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Abstract

Neural networks are a very efficient learning tool, e.g.,
for transforming an experience of an expert human con-
troller into the design of an automatic controller. It
is desirable to reformulate the neural network expres-
sion for the input-output function in terms most under-
standable to an expert controller, i.e., by using words
from natural language. There are several methodolo-
gies for transforming such natural-language knowledge
into a precise form; since these methodologies have to
take into consideration the uncertainty (fuzziness) of
natural language, they are usually called fuzzy logics.

1 Introduction: It Is Important to Be Able to
Reformulate the Neural Network Input-Output
Expression in Terms Understandable to a
Human Controller

Neural networks are a very efficient learning tool
which can input a sequence of input-output patterns
(z®) y(*)) and return a neural network which produces
the desired output y*) for each input z(¥). The result-
ing neural network provides us with the output f(z)
for every possible input, not just for the inputs z(¥) for
which we already know the answer.

In particular, we can use a neural network to transform
an experience of an expert human controller into the
design of an automatic controller: namely, we record
what control values y(*) the expert controller applied
for different inputs z(*), and then we train a neural
network so that it will be able to generate the same
outputs as the expert for all given inputs.

From the mathematical viewpoint, a neural network is
a tool which extends (interpolates and extrapolates) the
(unknown) input-output function f(z) from its known
values f(z(¥)) = y(¥). There are many possible exten-

sions of a function from finitely many points, so, before
we use the neural network for actual control, we would
like to check with an expert whether this particular
extension is consistent with his/her expertise. A natu-
ral way to check this neural network is to apply it to
some input z different from z(*) and to ask the expert
whether the resulting control value f(z) is reasonable.
If it is not reasonable, we ask the expert what a reason-
able control is, and re-train the network so that it will
produce a reasonable control value for this new input
as well. If for this input, the control value provided by
a neural network is reasonable, then we test this neural
network on other inputs.

In this checking, although we know the exact form of
the corresponding input-output function f(z), we still
treat the neural network as a “black box”, because the
expert cannot easily understand the meaning of this
function. It would be nice if, in addition to asking
the expert to test specific outputs, we could also ask
him/her to test the entire expression for f(z). For this
to be possible, we must reformulate the neural network
expression for f(z) in terms understandable to an ex-
pert controller.

The most natural way of representing a knowledge
in a way understandable to a human is to represent
this knowledge by using words from natural language.
There are several methodologies for transforming such
natural-language knowledge into a precise form; since
these methodologies have to take into consideration the
uncertainty (fuzziness) of natural language, they are
usually called fuzzy logics. So, our problem is to refor-
mulate the description of a neural network in terms of
fuzzy logic.

Such a description is also very important to better
understand efficient neuro-fuzzy systems such as the
Adaptive Network-Based Fuzzy Inference System AN-
FIS (see, e.g., [9]). This system has a lot of very suc-
cessful applications (see, e.g., [6, 7, 21, 25, 26]), and



to better understand these successes, it is desirable to
understand the neural part of it in commonsense terms.

In this paper, we propose a new interpretation of neural
networks in fuzzy logical terms.

2 Existing Representations and Why They Are
Not Sufficient

A most widely used neural network uses the following
input-output relation:

y=Wi-yp1+...+ Wk -yx + W,
where
Yk = So(Wk1 - 1 + ... + Whn - T +wro) (1 <k <n),

and s9(z) = (1 + exp(—2))~!. In mathematical terms,
the resulting function is a composition of linear func-
tions and a non-linear function sg(z). It is known that
linear functions (and, more generally, piece-wise linear
functions) can be naturally interpreted in fuzzy logic;
see, e.g., [23]. Since an arbitrary continuous function
(including the function sg(z)) can be approximated,
with any given accuracy, by piece-wise linear functions,
A. Di Nola et al. [4, 5] proposed to approximate the
neural network input-output function f(z) by functions
with can be interpreted in terms of fuzzy logic.

