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Abstract

Some knowledge comes in probabilistic terms, some in
fuzzy terms. These formalisms are drastically different,
so it is difficult to combine the corresponding knowl-
edge. A natural way to combine fuzzy and probabilis-
tic knowledge is to find a formalism which enables us
to express both types of knowledge, and then to use a
combination rule from this general formalism. In this
paper, as such a formalism, we propose to use belief
functions. For the case when the universe of discourse
is the set of all real numbers, we derive new explicit
easy-to-compute analytical formulas for the resulting
combination.

1 Introduction

Some knowledge comes in probabilistic terms, some in
fuzzy terms. These formalisms are drastically different,
so it is difficult to combine the corresponding knowl-
edge. A natural way to combine fuzzy and probabilis-
tic knowledge is to find a formalism which enables us
to express both types of knowledge, and then to use a
combination rule from this general formalism.

In this paper, as such a formalism, we propose to use
belief functions. For the case when the universe of dis-
course is the set of all real numbers, we derive new
explicit easy-to-compute analytical formulas for the re-
sulting combination.

It is well known that belief functions are a natural gen-
eralization of probability distributions and hence, every
probability distribution can be naturally represented as
a particular case of a belief function.

For fuzzy information, there seems to be no natural im-
mediate translation into belief functions. However, the
following two-step natural representation is possible:

e First, a fuzzy information about a real number,
i.e., a membership function p(z) (“fuzzy num-

ber”) with a maximum at some zq, can be natu-
rally represented as a “p-bound” [F~(z), F*(z)],
i.e.,, as a bound on the cumulative distribution
function F(x):

e FF~(z) =0 for z < zg, 1 — pu(x) otherwise.

o Ft(z) = u(z) for z < mg, 1 otherwise;

In the paper, we explain why this translation is
indeed natural.

e Second, since a belief function naturally leads, for
each z, to lower and upper bounds F~(z) and
F*(z) for the probability F(z) of (—oo, ), we can
invert this representation and represent each p-
bound (including a p-bound coming from a fuzzy
number) as a belief function.

Now that we know how to represent both types of
knowledge in terms of belief functions, we must use a
belief combination rule to combine these two types of
knowledge. There are several different ways of combin-
ing belief functions. They are all based on the origi-
nal Dempster-Shafer combination rule, the difference is
how they treat inconsistent pairs of focal elements (i.e.,
focal elements with empty intersection). In the original
rule, such pairs are ignored, and the corresponding mass
is proportionally distributed between consistent pairs;
in Zadeh’s version, this mass is added to the entire uni-
verse of discourse (meaning complete uncertainty). It
turns out that for our specific application, only the orig-
inal combination rule leads to non-degenerate results.

Explicit formulas are derived for these results. It is in-
teresting to mention that even for the case when we
combine two probability distributions, we get a non-
trivial combination formula. In general, for combin-
ing p-bounds, the width F*(z) — F~(z) of the result-
ing combination is proportional to the product of the
widths, i.e., this combination decreases the uncertainty
(as it should).



2 p-Bounds from expert estimates: case of
natural-language estimates

Words from natural language are not precise (“fuzzy”).
Let us take the word “small” as an example. When the
value of, say, concentration, is really small, everyone
would 100% agree that this value is small indeed. When
the value is really large, everyone would agree that this
value is not small. For intermediate values, however,
we bound to have a disagreement.

The need to translate expert knowledge from natu-
ral language to a computer-understandable language of
numbers was recognized as early as the 1960s, when
the first expert systems started to be designed. A spe-
cial formalism called fuzzy logic was designed to help
us capture the meaning of words. In this formalism, to
represent a meaning of a word like “small”, we assign,
to every possible value x, a degree pgman(x) to which z
is small. The dependence of this degree of z is called a
membership function, or a fuzzy set.

