability is the smallest possible.

In order to formulate this question in precise terms, we must describe the
corresponding probabilities. A natural way to describe them is as follows: If
all we know about A is that A belongs to a granule a; = [a;,a;41], then it is
reasonable to consider all the values from this granule to be equally probable,
i.e., to assume that we have a uniform distribution on the interval a; = [a;, a;11]-
Similarly, If all we know about B is that B belongs to a granule a; = [a;, aj4+1],
then it is reasonable to consider all the values from this granule to be equally
probable, i.e., to assume that we have a wuniform distribution on the interval
a; = [aj,a;41]. Since we have no information about the possible dependence
between A and B, it is natural to assume that A and B are independent random

variables. We are now ready for the formal definitions.

Let ap > 0 and ¢ > 2 be real numbers, and let ay, def ag-¢* and a; def [ai, it1]-

Definition 3.2. For every three integers i, j, and k, we can define P(a;+a; € ay)
as the probability that A; + A; € ay, where A; is uniformly distributed on the
interval a;, A; is uniformly distributed on the interval a;, and A; and A; are
independent.

If, as a result of adding a; and a;, we select the granule a;, then the probability
that this assignment is erroneous (i.e., that the actual value of A; + A4; is not in
ay) is equal to 1 — P(a; + a; € a;). For every i and j, we want to minimize this
error, so we select the value k for which this error probability is the smallest:

Definition 3.3. For every two integers i and j, we define the sum a; + a; of
granules a; and a; as a granule ay, for which the error probability 1 —P(a;+a; €
ay) is the smallest possible. The error probability E;; related to this addition is

then defined as this smallest probability, i.e., as E;; def mkin(l —P(a;+a; € ay)).
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Theorem 3.2 [22]. When ¢ > V2 + 1(~ 2.41), then
a; +a; = a1, and a; +a; = anax(; ;) fori # j.
When 2 < ¢ < V2 + 1, then a; + a; = a;41,
a; +a;41 = a;41 +a; = a0, and

a; +a; = amax(i,j) for i —j| > 2.

It is worth mentioning that for every ¢, thus defined addition of granules is
commutative but not associative. Indeed, for ¢ > v/2 + 1, we have:

(ao + ao) +a; = a; + a; = as, while

ao—i—(ao—l—al):ag—l—al:al;éaz.

For ¢ < v/2+ 1, we have:

(a() + ao) + as = a; + a» = a3, while

ao+(ao+ag)=ao+32=ag7éag.

Which ¢ is the best? As a measure of quality of a given granulation, it is natural
to take the worst-case error probability, i.e., the error probability corresponding
to the worst-case pair (4, j) (i.e., to the pair with the largest E;;):

Definition 3.4. By an error probability of a granulation, we mean the value

E(q) def max E;;. The granulation with the smallest possible error probability is
Zh]

called optimal.

Theorem 3.3 [22]. The granulation is optimal when
¢’ —5¢°+4g+1=0
(i.e., when g =~ 3.9).

Conclusion. When people make crude estimates, they feel comfortable choosing
between alternatives which differ by a half-order of magnitude (e.g., were there
100, 300, or 1,000 people in the crowd), and less comfortable making a choice
on a more detailed scale (like 100 or 110 or 120) or on a coarser scale (like 100
or 1,000). We have shown that for two natural models of choosing granularity
in commonsense estimates, in the optimal granularity, the next estimate is 3-4
times larger than the previous one. Thus, we have explained the commonsense
HOM granularity.
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4 How to Make Fuzzy Logic Closer to Common Sense: 1

In expert systems, we need estimates for the degree of certainty of
S1 & S> and S; V S2. In many areas (medicine, geophysics, military decision-
making, etc.), top quality experts make good decisions, but they cannot handle
all situations. It is therefore desirable to incorporate their knowledge into a
decision-making computer system.

Experts describe their knowledge by statements Si,...,S, (e.g., by if-then
rules). Experts are often not 100% sure about these statements S;; this uncer-
tainty is described by the subjective probabilities p; (degrees of belief, etc.) which
experts assign to their statements. The conclusion C of an expert system nor-
mally depends on several statements S;. For example, if we can deduce C either
from S5 and Ss3, or from Sy, then the validity of C is equivalent to the validity
of a Boolean combination (Ss & S3) V Ss. So, to estimate the reliability p(C) of
the conclusion, we must estimate the probability of Boolean combinations. In
this section, we consider the simplest possible Boolean combinations are S & S
and Si V Ss.

