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Abstract: When we take into account more input variables in a
control system, the number of rules grows exponentially. To decrease
the number of rules, we propose not to explicitly state the control
for every combination of input variables, but to use the “otherwise”
clause. In this paper, we provide a simple statistical analysis of
the resulting reduction and show, on a case study, that this reduction
can indeed be drastic.
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1 Introduction

When we take into acount more input variables in
a control system, the number of rules grows expo-
nentially: if we have & possible values for each of n
variables, we must describe control corresponding to
all k™ possible combinations of input values.

To decrease the number of rules, we propose not to
explicitly state the control for every combination of
input variables, but to use the “otherwise” clause.

In this paper, we provide a simple statistical analysis
of the resulting reduction and show, on a case study,
that this reduction can indeed be drastic.

2 Definitions and the main result

Definition. Let V' be a finite set called the set of
values. The number of elements in this set will be
denoted by k.

e By asystem, we mean a function f : V™ -V
for some integer n.

e By a traditional rule base for a system f, we
mean a collection of N = k™ rules

“ifxy iSvy, ..., and z, iSv,, theny isv”,

that correspond to all possible values v =
f(v1,...,vy,) of the function f.

e By a reduced rule base corresponding to the
value vo € V, we mean a collection of rules
of the above type which describe all the val-
ues (v1, - - - ,vy,) for which f(v1,...,v,) # vo,
plus a rule

“otherwise y is vy ”.

The number of rules in a reduced rule base (not
counting the otherwise rule) will be denoted by
N'. The ratio (N — N')/N will be called a
(relative) reduction degree.

Comment. We do not count the “otherwise” rule be-
cause it is much easier to describe than all the other
rules.

Theorem. For every system, there exists a value v
for which the reduction degreeisat least 1/k.

In particular, this means that when we use k& = 3 dif-
ferent levels of each input variable, we can decrease
the number of rules by at least 1/3. If we use k = 5
different levels, we can still reduce the number of
rules by at least 20%, etc.

Proof. Let f be a system. To each of N = k™ pos-
sible combinations of inputs, the function f assigns
one of the values v € V. Thus, if we denote, by
N (v), the number of input combinations which cor-



respond to each v € V', we conclude that

> N() =N.

veEV

The sum of k values N (v) is equal to IV, thus, at least
one of these values must be > N/k. (Otherwise,
their sum would be smaller than k- N/k < N, but it
is=N.)

Let us pick, as vg, one of the values for which
N(vg) > N/k. Then, in the corresponding re-
duced rule base, the total number of rules is equal to
N'" = N — N(vg), and the reduction degree is equal
to (N — N')/N = N(v)/N. Since N (vg) > N/k,
we conclude that the reduction degree is

N-N'_N(w) Nk _1
N - N N "k

Q.E.D.

3 Case study: nondestructive testing of
aerispace structures

One of the most important characteristics of the
plane is its weight: every pound shaved off the plane
means a pound added to the carrying ability of this
plane. As a result, planes are made as light as pos-
sible, with their “skin” as thin as possible. How-
ever, the thinner the layer, the more vulnerable is the
resulting structure to stresses and faults, and flight
is a very stressful experience. Therefore, even mi-
nor faults in the plane’s structure, if undetected, can
be disastrous. To avoid possible catastrophic conse-
quences, before the flight, we must thoroughly check
the structural integrity of the plane.

Some faults, like cracks, holes, etc., are external,
and can, therefore, be detected during the visual in-
spection. However, to detect internal faults (cracks,
holes, etc.), we must somehow scan the inside of the
thin plate that forms the skin of the plane. This skin
is not transparent to light or to other electromagnetic
radiation; very energetic radiation, e.g., X-rays or
gamma-rays, can go through the metal, but it is diffi-
cult to use on such a huge object as a modern plane.

The one thing that easily penetrates the skin is vi-
bration. Therefore, we can use sound, ultrasound,
etc., to detect the faults. Usually, a wave easily
glosses over obstacles whose size is smaller than its
wavelength. Therefore, since we want to detect the
smallest possible faults, we must choose the sound
waves with the smallest possible wavelength, i.e., the
largest possible frequency. This frequency is usually

higher than the frequencies that we hear, so it corre-
sponds to ultrasound.