Where do the values p(z) come from? There are several
dozen different techniques for eliciting these values; see,
e.g., [1, 3]. Sometimes, the experts can present these
numbers (“subjective probabilities”) directly. If they
cannot, then for every xz, we can poll several (N) experts
on whether they believe that this particular values z is,
say, small, and if M out of NV experts answer “yes”, we
take pu(z) = M/N. What is a natural way to translate
these “subjective probabilities” into p-bounds?

We will answer this question on the example of member-
ship functions of three most frequent types. The first
type is a function which describes words like “large”,
for which u(z) is increasing from 0 at x = 0 to 1 for
x — o0o. Let us give a simple example of such function:

0 if 2 <1,
Parge(z) = ¢ z—1 if 1<z <2,
1 if z>2
11 p(x)
0 1 2 =z

Suppose that the expert tells us that the actual value of
some quantity X is large. What does it say about the
possible values of the probability F(z) (that X < x)
for different x?

Let us start with a value x < 1. For this value,

farge(z) = 0. This means that the values below z
cannot be large, so it is reasonable to take F'(z) = 0.

Let us now take a value z > 2. For this value,
Marge(z) = 1, which means that the value z is def-
initely large. Based on the expert opinion, we only
know that the actual value X is large. It may be below
x with probability 1 —in which case F'(z) = 1; it may be
above X with probability 1 — in which case F'(z) = 0.
So, here, the corresponding value of the p-bound —i.e.,
the interval of possible values of F(z) —is F(z) = [0, 1].

What if z is in between 1 and 2, e.g., z = 1.6?7 In this
case, the probability u(z) that z is large is equal to 0.6.
Since the function p(z) is increasing, the probability
u(X) that X is large even smaller for X < z. Thus, out
of all large values, values < 0.6 should have a frequency
< 0.6. So, since we know that actual value X is large,
we conclude that the probability F(z) cannot exceed
0.6.

In general, the value F'(z) cannot exceed the probability
u(z), i.e., u(r) serves as the upper part F*(z) of the
p-bound. The lower part F~(x) should be 0, because
we may have X so large than it is much larger than 2.

Combining these three cases, we conclude that for in-
creasing membership functions p(z) like “large”, a nat-
ural translation of the membership function is a p-
bound [0, u(z)].

The second type of membership functions that we
will consider is a function which describes words like
“small”, for which u(z) is decreasing from 1 at z = 0
to 0 for x — oo. Let us give a simple example of such
function:

(z) = 11—z f0<z<1,
Hsmanl®) =19 otherwise

w(z)

Suppose that the expert tells us that the actual value of
some quantity X is small. What does it say about the
possible values of the probability F(z) (that X < z)
for different 27

Let us start with a value x > 1. For this value,
tsman () = 0, which means that the value z is defi-
nitely not small. Based on the expert opinion, we only
know that the actual value X is small. All values X



which can be small (i.e., for which u(X) > 0) are below
1, so they are all below z. Thus, all values of X are
below z with probability 1, and F(z) = 1.

What if z is in between 0 and 1, e.g., z = 0.2? In this
case, the probability u(x) that z is small is equal to 0.8.
Hence, the probability that any larger value X > z is
“small” also does not exceed 0.8. This means that if
F(z) is smaller than 1 — 0.8 = 0.2 — e.g., equal to 0.1
— then there will be more than > 0.8 of values which
are > x — and thus, some values X > z cannot be rea-
sonably called small, in contradiction to the expert’s
opinion. So, if the actual value X is small, the prob-
ability F(z) cannot exceed 0.2. In general, the value
F(z) cannot be smaller than 1 — u(z), ie., 1 — u(z)
serves as the upper part F~(z) of the p-bound. The
upper part F+(z) should be 1, because we may have
X = 0 with probability 1.

Combining these two cases, we conclude that for in-
creasing membership functions u(z) like “small”, a nat-
ural translation of the membership function is a p-
bound [1 — p(z),1]:

 F(z)

Finally, we can consider membership functions describ-
ing terms like “around x,”, which increase from 0 to 1
until they reach a certain value zy, and then decrease
from 1 to 0. For such membership functions, possible
values (i.e., values for which the degree u(z) is large
enough) are concentrated around the number zg, that
is why such membership functions are called fuzzy num-
bers.