In general, the probability p(S; & S2) of a Boolean combination can take
different values depending on whether S; and S2 are independent or correlated.
So, to get the precise estimates of probabilities of all possible conclusions, we
must know not only the probabilities p(S;) of individual statements, but also the
probabilities of all possible Boolean combinations. To get all such probabilities,
it is sufficient to describe 2" probabilities of the combinations E{' & ... & EZ",
wheree; € {+,—}, ET means E, and E~ means —E. The only condition on these
probabilities is that their sum should add up to 1, so we need to describe 2™ — 1
different values. A typical knowledge base may contain hundreds of statements;
in this case, the value 2™ — 1 is astronomically large. We cannot ask experts
about all 2" such combinations, so in many cases, we must estimate p(S; & Sz)
or p(S; V S2) based only on the values p; = p(S1) and ps = p(Ss).

Interval estimates are possible, but sometimes, numerical estimates
are needed. It is known that for given p; = p(S1) and pa = p(S>):

— possible values of p(S; & S2) form an interval p = [p~,pT], where p~ =
max(p; + p2 — 1,0) and pt = min(p;, p2); and

— possible values of p(S; V S2) form an interval p = [p~,p*], where p~ =
max(py,p2) and pT = min(p; + ps, 1)

(see, e.g., a survey [51] and references therein).

So, in principle, we can use such interval estimates and get an interval p(C)
of possible values of p(C). Sometimes, this idea leads to meaningful estimates,
but often, it leads to a useless p(C) = [0, 1] (see, e.g., [51, 53]). In such situations,
it is reasonable, instead of using the entire interval p, to select a point within
this interval as a reasonable estimate for p(S; & S»2) (or, correspondingly, for
p(S1V S2)).

Natural idea: selecting a midpoint as the desired estimate. Since the
only information we have, say, about the unknown probability p(S; & S2) is that
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it belongs to the interval [p~, pT], it is natural to select a midpoint of this interval
as the desired estimate. In other words, if we know the probabilities p; and ps
of the statements S; and So, then, as estimates for p(S; & S2) and p(S; V S2),
we can take the values p; & p» and p; V ps, where

f

d .
pr&ps = -min(p1,ps);

N | =

1
3 -max(p; +p2 — 1,0) +

def 1 1 .
VP = 5 - max(p1,p2) + 5 - min(py + s, 1).

This midpoint selection is not only natural from a common sense viewpoint; it
also has a deeper justification. Namely, in accordance of our above discussion,
for n = 2 statements S; and S;, to describe the probabilities of all possible
Boolean combinations, we need to describe 22 = 4 probabilities z; = p(S; & S3),
z2 = p(S1 & —153), 3 = p(—S1 & S2), and x4 = p(—S1 & —S53); these probabilities
should add up to 1: x; + 22 + 3 + x4 = 1. Thus, each probability distribution
can be represented as a point (x1,...,24) in a 3-D simplex

S = {(3&'1,1’2,.’53,.’1&'4) |.’L‘i >0&xz1+...+x34 = ].}

We know the values of p; = p(S1) = ©1 + z2 and py = p(S2) = z1 + z3, and we
are interested in the values of p(S; & S2) = x1 and p(S; V S2) = x1 + 2 + 3.
It is natural to assume that a priori, all probability distributions (i.e., all points
in a simplex S) are “equally possible”, i.e., that there is a uniform distribution
(“second-order probability”) on this set of probability distributions. Then, as
a natural estimate for the probability p(S; & S2) of S; & S2, we can take the
conditional mathematical expectation of this probability under the condition
that the values p(S1) = p1 and p(Sz) = po:

E(p(S1 & S2) |p(S1) = p1 & p(S2) = p2) =

Pz |z1 + 22 =p1 &1 + 23 = p2).

(This idea was proposed and described in [2,16]; see also [6].)