Ultrasonic scans are indeed one of the main non-
destructive NDE tools; see, e.g, [2, 3].

In nondestructive testing of structural integrity, we
send an ultrasonic signal to the tested system, and
measure the resulting vibration at different points.
Our goal is to detect the points where the cracks or
other possible faults are.

4 Modal approach to nondestructive
testing: idea
In nondestructive testing of aerospace structures, we
would like to process the measurement information
as fast as possible. For large structures, however,
with lots of sensors, and with a highly dynamical (ul-
trasonic) signal, we get a large amount of data, and
processing this data as a whole would take too long.

To decrease the data processing time, we can use the
known fact that a vibration of a mechanical structure
can be represented as a combination of different in-
dependent modes (corresponding to different eigen-
values of the corresponding matrix). Therefore, after
measuring the vibrations, it is reasonable to separate
the measurement results into results corresponding
to different modes, and process each mode indepen-
dently.

For each vibration mode, we can estimate the energy
density at each point; if this measured energy density
is higher than in the original (undisturbed) state, this
is a good indication that a fault may be located at this
point. The larger the increase in energy density, the
larger the probability of a fault. As a result, for each
point z, and for each mode ¢, we get the probability
p;i(z) that, based on the measurements related to this
mode, there is a fault at a point z.

We need to combine these probabilities into a proba-
bility p(x) that there is a fault at z.

5 Main problem of modal approach
The modal approach, as described above, requires
the use of probabilities:

First, we need to describe how the probability of the
fault at a certain point depends on the excess energy
at this point.

Second, we must transform the probabilities coming
from different modes into a single probability value.



Our experience shows that using wrong probabilities
can lead to errors of both possible type:

e time-consuming false positives, when a fault is
claimed in a location where there is no fault at
all, and

e dangerous false negatives, when the existing
fault is not detected at all.

It is therefore very important to get these probabili-
ties right. How can we get these probabilities?

In some cases, we have enough statistics, so we can
determine these probabilities from the analysis of the
experimental data. However, often, we do not have
that statistics: e.g., when we start a new method,
more accurate measurements, etc., there is not yet
enough statistics to determine the probabilities. Sim-
ilarly, when we apply the existing method to a new
object (e.g., to a Space Station), there is not yet
enough statistics.

6 Expert knowledge can supplement
the missing statistics

Since we cannot determine the probabilities solely
from experiment, we must therefore use some addi-
tional expert knowledge to supplement our experi-
mental data.

We have successfully done that, by using different
soft computing techniques such as fuzzy techniques,
neural networks, and genetic algorithms (see, e.g.,
[6, 7, 9]), and we got pretty good results.

7 Experimental results

As a case study, we applied the modal approach to
the problem of non-destructive evaluation of struc-
tural integrity of Space Shuttle’s vertical stabilizer.

To test the applicability of our method, we applied
this techniques to measurement results for pieces
with known fault locations.

The methods that we came up with detected all the
faults in >70% of the cases, much larger proportion
than with any previously known techniques (for de-
tails, see [1, 7, 10]).

8 Remaining problems
There are two main problems with this result:

o first, due to the fact that we used several differ-
ent (and reasonably complicated) formalisms,
the resulting computational models are rather
time-consuming and not very intuitive;

e second, although we got better fault detection
that all previously known methods, but there is
a still quite some room for improvement.

9 New idea: the use of fuzzy rule base

The main problem we face is the problem of com-
plexity of the computational models we use. Com-
plex models are justified in such areas as fundamen-
tal physics, when simpler first approximation mod-
els have been tried and turned out not exactly ade-
quate. However, in our case, the computational mod-
els are chosen not because simpler models have been
tried, but because these complex models were the
only ones which we could find which fit our data and
are consistent with the expert knowledge.

The very fact that a large part of our knowledge
comes from expert estimates, which have a high level
of uncertainty, makes us believe that within this un-
certainty, we can find simpler computational models
which will work equally well. How can we find such
models?

A similar situation, when unnecessarily complex
models were produced by the existing techniques,
started the field of fuzzy logic. Namely, L. Zadeh
proposed to use, instead of traditional analytical
models, new simplified models based on the direct
formalization of expert’s knowledge.