As an example, we will consider the following function
corresponding to “around 1”:

z ifo0<z<1,
prea(z) = 2—2z if1<2<2,
0 otherwise
11 p(x)
0 1 2 T

For a membership function of this type, with a maxi-
mum at some value g, similar arguments lead to the
following p-bound [F'~(z), F't (z)]:

_ _ 0 if.Z'SmOJ
F (a:)—{ 1—p(z) if x> 2

vy p@) if 3 <@,
F(x)_{l if x> xg
In particular, for the above membership function
“around 17, the corresponding p-bound has the follow-
ing form:

0 if x <1,
F(z)=< z—-1 if1<2<2,
1 if £ >2
F(“_{1 if > 1
11 F(@)
0 1 2

These three cases can be described in a way which is
similar to our transformation of measurements into p-
bounds. Indeed, how can we describe a fuzzy set that
corresponds to a certain property like “around 177 A
natural way to characterize a fuzzy set is to describe,
for every level a, the set X, = {z | u(z) > a} of all the
values which have this property with degree at least «.
Such sets are called a-cuts — because on the graph, they
really correspond to horizontal cuts. For example, for
the above membership function “around 1”7, the a-cuts
are X, = [0,2 — af:

1] p(=)

If we, e.g., have a-cuts Xg.1, Xg.2, etc., corresponding
to a = 0.1, a = 0.2, etc., this means, crudely speaking,
that all experts agree that x € Xg, that 90% of them
agree that z € X1, that 80% of experts agree that



z € X2, etc., until we reach we level Xj 9 in which
only 10% of the experts agree; see, e.g., [2]. So, we
have a natural subdivision of experts into 10 groups:
10% believe that z is somewhere on the interval X 1
— and no narrower bounds are possible; 10% believe
that z is somewhere on the interval Xy — and no nar-
rower bounds are possible, etc. We thus have a typical
Dempster-Shafer knowledge base. One can easily see
that if we use the above algorithm to transform this
knowledge base into a p-bound, we get exactly the p-
bound that we cam up with.

3 How can Dempster-Shafer aggregation
method be applied to combining CDF’s

Idea. An arbitrary Dempster-Shafer knowledge base
can be naturally represented as a p-bound. So, if we
want to apply the Dempster-Shafer (DS) combination
rule to CDF’s, we must do the following:

o first, we transform CDF into a DS knowledge
base;

e second, we apply DS combination rule to get a
new DS knowledge base;

o finally, we translate the resulting DS knowledge
base into a CDF.

We know how to perform the second and the third steps.
The first step is somewhat ambiguous because there are
many ways to reconstruct a DS knowledge base from a
p-bound.

When the CDF’s come from measurement, then CDF
is actually the result of combining several (V) measure-
ment results, with equal probabilities 1/N, into a sin-
gle CDF. In this case, a natural way is to represent the
CDF as a combination of different measurement results
with probability 1/N. In other words, we subdivide the
interval [0, 1] into small subintervals [0, Ap], [Ap, 2Ap],
etc. To each of these narrow intervals, we assign the
corresponding z-interval [F~1(p), F~!(p + Ap)]. These
narrow intervals are our focal points, and each has the
probability Ap.

Formula. In this case, DS-aggregation results in a
new probability distribution whose density ppew(z) is
proportional to the mazimum of the densities p; (x) and
p2(x) of the two aggregated probability distributions:

poow (2) = 7+ max(p 2), 2 (2),

where -
N = / max(p (2), pa (¢)) da.

Idea of the proof. For each distribution F;(x), a focal
element containing z has the length Ap/p;(z). Thus, if,
say, p1(x) = 2pa(z), then a focal element correspond-
ing to Fy(x) contains two focal elements corresponding
to Fi(z). We therefore get two non-empty intersec-
tions close to z, i.e., exactly as many as corresponds
to the largest of the two probability densities. As a
result, the focal element containing z has the length
Ap/ max(p1(z), p2(z)). This formula is true irrespec-
tive of which of the two probability density functions
pi(z) is larger at & and how much larger.