From the geometric viewpoint, the two conditions xy + x5 = p; and x; +z3 =
po select a straight line segment within the simplex S, a segment which can be
parameterized by

1 S [P77P+] = [maX(Pl +p2 - 170)5min(plap2)];

then, 2 = p1 — x1, 23 = p2 — #1, and 24 = 1 — (21 + 22 + x3). Since we start
with a uniform distribution on S, the conditional probability distribution on this
segment is uniform, i.e., z1 is uniformly distributed on the interval [p~, p*]. Thus,
the conditional mathematical expectation of z; with respect to this distribution
is equal to (p~ + p*)/2, i.e., to the midpoint of this interval. Similarly, for an
“or” operation, we can conclude that

E(p(S1V S2) |p(S1) = p1 &p(S2) = p2) =
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1 1
5 . max(pl,pQ) —+ 5 - mln(p1 +p2; 1)

Problem: midpoint operations are not associative. Any “and” operation
p1 & pa enables us to produce an estimate for P(S; & S2) provided that we know
estimates p; for p(S1) and ps for p(S2). If we are interested in estimating the
degree of belief in a conjunction of three statements Sy & Ss & S3, then we can
use the same operation twice:

— first, we apply the “and” operation to p; and p, and get an estimate p; & po
for the probability of S; & Sa;

— then, we apply the “and” operation to this estimate p; & p2 and ps3, and get
an estimate (p; & p2) & p3 for the probability of (S & S2) & Ss.

Alternatively, we can get start by combining S» and S3, and get an estimate
p1 & (p2 & p3) for the same probability p(Si & S2 & S3). Intuitively, we would
expect these two estimates to coincide: (p; & p2) & ps = p1 & (p2 & p3), i.e., in
algebraic terms, we expect the operation & to be associative. Unfortunately,
midpoint operations are not associative [6]: e.g., (0.4& 0.6) & 0.8 = 0.2& 0.8 =
0.1, while 0.4 & (0.6 & 0.8) = 0.4& 0.5 = 0.2 # 0.1.

By itself, a small non-associativity may not be so bad:

— associativity comes from the requirement that our reasoning be rational,
while

— it is well known that our actual handling of uncertainty is not exactly fol-
lowing rationality requirements; see, e.g., [59].

So, it is desirable to find out how non-associative can these operations be.

How non-associative are natural (midpoint) operations? Main results
and their psychological interpretation

We know that the midpoint operations are non-associative, i.e., that some-
times, (a&b)&c # a& (b& c). We want to know how big can the difference
(a&b)&c—a& (b&c) can be.

Theorem 4.1 [17]. max|(a&b) & c—a& (b&c)| = 1/9.

a,b,c

Theorem 4.2 [17]. max|(aVb)Vc—aV (bVc)| =1/9.

a,b,c

Human experts do not use all the numbers from the interval [0, 1] to describe
their possible degrees of belief; they use a few words like “very probable”, “mildly
probable”, etc. Each of words is a “granule” covering the entire sub-interval of
values. Since the largest possible non-associativity degree |(a & b) & c—a & (b& ¢)|
is equal to 1/9, this non-associativity is negligible if the corresponding realistic
“granular” degree of belief have granules of width > 1/9. One can fit no more
than 9 granules of such width in the interval [0, 1]. This may explain why humans
are most comfortable with < 9 items to choose from — the famous “7 plus minus
2” law; see, e.g., [37,38].

This general psychological law has also been confirmed in our specific area
of formalizing expert knowledge: namely, in [15], it was shown that this law
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explains why in intelligent control, experts normally use < 9 different degrees
(such as “small”, “medium”, etc.) to describe the value of each characteristic.

Auxiliary results: alternatives to midpoint. Instead of selecting a midpoint,
we can make a more general selection of a value in the interval p.

By a choice function, we mean a function s that maps every interval u =
[u~,u™] into a point s(u) € u so that for every ¢ and A > 0:

— s([u” +e,ut +¢) =s([u,ut]) +¢
(shift-invariance);

= s(A-um, A ut]) = A s(fum, ut))
(unit-invariance).

Proposition [44]. Every choice function has the form s(ju™,u¥]) = a-u™ +
(1—a)-ut for some a € [0,1].