Alternatively, we can use the fact — known from fuzzy
control — that functions represented in fuzzy logic
terms are universal approximations for arbitrary con-
tinuous functions (see, e.g., a survey [13] and references
therein). By using any of the corresponding approx-
imation schemes, we can also approximate the neural
network input-output function f(z) by functions with
can be interpreted in terms of fuzzy logic.

This suggestion is good but not perfect. Indeed, the
more accurate we want the approximation to be, the
more linear pieces we need, and thus, the more com-
plex the resulting fuzzy-logic interpretation. As a re-
sult, when the accuracy increases, the fuzzy-logic repre-
sentation becomes so complex that it cannot be easily
understood by an expert anyway and is, thus, not per-
forming the task for which it was originally designed.

To overcome this difficulty, we must avoid approxima-
tion and try to represent the activation function so(2)
itself in logical terms. Such a representation is not eas-
ily possible within the standard approaches to fuzzy
logic — we know all the functions which naturally ap-
pear within these approaches and none of them leads to
s0(%). We therefore need a further theoretical research
in developing appropriate generalizations of fuzzy logic.

In this paper, we develop such a generalization.

3 First Step: Natural Description of Degrees
of Belief

We will now proceed to describing our interpretation
step-by-step. On each step, we start with motivations,
and then we transform this informal (commonsense)
motivation into exact formulas.

The first thing we need to describe is the set of all pos-
sible degrees of belief in different statements. About
some statements S, we know nothing. In other words,
we posses no knowledge that would confirm or refute
the corresponding statement S. What is a natural de-
gree of uncertainty describing this situation of complete
uncertainty, i.e., of “zero” knowledge? The very word
“zero” (indicating the absence of knowledge) leads to
the following natural choice: to describe the absence of
knowledge by the value 0.

Situations when we know nothing are rare. In most sit-
uations, we have some information about the statement
S whose degree of belief we are estimating. Some pieces
of this information confirm S —i.e., serve as arguments
in favor of S; other pieces of information may refute S —
i.e., serve as arguments against S. How can we describe
the corresponding degrees of belief?

These degrees of belief are the easiest to describe in the
simplest situation when we only consider arguments in
favor of S, and all possible arguments carry the same
“weight”. In this case, the natural way to describe the
corresponding degree of belief is by simply counting the
number of arguments that we have. In other words, if
we describe the degree of belief corresponding to the
single argument by a number dy > 0, then the degree
of belief corresponding to two arguments is naturally
described by the value 2dy, the degree of belief corre-
sponding to the presence of 10 arguments is naturally
described by the value 10dy, etc. In principle, we can
have arbitrarily many arguments, so for every positive
integer n, the value n - dy can be a degree of belief.
Thus, degrees of belief can be arbitrarily large.

In the above discussion, we considered the simpli-
fied case when all possible arguments have the same
“weights”. In reality, different arguments in favor of
S may differ in strength. For every argument that
somewhat confirms S, we can easily imaging another
argument in favor of S which is much weaker than the
original one. So, for each value dy > 0 that can be
a possible degree of belief, there is a smaller positive
number d; < dg which can also serve as a possible de-
gree of belief. We can always imagine an argument so
weak that not only it is weaker than the argument cor-
responding to dp, but even two argument of this type,
when taken together, are still weaker than the argument
corresponding to dy. Since the two argument taken to-
gether are described by the value 2d;, we conclude that



2d; > dy, i.e., that d; < d0/2

Similarly, for di > 0, there exists a possible degree of
belief da < d;1/2, etc. So, we get a decreasing sequence
of positive degrees of belief for which dj < dj_1/2 and
hence, d, < 27% - dy. In other words, we have a de-
creasing sequence of positive real numbers that tends
to 0.