What is the density p(x) corresponding to this new in-
tersection DS-knowledge base? In general, the length
of each focal element is proportional to Ap'/p(x), hence
p(x) is indeed proportional to max(py (), p2(z)).

Examples. Let us first check this formula on the
example when pi(z) = pa(x). In this case, we get
max(p1 (), p2(z)) = p(x), hence N = 1 and ppew(x) =
p1(z). This example shows that this aggregation oper-
ation is idempotent.

Let us now give one non-trivial example of this opera-
tion. Let p1(z) be a unimodal distribution with a tri-
angular density function:

T if0<z<1,
pr)=X 2—z if1<x<2,
0 otherwise
‘ p1()
1
0 1 2 T

As pa(z), let us take a similar distribution, but shifted
by 1:

z—1 if1<z<2,

pa(lz) =< 33—z if2<x<3,
0 otherwise
‘ p2()
1
0 1 2 T



Here, N = 7/4, and the aggregation result p(z) is the
following bi-modal distribution:
4/7) -z ifo<z<1,
4/7)-2—-2) f1<z<1.5,
plx)y=< @4/ -(z-1) ifl15<x<2,
4/7)-3—2) if2<xz<3,
0 otherwise

How can we describe this operation in terms of
CDF? Since p-bounds are described in terms of the
cumulative distribution function (CDF), not probabil-
ity density function p(x), it is desirable to describe this
combination operation in terms of CDF. For that, we
can use the fact that the probability density is a slope
of the CDF. So, if we start with the two CDF’s, then, in
essence, on each subinterval of the real line, we pick the
shape corresponding to the steepest of the two CDF’s.

Let us give a simple example. Let us consider the fol-
lowing two CDF’s: Fj(z) corresponds to a uniform dis-
tribution on the interval [0,1], and Fy(z) is a com-
bination of two uniform distributions: on the inter-
val [0,2/3] (with probability 1/3) and on the inter-
val [2/3,1] (with probability 2/3). The corresponding
CDF’s are:

0 if z<0,
Fi(z) =} z if0<z<1,
1 ifz>1
11 Fi(2)
0 1 z
0 if z <0,
) /22 ifo<z<2/3,
(@) =9 951 if2/3<x<1,
1 if 2> 1

In this example, for z < 2/3, Fj(z) is steeper, while for
x > 2/3, F>(x) is steeper. Thus, for z < 2/3, we copy
the CDF Fi(z), and for z > 2/3, we copy the CDF
Fy(z). As a result, we get the following “CDF” F(z):

0 if 7 <0,
=~ . J = if0<z<2/3,
Fz) = 20—2/3 if2/3<z<1,
4/3 if z>1
47 ﬁ’(w)
3
1
ol - ___
g |
|
|
|
|
0 2/3 1 T

Finally, the resulting “CDF” needs to be normalized,
so we get the following aggregated CDF F(z):

0 if £ <0,
) /22 fo<z <23,
F@) =19 9,1 if2/3<z<1,
1 if z>1
1] F(z)
1L ___
2 |
|
|
|
0 2/3 1 T

Properties. This operation is idempotent, commuta-
tive, sensitive, rather easy to compute. However, one
important property does not hold: this operation is
not associative, i.e., it is not true that (p *x p') x p" =



px(p'xp'"") for all possible distributions p, p', and p". As
an example of non-associativity, we take three uniform
distributions: p(z) corresponds to a uniform distribu-
tion on the interval [—1,0], p'(z) — on [—0.5,0.5], and
p"(z) — on the interval [0,1]. Each of these three in-
tervals has a unit length, so each probability density
function has a value 1 within this interval.