The combination p = a-p~ + (1 —a)-p* (first proposed by Hurwicz [23]) has
been successfully used in areas ranging from submarine detection to petroleum
engineering [44]; in [63], this approach is applied to second-order probabilities.)

With this approach, we get the following formulas which generalize the above
definitions:

def .
p1&ps S a-max(p +ps —1,0) + (1 — a) - min(p1, p2);

def .
p1Vpe = a-max(pi,p2) + (1 — a) -min(ps + po, 1).

Theorem 4.3 [17].

_ a-(-a)

g}gm’)cd(a&b)&c—a&(b&cﬂ “3%a-(I-a).
_ a(l-a)

r;}i)cc|(avb)Vc—aV(ch)|— 2+a-(1-a)

Comment. This non-associativity degree is the smallest (= 0) when o = 0 or
a =1, and the largest (= 1/9) for midpoint operations (o = 0.5).

5 How to Make Fuzzy Logic Closer to Common Sense: 1T

Second order descriptions: the main idea. Experts are often not 100%
certain in the statements they make; therefore, in the design of knowledge-based
systems, it is desirable to take this uncertainty into consideration. Usually, this
uncertainty is described by a number from the interval [0, 1]; this number is
called subjective probability, degree of certainty, etc. (see, e.g., [58]).

One of the main problems with this approach is that we must use ezact
numbers from the interval [0,1] to represent experts’ degrees of certainty; an
expert may be able to tell whether his degree of certainty is closer to 0.9 or
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to 0.5, but it is hardly possible that an expert would be able to meaningfully
distinguish between degrees of certainty, say, 0.7 and 0.701. If you ask the expert
whether his degree of certainty about a certain statement A can be described
by a certain number d (e.g., d = 0.701), the expert will, sometimes, not be able
to give a definite answer, she will be uncertain about it. This uncertainty can
be, in its turn, described by a number from the interval [0,1]. It is, therefore,
natural to represent our degree of certainty in a statement A not by a single
(crisp) number d(A) € [0,1] (as in the [0, 1]-based description), but rather by a
function pg(ay which assigns, to each possible real number d € [0,1], a degree
Ma(a)(d) with which this number d can be the (desired) degree of certainty of
A. This is called a second-order description of uncertainty.

Third and higher order descriptions. In second-order description, to de-
scribe a degree with which a given number d € [0, 1] can be a degree of certainty
of a statement A, we use a real number fiq(4)(d). As we have already mentioned,
it is difficult to describe our degree of certainty by a single number. Therefore,
to make this description even more realistic, we can represent each degree of
certainty d(P(z)) not by a (more traditional) [0, 1]-based description, but by a
second order description. As a result, we get the third order description.

Similarly, to make our description even more realistic, we can use the third
order descriptions to describe degrees of certainty; then, we get fourth order
uncertainty, etc.

Third order descriptions are not used: why? Theoretically, we can define
third, fourth order, etc., descriptions, but in practical applications, only second
order descriptions were used so far (see, e.g., [36,39,43,51]). Based on this em-
pirical fact, it is natural to conclude that third and higher order descriptions
are not really necessary. We will show that this conclusion can be theoretically
justified.

First step in describing uncertainty: set of uncertainty-describing
words. Let us first describe the problem formally. An expert uses words from
a natural language to describe his degrees of certainty. In every language, there
are only finitely many words, so we have a finite set of words that needs to be
interpreted. We will denote this set of words by W.

Second step: a fuzzy property described by a word-valued “member-
ship function”. If we have any property P on a universe of discourse U, an
expert can describe, for each element x € U, his degree of certainty d(x) € W
that the element z has the property P.
Traditional fuzzy logic as a first approximation: numbers assigned to
words describing uncertainty. Our ultimate goal is to provide a computer
representation for each word w € W. In the traditional [0, 1]-based description,
this computer representation assigns, to every word, a real number from the
interval [0,1]; in general, we may have some other computer representations
(examples will be given later). Let us denote the set of all possible computer
representations by S.

In the first approximation, i.e., in the first order description, we represent
each word w € W, which describes a degree of uncertainty, by an element s € S
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(e.g., by a real number from the interval [0, 1]). In this section, we will denote
this first-approximation computer representation of a word w by s = ||w]].