For each strength level dg, and for each positive inte-
ger n, we can have n arguments of this strength dy.
Thus, for each of these degrees of belief dj, and for ev-
ery integer n, the value n - dj, also serves as a possible
degree of belief. Hence, we arrive at the following situ-
ation: we have a decreasing sequence of positive num-
bers dy > di > ... > dy > ..., dy > 0, that tends to
0 (dr, — 0), and we know that for every positive inte-
ger n, the value n - dy belongs to the set D of possible
degrees of belief. The following simple result is true:

Proposition 1. Let di be a decreasing sequence of
positive real numbers that tends to 0, and let D be a
set that contains all the values n - dy, for every positive
integer n and for every k. Then, D is everywhere dense
in the set of all positive real numbers, i.e., for every
positive real number r € R and for every € > 0, there
exists a value d € D for which |d —r| <e.

From the practical viewpoint, we can interpret this
proposition as stating that every positive real number
can serve as a degree of belief. Indeed, from the practi-
cal viewpoint, we cannot describe a real number exactly,
and we can probably only approximately describe de-
grees of belief. Whatever positive real number we pick,
when we represent this real number in the computer,
we do it with a certain accuracy € > 0. This possi-
ble representation error £ can be very small, but it is
always positive. It mean that when we have a value
7 inside the computer, the actual real number repre-
sented by this value can be any value from the interval
[ —e,7 + €]. According to Proposition 1, no matter
how small ¢ is, within this interval, there always exists
a possible degree of belief. So, no matter how accu-
rately we represent a real number, it is always possible
that the corresponding computer-represented number
represents a possible degree of belief. In other words,
from the practical viewpoint, whatever real number we
represent in the computer, this number is a possible
degree of belief.

In view of this practical fact, there is no practical rea-
son to distinguish between the set of all positive real
numbers and the set of all possible positive degrees of
belief. Thus, we can simply assume that every positive
real number is a positive degree of belief.

Similarly, if we have an argument which has the same
“weight” but which is against S, then it is natural to
describe the degree of belief corresponding to such a

negative argument by the corresponding negative num-
ber —dy. Thus, every negative real number is also a
possible degree of belief.

We already know that 0 is a possible degree of belief — it
corresponds to the absence of knowledge. Thus, every
real number — no matter whether it is positive, negative,
or equal to 0 — can be viewed as a possible degree of
belief. So, we arrive at the following definition:

Definition 1. By a degree of belief, we mean a real
number.

4 Second Step: The Corresponding ” Or”
Operation

Suppose that we have two statements A and B, we
know the degrees of belief a and b assigned to these
statements, and these degrees of belief are the only in-
formation that we have about A and B. In this situa-
tion, what is the natural degree of belief in disjunction
AV B? Since the only information we have about the
expert’s belief in A and B are the two numbers a and
b, these two numbers are the only information that we
can use to compute the “natural” degree of belief in
AV B. Thus, this degree of belief should be a function
of a and b. This function is called an “or”-operation.
An “or”-operation is usually denoted by fy(a,b), or,
when there is no risk of confusion, simply by a V b.

What is the natural choice of an “or”-operation? To
answer this question, let us again start with the sim-
plest case when all arguments are in favor of S and all
arguments have the same strength dy. In this case, the
fact that a = n-dy and b = m - dy means that there are
n arguments in favor of A and m arguments in favor of
B. To describe a Vb, we must count arguments in favor
of AV B. Every argument is favor of A or in favor of
B is the argument in favor of AV B.

In principle, there exist infinitely many potential argu-
ments, so in general, it is hardly probable that when
we pick n arguments out of infinitely many and then
m out of infinitely many, the corresponding sets will
have a common element. Thus, when we have other
information about A and B, it is reasonable to as-
sume that every argument in favor of A is different
from every argument in favor of B. Under this as-
sumption, the total number of arguments in favor of
A and arguments in favor of B is equal to n + m.
Hence, the natural degree of belief in A V B is equal
to(n+m)-dy=n-dy+m-dg=a+b.

Thus, when the values a and b are commeasurable, i.e.,
can be represented as n-dy and m - dy for some integers
n and m, then a Vb = a + b. Since within any given
accuracy € > 0, every two real numbers can be approx-



imated by two commeasurable ones (e.g., by rational
ones), we can therefore conclude that a + b is a natural
“or” operation for arbitrary real numbers.