In this example, max(p(z), p'(z)) is equal to 1 on the
interval [—1,0.5]:

max(p(z), p'(x))

1

-1 0.5 T

The integral N of the corresponding function
max(p(z), p'(z)) is 3/2, hence the normalized function
(p x p')(x) has the following form:

(p*p’)(x):{ 3/3 if —1<2<0.5,

otherwise
(p*p')(z)
2/3
-1 0.5 x
Now,
2/3 if —1<x2<0,
max((p* p')(z),p"(x)) =¢ 1 if0<z <1,
0 otherwise

max((p * p')(z), p" (x))

2/3

-1 1 x

Here, N = 5/3, hence:

2/5 if —1<z<0,
((pxp)xp")@)=1 3/5 f0<z<1,
0 otherwise

(o x p') % p")(2)

3 2/5

Similarly, we conclude that:

3/5 if —1<z2<0,
(px(p'xp"))(@) =4 2/5 if0<z<],
0 otherwise

(o x (' % p")) (@)

3/5

2/5

-1 1 T

Hence, (px p') x p"" = p* (p' x p"). So, the aggregation
operation is indeed non-associative.

Comment. In terms of densities, the DS aggrega-
tion operation for probability distributions consists
of two steps: taking the maximum of the values of
the probability density functions and normalization.
Since max(a, b) is clearly an associative operation, non-
associativity comes from normalization.

4 Dempster-Shafer approach to aggregating
p-bounds

Formulas. When we discussed aggregation of CDF’s,
we have mentioned that every CDF can be represented
as a Dempster-Shafer knowledge base, with percentiles
values F; *(p) (or, to be more precise, with small inter-
vals around percentile values), as focal elements.

For a p-bound, we do not have a single percentile
value, we have an interval [(F;")~'(p), (F; )~(p)] of
possible percentile values. Similar to the case of
CDF’s, every p-bound can be represented as Dempster-
Shafer knowledge base, with the corresponding per-
centile intervals as focal elements. If we apply
Dempster-Shafer combination rule to combine these
percentiles, we get the following formula for the
result [F~(z), FT(z)] of aggregating two p-bounds
[FT (z), F;f (z)] and [F; (), Fyt (z)]. First, we compute



pre-normalized “CDF”s as follows:

ﬁwmz/m@«wu%JWWM»
/fp;<m)-<1ﬁ+(x)——zaf(x))dx;
ﬁ@=/ﬁ@4@@—wwmw

[ ot @ (FF @) - B @) e

where p; (z) and p] (z) are probability density func-
tions corresponding to CDF’s F; (z) and F;f(z). We
can rewrite these formulas exclusively in terms of CDF’s
if we use the notion of a Stieltjes integral [ f(z) dF(z)
(which is equivalent to [ f(z) - p(z) dz):

Fro) = [(Ff @) -

JE®

Frw) = [ @) -

JE@

After we compute each “CDF”s F(z), we normalize
it by dividing by the normalizing constant — which
happens to be the value F*(c0) of the pre-normalized
“CDF” F*(z) when z — oo:

Fy (z)) dFy (z)+
— Fy (z)) dF; (2);
Fy (2)) dFy (z)+
— F[ () dFyf (@)

F@)=L1 @ prgy= @)
Ft(oc0) Ft(oc0)

These formulas can be naturally generalized to the case
when we aggregate an arbitrary number n of p-bounds.
In this case, we get:

F(z)=)" / pi (@) - [[(F} (@) - Fj () da;
i=1 i
Fr@) = [ o @ T[0 @ - @) ds
i=1 i
Alternatively:
9=3 [T[05 @ - £ ) o
= J#i
Z/HF* (2)) dF} ().
J#i

This aggregation operation sounds somewhat complex,
but it leads to a simple formula for the interval width
w(z) = F*(z) — F~ () of the resulting p-bound:

w(z) =k -wi(z) ... wy(z),

where k is a normalizing constant, and w;(z) = F; (z)—
F; (z) are the widths of the aggregated p-bounds.