If the set S is too small, then it may not contain enough elements to distin-
guish between different expert’s degree of belief: this was exactly the problem
with classical {0, 1}-based description, in which we only have two possible com-
puter representations — “true” and “false” — that are not enough to adequately
describe the different degrees of certainty. We will therefore assume that the set
S is rich enough to represent different degrees of certainty.

In particular, the set [0,1] contains infinitely many points, so it should be
sufficient; even if we only consider computer-representable real numbers, there
are still much more of them (millions and billions) than words in a language
(which is usually in hundreds of thousands at most), so we can safely make
this “richness” assumption. In mathematical terms, it means that two different
degrees of belief are represented by different computer terms, i.e., that if wy #
w2, then [lwy]] # [lwel].

First approximation is not absolutely adequate. The problem with the
first-order representation is that the relation between words w € W and com-
puter representation s € S is, in reality, also imprecise. Typically, when we have
a word w € W, we cannot pick a single corresponding representative s € S;
instead, we may have several possible representatives, with different degrees of
adequacy.

Actual description of expert uncertainty: word-valued degree to which
a word describes uncertainty. In other words, instead of a single value s =
||w]| assigned to a word w, we have several values s € S, each with its own degree
of adequacy; this degree of adequacy can also be described by an expert, who
uses an appropriate word w € W from the natural language.

In other words, for every word w € W and for ever representation s € S, we
have a degree w' € W describing to what extent s is adequate in representing
w. Let us represent this degree of adequacy by a(w, s); the symbol a represents
a function a : W x S — W, i.e., a function that maps every pair (w,s) into a
new word a(w, s).

Second-order description of uncertainty as a second approximation to
actual uncertainty. So, the meaning of a word w € W is represented by a
function a which assigns, to every element s € S, a degree of adequacy a(w, s) €
W. We want to represent this degree of adequacy in a computer; therefore,
instead of using the word a(w, s) itself, we will use the computer representation
[la(w, s)|| of this word. Hence, we get a second-order representation, in which a
degree of certainty corresponding to a word w € W is represented not by a single
element ||w|| € S, but by a function p, : S = S, a function which is defined as
pw(s) = [la(w, s)|-

Second-order description is not 100% adequate either; third-, fourth-
order descriptions, etc. The second-order representation is also not absolutely
adequate, because, to represent the degree a(w,s), we used a single number
[|a(w, s)||- To get a more adequate representation, instead of this single value,
we can use, for each element s’ € S, a degree of adequacy with which the
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element s' represents the word a(w, s). This degree of adequacy is also a word
a(a(w, s),s"), so we can represent it by an appropriate element ||a(a(w, s), s")]|.
Thus, we get a third-order representation, in which to every element s, we assign
a second-order representation. To get an even more adequate representation, we
can use fourth- and higher order representations.

Let us express this scheme formally.

Definition 5.1.

— Let W be a finite set; element of this set will be called words.

— Let U be a set called a universe of discourse. By a fuzzy property P, we
mean a mapping which maps each element x € U into a word P(x) € W;
we say that this word described the degree of certainty that x satisfies the
property P.

— By a first-approximation uncertainty representation, we mean a pair {S, ||.||},

where:
e S is a set; elements of this set will be called computer representations;
and
o ||.|| is a function from W to S; we say that an element ||w|| € S represents
the word w.

— We say that an uncertainty representation is sufficiently rich if for every two
words wy,we € W, wy # wy implies ||wi]|| # ||w2]|-

Definition 5.2. Let W be a set of words, and let S be a set of computer
representations. By an adequacy function, we mean a function a : W x S — W;
for each word w € W, and for each representation s € S, we say that a(w, s)
describes the degree to which the element s adequately describes the word w.

Definition 5.3. Let U be a universe of discourse, and let S be a set of computer
representations. For eachn = 1,2, ..., we define the notions of n-th order degree
of certainty and of a n-th order fuzzy set, by the following induction over n:

— By a first-order degree of certainty, we mean an element s € S (i.e., the set
Sy of all first-order degrees of certainty is exactly S).