Definition 2. By an “or”-operation, we mean aV b =
a+b.

This conclusion is in good accordance with the known
results about “or”-operations: under certain reasonable
conditions (so-called “strict Archmedean”) every “or”-
operation is indeed isomorphic to a + b (see, e.g., [11,
22]), and under more general conditions, every “or” can
be approximated — within any given accuracy — by an
operation which is isomorphic to a + b; see, e.g., [20].

It is worth mentioning that while in fuzzy logic, we
normally only use non-negative degrees of belief, in the
first expert systems such as MYCIN [2, 24], negative
values were used as well, so our use of negative values
follows a natural idea.

5 Third Step: The “And” Operation

When describing the “or”-operation, we implicitly as-
sumed that all the statements come from reliable ex-
perts. In reality, different experts are reliable to differ-
ent degrees.

In general, we believe in a statement made by an expert
if we believe this expert and the expert believes in this
statement. To formalize this idea, we must select an
“and”-operation, i.e., a function & which, given degrees
of belief @ and b in two statements A and B, generates a
(reasonable) degree of belief a & b in the conjunction “A
and B”. In terms of this operation, our degree of belief
in a statement A made by an expert is equal to w & a,
where w is our degree of belief in this expert, and a is
the expert’s degree of belief in the statement A. What
are the natural properties of the “and”-operation?

First, since A & B means the same as B& A, it is rea-
sonable to require that the corresponding degrees a & b
and b & a should coincide, i.e., that the “and”-operation
be commutative.

Second, when an expert makes two statements B and
C, then our resulting degree of belief in BV C' can be
computed in two different ways:

e We can first compute his degree of belief b V ¢
in BV C, and then us the “and”-operation to
generate our degree of belief w & (bV ¢).

e We can also first generate our degrees w & b and
w & ¢, and then use an “or”-operation to combine
these degrees, arriving at (w&b) V (w & ¢).

It is natural to require that both ways lead to the same
degree of belief, i.e., that the “and”-operation be dis-
tributive with respect to V.

Third, if we have reasons to believe in the expert (i.e.,
if our degree of belief w in this expert is non-negative),
then the more the expert beliefs in a certain statement,
the more reasons we have to believe in it. In other
words, if w > 0 and b < ¢, then w& b < w& ¢, and if
w>0andb < ¢, thenw & b < w & c. It can also happen
that an expert is consistently wrong (i.e., w < 0). In
this case, it is reasonable to require that if b < ¢, then
w&b > w&ec. As a result, we arrive at the following
definition:

Definition 3. A function & : R x R — R is called an
“and”-operation if it satisfies the following three prop-
erties:

e it is commutative, i.e., a&b=b&a;

o it is distributive, i.e., a& (bVc) = (a & b)V(a & ¢);
and

e it is monotonic, i.e.:

e ifa>0andb<c, thena&b<akc;
e ifa>0andb<c, thena&b<a&c; and
o ifa<0andb<c, thena&b>ak&e.

Proposition 2. Every “and”-operation has the form
a&b=C-a-b for some C > 0.

This expression can be further simplified. Indeed, let us
introduce a new scale of degrees of belief a’ = C'-a, and
let us see what the operations look like in the new scale.
The value o’ &' b' is equal to C- (a & b), wherea = a'/C
and b = V'/C are the values on the old scale which
correspond to a’ and b'. We know that a& b= C-a-b,
hence

d&'Y =C-(C-d/C)-¥/C)=d V.

Similarly, we can show that in the new scale, a’ V' b’ =
a +b.

Thus, without losing generality, we will assume that
aVb=a+banda&b=a-b.

6 Fourth Step: Crisp Truth Value

We know that “true” and “true” is “true”, and that
“false” and “false” is “false”. Thus, we arrive at the
following definition:

Definition 4. A positive degree of belief eq is called a
crisp value if eg & eg = €g.

Proposition 3. ¢g = 1.