Idea of the proof. For every point =, how can we com-
pute the increase, e.g., in the lower p-bound at z? By
the definition of the lower p-bound, this increase comes
from all the focal elements that end at z. For each of
the combined p-bounds, there is only one focal element
that ended at z, and this increase is proportional to
p; (). In accordance with the DS combination rule,
the new focal elements are non-empty intersections of
focal elements of both knowledge bases. An intersection
focal element ends exactly at z if one of the intersected
intervals ends at z. If it is the first intersected focal el-
ement that ends at x, then it has a non-empty intersec-
tion with all focal elements of the second p-bound that
contain . These focal elements correspond to proba-
bilities from F; (z) to Fy (z), hence there are exactly
(F5f (z) — F~(z))/Ap of them. The increase in F~(z)
caused by such elements is therefore proportional to
py (z) - (Fyf(z) — F5 (x)). Similarly, we get a formula
for the increase caused by intersection focal points in
which the second intersected interval ends at z, and
thus, the desired formula for F~(x).

The formula for F+ (z) is obtained in a similar manner,
only we must count not focal points that end at x but
those that start at «.

Properties and examples. Let us start with check-
ing idempotence. When we combine a p-bound F (z)
with itself, we get a new p-bound with the width
w(z) = k- wy(z)?. The only way for the p-bound to
stay the same is when w(z) = k- wi(z) = w;(z), i.e.,
when wq(z) = const. For CDF’s, a similar operation
was idempotent, because a CDF can be viewed as a
CDF with a contact (0) width. However, as soon as the
width stops being constant, we lose the idempotence

property.

Let us give a simple example of why DS-combination
rule is not idempotent. Let us take, as the aggregated p-
bound, a DS knowledge base with three focal elements
x1 =[0,2], x2 = [1, 3], and x5 = [3, 4], to each of which
we assign the same mass p; = po = p3 = 1/3. This DS
knowledge base corresponds to the following CDF:

0 if £ <2,
1/3 if2<wz<3,

Fr@) =9 9/3 if3<s<4
1 if x>4
0 if z <0,
Ff (z) = 1/3 if0<z<1,

2/3 if1<z<3,
1 ifz>3



[y

Fif(x)

N

QI =

In accordance with the Dempster-Shafer combination
rule, we take all intervals x; from the first knowledge
case, all intervals y; from the second knowledge base
(which in this case is the same, i.e., y; = x;), and
assign the mass p; - ¢; (in this case, 1/9) to all non-
empty intersections. Since these masses do not add up
to 1, we normalize them so that they will.

In this case, the following intersections are non-empty:
x1Nyr = [0,2); xi Ny = [1,2]; xa Ny = [1,2];
x2Ny2 = [1,3]; x3Ny3 = [3,4]. These five intervals get
the same mass, so after normalization, they are each
assigned the same mass 1/5. The resulting p-bounds
are as follows:

(0 ifzx<?2,
) 3/ if2<x<3,
Fr@)=9 45 it3<a<4
! if x >4
(0 if z <0,
1/5 f0<z<1
-+ _ =~ )
Fr@) =9 45 t1<2<3
|1 ifz>3
11 Ft(x
L (z)
5
2
5
0 1 2 3 i 2

On this example, we see that the width of the aggre-
gated p-bound is indeed proportional to the square of
the original one:

e In the original p-bound, the width was 2/3 on
[1,2] and twice smaller (1/3) elsewhere on [0, 4].
o In the aggregated p-bound, the weight is 4/5 on

[1,2], and four times smaller elsewhere on [0, 4].

Comparing the original p-bound with the aggregated
one, we can see that not only the aggregated p-bound

is different: it is neither enclosed in the original one,
not enclosing the original one. Indeed, for z € (0,1),
we have:

1

P @), @) = o3| e 17 @), R @) = o).

On the other hand, for z € (1,2), we have:

@), 7 @) = 0.3 | S 17 @) @) = 03],

Ol =

(S \V]
|
|
|
1
1
|
|
|
+

Summarizing: this operation is not idempotent. It is
commutative, sensitive, rather easy to compute, but —
similar to the case of CDF’s — not associative.
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