— For every n, by a n-th order fuzzy set, we mean a function y : U — S,
from the universe of discourse U to the set S, of all n-th order degrees of
certainty.

— For every n > 1, by a n-th order degree of certainty, we mean a function s,
which maps every value s € S into an (n — 1)-th order degree of certainty
(i.e., a function s, : S — S, _1).

Definition 5.4. Let W be a set of words, let (S, ||.||) be an uncertainty represen-
tation, and let a be an adequacy function. For every n > 1, and for every word
w € W, we define the n-th order degree of uncertainty ||w||q,n, € Sn corresponding
to the word w as follows:

— As a first order degree of uncertainty ||w||q1 corresponding to the word w,
we simply take ||wl|q,1 = |Jw]|-
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— If we have already defined degrees of orders 1,...,n — 1, then, as an n-th
order degree of uncertainty ||w||q,n € Sn corresponding to the word w, we
take a function s, which maps every value s € S into a (n — 1)-th order
degree ||a(w, $)||a,n—1-

Definition 5.5. Let W be a set of words, let (S, ||.||) be an uncertainty repre-
sentation, let a be an adequacy function, and let P be a fuzzy property on a
universe of discourse P. Then, by a n-th order fuzzy set (or a n-th order member-
ship function) ugfl)l(x) corresponding to P, we mean a function which maps every
value x € U into an n-th order degree of certainty ||P(x)||q,n Which corresponds
to the word P(z) € W.

We will prove that for properties which are non-degenerate in some reasonable
sense, it is sufficient to know the first and second order membership functions,
and then the others can be uniquely reconstructed. Moreover, if we know the
membership functions of first two orders for a non-degenerate class of fuzzy
properties, then we will be able to reconstruct the higher order membership
functions for all fuzzy properties from this class.

Definition 5.6.

— We say that a fuzzy property P on a universe of discourse U is non-degenerate
if for every w € W, there exists an element x € U for which P(z) = w.

— We say that a class P of fuzzy properties P on a universe of discourse U is
non-degenerate if for every w € W, there exists a property P € P and an
element © € U for which P(z) = w.

Comment. For example, if W # {0, 1}, then every crisp property, i.e., every prop-
erty for which P(z) € {0,1} for all z, is not non-degenerate (i.e., degenerate).

Theorem 5.1 [26,46]. Let W be a set of words, let (S,||.]|) be a sufficiently
rich uncertainty representation, let U be a universe of discourse. Let P and P’
be fuzzy properties, so that P is non-degenerate, and let a and a' be adequacy
functions. Then, from u%)a = ,ug,l,{a, and ug)a = ,ug,),a,, we can conclude that
ug’% = pgf),a, for all n.

Comments.

— In other words, under reasonable assumptions, for each property, the in-
formation contained in the first and second order fuzzy sets is sufficient to
reconstruct all higher order fuzzy sets as well; therefore, in a computer rep-
resentation, it is sufficient to keep only first and second order fuzzy sets.

— This result is somewhat similar to the well-known result that a Gaussian
distribution can be uniquely determined by its moments of first and second
orders, and all higher order moments can be uniquely reconstructed from
the moments of the first two orders.

— It is possible to show that the non-degeneracy condition is needed, because
if a property P is not non-degenerate, then there exist adequacy functions
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a # da' for which pg,)a = ,uggl’)a, and ug)a = ug)a,, but ug)a # ug)a, already for
n=3.

Theorem 5.2 [26]. Let W be a set of words, let (S, ||.||) be a sufficiently rich
uncertainty representation, let U be a universe of discourse. Let P and P' be
classes of fuzzy properties, so that the class P is non-degenerate, and let ¢ :
P — P! be a 1-1-transformation, and let a and a' be adequacy functions. Then,

if for every P € P, we have /‘531,)(1 = ;LS()P) o ond ug)a = Hf()p) o> We can conclude

that pg’bl)l = pgz;),a, for all n.

Comment. So, even if we do not know the adequacy function (and we do not know
the corresponding fuzzy properties P € P), we can still uniquely reconstruct
fuzzy sets of all orders which correspond to all fuzzy properties P.