7 Fifth Step: Implication Operation

From the commonsense viewpoint, an implication A —
B is a statement C' such that if we add C' to B, we get
A. This understanding leads to the following natural
definition of an implication operation a — b:

Definition 5. A function —-: R x R — R is called
an implication operation if for all a and b, we have
(a—>b)&a=h.

Clearly, if @ = 0 and b # 0, the value a — b is not
defined; if a = 0 and b = 0, then any real number can
be equal to a — b. When a # 0, this definition uniquely
defines the implication operation:

Proposition 4. When a # 0, we have a — b = b/a.

8 Final Step: Negation Operations

The negation operation must satisfy the following nat-
ural requirements:

o first, that the negation of AV B mean the same
as “not A” and “not B”, and

e second, that if we believe in B more than in A,
then we should believe more in “not A” than in
“not B”:

Definition 6. A function - : R — R is called a nega-
tion operation if it satisfies the following two properties:

e de Morgan property: for every a and b, ~(aVb) =
(—a) & (—b); and
e monotonicity: if a < b, then —a > —b.
Proposition 5. Every negation operation has the form

—(a) = exp(—k - a) for some k > 0.

In addition to such negation operations, we already had
a natural negation operator:

Definition 7. —2(a) = —a.

The third negation operator comes from the fact that
negation —A can be viewed as a particular case of im-
plication, A — F', for a crisp (specifically, false) value
F'. Thus, we have the third negation:

Definition 8. —3(a) = a — eo.
In other words, —3(a) = 1/a.

It is worth mentioning that in many logics, several nega-
tion operations naturally appear. For example:

e weak and strong negations are used in intuition-
istic logic; see, e.g., [3, 10];

e classical negation and negation as failure are
used as two different negation operations in
logic-programming based knowledge representa-
tion formalisms (see, e.g., [29]), and

e several implications (hence several negations) are
present in linear logic [8, 28].

The last two examples are not surprising since there
is a natural relationship between fuzzy logic and logic
programming [12, 19, 15, 17, 18, 27] and between fuzzy
and linear logics [14, 16).

9 Resulting Logical Interpretation of Neural
Networks

In many applications of expert systems, it is necessary
to be cautious. In this case, if we are not sure about
some statement A, then, instead of using the original
degree of belief a that A is true, we would rather use the
degree of belief in a somewhat stronger statement “it
is impossible that A is not true”. How can we estimate
this new degree of belief?

By definition of a negation operation, the degree of be-
lief that A is not true is equal to —a. The very fact that
we are cautious means that we have some prior reasons
to suspect that A is not true. A natural way to describe
the degree corresponding to these prior reasons is to use
the crisp value eg. If we combine the current degree of
belief and this prior knowledge, we conclude that the
combined degree of belief in A is equal to —a V eq.

The above “strong negation” means, crudely speaking,
that instead of counting arguments that A is possible,
we prefer to count arguments that —A is impossible, i.e.,
that —=A implies a contradiction. The corresponding
degree of belief corresponds to the implication-based
negation, so we get (maVeg) — eg. One can easily check
that this is the standard activation function s¢(a) =
1/(1 + exp(—k - a)).

Since the linear combination
wi1-Y1+ ...+ WK YK
is now interpreted in purely logical form, as
(wi &y1) V...V (wk &yk),

we thus have a natural purely logical interpretation of
neural networks.

This interpretation is a disjunction of conjunctions, so
it is similar to well-known CNF and DNF forms of a
propositional expression.



10 Proofs: Main Ideas

Proof of Proposition 2. For every a, the function
£.0) € a&b is additive fau(b) + falc) = fa(b + c).
Since it is also monotonic, we conclude (see, e.g., [1])
that this function is linear, i.e., a & b = f,(b) = C(a)-b.
Commutativity implies that C(a) - b = C(b) - a for all
a and b, hence, for b = 1, C(a) -1 = C(1) - a, and
a&b = C(a)-b = C-a-b From monotonicity, we
conclude that C' > 0.

Proof of Proposition 5. De Morgan condition leads
to the functional equation —(a + b) = —(a) - ~(b). All
monotonic solutions to this equations are known; see,

e.g., [1].
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