6 How to Make Fuzzy Logic Closer to Common Sense: 111

Why only unary and binary operations? Traditionally, in logic, only unary
and binary operations are used as basic ones — e.g., “not”, “and”, “or” — while
the only ternary (and higher order) operations are the operations which come
from a combination of unary and binary ones.

A natural question is: are such combinations sufficient? I.e., to be more pre-
cise, can an arbitrary logical operation be represented as a combination of unary
and binary ones?

For the classical logic, with the binary set of truth values V' = {0,1}
(={false, true}), the positive answer to this question is well known. Indeed, it is
known that an arbitrary logical operation f: V™ — V can be represented, e.g.,
in DNF form and thus, it can indeed be represented as a combination of unary
(“not”) and binary (“and” and “or”) operations.

We are interested in explaining why unary and binary logical operations are
the only basic ones. If we assume that the logic of human reasoning is the two-
valued (classical) logic, then the possibility to transform every logical function
into a DNF form explains this empirical fact.

However, classical logic is not a perfect description of human reasoning: for
example, it does not take into consideration fuzziness and uncertainty of human
reasoning. This uncertainty is taken into consideration in fuzzy logic [24,52,
65]. In the traditional fuzzy logic, the set of truth values is the entire interval
V' = [0,1]. This interval has a natural notion of continuity, so it is natural to
restrict ourselves to continuous unary and binary operations.

With this restriction in place, a natural question is: can an arbitrary contin-
uous function f : [0,1]" — [0,1] be represented as a composition of continuous
unary and binary operations? The positive answer to this question was obtained
in our papers [45,49].

In [0,1]-based fuzzy logic, an arbitrary logical operation can be represented
as a composition of unary and binary ones. However, the [0, 1]-based fuzzy logic
is, by itself, only an approximation to the actual human reasoning about uncer-
tainty.
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Indeed, how can we describe the expert’s degree of confidence d(S) in a
certain statement S7 A natural way to determine this degree is, e.g., to ask an
expert to estimate his degree of confidence on a scale from 0 to 10. If he selects
8, then we take d(S) = 8/10.

To get a more accurate result, we can then ask the same expert to estimate
his degree of confidence on a finer scale, e.g., from 0 to 100, etc. For example, if
an expert selects 81, we will take d(S) = 81/100 = 0.81. If we want an even more
accurate estimate, we can ask the expert to estimate his degree of confidence on
an even finer scale, etc.

The problem with this approach is that experts cannot describe their degrees
of too fine scales. For example, an expert can point to 8 on a scale from 0 to 10,
but this same expert will hardly be able to pinpoint a value on a scale from 0
to 100.

So, to attain a more adequate description of human reasoning, we must mod-
ify the traditional [0, 1]-based fuzzy logic. Two types of modifications have been
proposed.

One possibility is to take the finest (finite) scale which an expert can still
use, and take the values on this scale as the desired degrees of confidence. This
approach leads to a finite-valued fuzzy logic, in which the set of truth values V
is finite.

This approach has been successfully used in practice; see, e.g., [1,15,46, 55].
It is therefore desirable to check whether in a finite logic, every operation can
be represented as a composition of unary and binary operations.

The problem with finite-valued logics is that the set V of resulting truth
values depends on which scale we use.

Instead of fixing a finite set, we can describe the expert’s degree of confidence
by an interval from [0,1]. For example, if an expert estimates his degree of
confidence by a value 8 on a 0 to 10 scale, then the only thing that we know
about the expert’s degree of confidence is that it is closer to 0.8 (8/10) than to
0.7 or to 0.9, i.e., that it belongs to the interval [0.75,0.85].

So, a natural way of describing degrees of confidence more adequately is to
use intervals a = [a~,a™] instead of real numbers. In this representation, real
numbers can be viewed as particular — degenerate — cases of intervals [a,a].
The idea of using intervals have been originally proposed by Zadeh himself and
further developed by Bandler and Kohout [3], Tiirkgen [61], and others; for a
recent survey, see, e.g., [51].

In interval-valued fuzzy approach, to describe each degree of confidence, we
must describe two real numbers: the lower endpoint and the upper endpoint of
the corresponding “confidence interval”.

We can go one step further and take into consideration that the endpoints
of the corresponding interval are also not precisely known. Thus, each of these
endpoints is, in actuality, an interval itself. So, to describe a degree of confidence,
we now need four real numbers: two to describe the lower endpoint, and two to
describe the upper one.
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In general, we get a multi-D fuzzy logic. A natural question is: can every
(continuous) operation on a multi-D fuzzy logic be represented as a composition
of (continuous) unary and and binary operations?

Uncertainty of expert estimates is only one reason why we may want to go
beyond the traditional [0, 1]-valued logic; there are also other reasons:

— A 1-D value is a reasonable way of describing the uncertainty of a single
expert. However, the confidence strongly depends on the consensus between
different experts. We may want to use additional dimensions to describe
how many expert share the original expert’s opinion, and to what degree;
see, e.g., [30, 50].

— Different experts may strongly disagree. To describe the degree of this dis-
agreement, we also need additional numerical characteristics, which make
the resulting logic multi-D; see, e.g., [48].

In all these cases, we need a multi-D logic to adequately describe expert’s degree
of confidence.

In this section, we show that both for finite-valued logics and for multi-D
logics, every logical operation can be represented as a composition of unary and
binary operations. Thus, we give a general explanation for the above empirical
fact.

Theorem 6.1 [27]. For every finite set V, and for every positive integer n, every
n-ary operation f : V™ — V can be represented as a composition of unary and
binary operations.

Theorem 6.2 [27]. For every multi-D set of truth values V', and for every posi-
tive integer n, every continuous n-ary operation f : V™ — V can be represented
as a composition of continuous unary and binary operations.

This result is based on the following known result:

Theorem (Kolmogorov). Every continuous function of three or more variables
can be represented as a composition of continuous functions of one or two vari-
ables.

This result was proven by A. Kolmogorov [25] as a solution to the conjecture
of Hilbert, formulated as the thirteenth problem [20]: one of 22 problems that
Hilbert has proposed in 1900 as a challenge to the 20 century mathematics.

This problem can be traced to the Babylonians, who found (see, e.g., [10])
that the solutions z of quadratic equations az? + bx + ¢ = 0 (viewed as function
of three variables a, b, and ¢) can be represented as superpositions of functions
of one and two variables, namely, arithmetic operations and square roots. Much
later, similar results were obtained for functions of five variables a, b, ¢, d, e,
that represent the solution of quartic equations az?* + bz® + c2? + dx +e = 0.
But then, Galois proved in 1830 that for higher order equations, we cannot have
such a representation. This negative result has caused Hilbert to conjecture that
not all functions of several variables can be represented by functions of two or
fewer variables. Hilbert’s conjecture was refuted by Kolmogorov (see, e.g., [33],
Chapter 11) and his student V. Arnold.
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It is worth mentioning that Kolmogorov’s result is not only of theoretical
value: it was used to speed up actual computations (see, e.g., [14,18, 28,29, 40,
41)).

It turns out that one can generalize Kolmogorov’s theorem and prove that a
similar representation holds for multi-D logics as well.

Let m be a positive integer, and let V' be a closure of a simply connected
bounded open set in R™ (e.g., of a convex set). Such a set V' will be called a
multi-D set of truth values. For example, for interval-valued fuzzy sets,

V={(b0<a<b<1}.

Conclusion. Traditionally, in logic, only unary and binary operations are used
as basic ones. In traditional (2-valued) logic, the use of only unary and binary
operations is justified by the known possibility to represent an arbitrary n-ary
logical operation as a composition of unary and binary ones. A similar represen-
tation result is true for the [0, 1]-based fuzzy logic. However, the [0, 1]-based fuzzy
logic is only an approximation to the actual human reasoning about uncertainty.
A more accurate description of human reasoning requires that we take into con-
sideration the uncertainty with which we know the values from the interval [0, 1].
This additional uncertainty leads to two modifications of the [0, 1]-based fuzzy
logic: finite-valued logic and multi-D logic.

We show that for both modifications, an arbitrary n-ary logical operation
can be represented as a composition of unary and binary ones. Thus, the above
justification for using only unary and binary logical operation as basic ones is
still valid if we take interval uncertainty into consideration.
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