In view of the success of fuzzy techniques, it is rea-
sonable to use a similar approach in fault detection
as well. Let us first describe the corresponding rules.

10 Expert rules for fault detection

For each location, as a result of the measurements,
we get five different values of the excess energy
Ey, ..., E5 which correspond to 5 different modes.
An expert can look at these values and tell whether
we have a definite fault here, or a fault with a certain
degree of certainty, or definitely no fault at all.

Before we formulate the expert rules, we should note
that for each node, the absolute values of excess en-
ergy are not that characteristic because, e.g., a slight



increase or decrease in the original activation can in-
crease or decrease all the values of the excess energy,
while the fault locations remain the same. Therefore,
it is more reasonable to look at relative values of the
excess energy. Namely, for each mode ¢, we compute
the mean square average o; of all the values, and then
divide all values of the excess energy by this means
square value to get the corresponding relative value
of the excess energy z; = E;/o;.

In accordance with the standard fuzzy logic method-
ology, we would like to describe some of these val-
ues as “small positive” (SP), some as “large pos-
itive” (LP), etc. To formalize these notions, we
must describe the corresponding membership func-
tions pusp(z) and prp(z).

Some intuition about the values z; comes from the
simplified situation in which the values of excess en-
ergy E; are random, following a normal distribution
with 0 average. In this simplified situation, the mean
square value o; is (practically) equal to the standard
deviation of this distribution. For normal distribu-
tions, deviations which exceed 2¢; are rare and are
therefore usually considered to be definitely large; on
the hand, deviations which are smaller than the av-
erage o; are, naturally, definitely small. Deviations
E; > 20; correspond to the values z; = E;/a; > 2,
and deviations E; < o; correspondto z; = E;/o; <
1. Therefore, can conclude that values z; > 2 are
definitely large, and positive values z; < 1 are defi-
nitely small.

So, for the fuzzy notion “small”, we know that:

e values from 0 to 1 are definitely small, i.e.,
usp(z;) =1 for these values, and

¢ values 2 and larger are definitely not small, i.e.,
usp(z;) = 0 for these values.

These formulas determine the value of the member-
ship function for all positive values of z;, except for
the values from 1 to 2. In accordance with the stan-
dard fuzzy techniques, we use the simplest — linear
— interpolation to define psp(x;) for values from
this interval, i.e., we take pusp(z;) = 2 — z; for
T; € [1,2]

Similarly, we define the membership function for
“large” as follows: prp(z;) = 0 for z; € [0,1];
,uLP(ZL'i) =zx; —1forz; € [1,2]; and ;J,LP(IL'Z') =1
for z; > 2.

Similarly, we describe the membership functions
corresponding to “small negative” (SNN) and “large

negative” (LN): in precise terms, for z; < 0, we set
psn(zi) = psp(|zi]) and pon(z;) = pre(|zi).

This takes care of fuzzy terms used in the condition
of expert rules. To describe the conclusion, we deter-
mined that experts use 5 different levels of certainty,
from level 1 to level 5 (absolute certainty). We can
identify these levels with numbers from 0.2 to 1.

Now, we are ready to describe the rules.

1. If the “total” excess energy x1 + ... + x5 attains
its largest possible value, or is close to the largest
possible value (by < 0.06), then we definitely have a
fault at this location (this conclusion corresponds to
level 5).

2. Ifall 5 modes show increase, then we have a level
4 certainty that there is a fault at this location.

3. If 4 modes show increase, and one mode shows
small or large decrease, then level 4.

4. If 3 modes show increase and 2 show small de-
creases then level 4.

5. If 3 modes show increase, and we have either 1
small and 1 large decrease, or 2 large decreases, then
level 3.

6. If2 modes show large increase and 3 modes show
small decrease, then level 3.

7. If2 modes show large increase, 1 or 2 modes show
large decrease, and the rest show decrease, then level
2.

8. If 1 mode shows large increase, 1 mode shows
small increase, and 3 modes show small decrease,
then level 2.

9. In all other cases, level 1.

11 The problem with this rule base and
how we solve it

The technique of fuzzy modeling and fuzzy con-
trol enables us to transform rule bases (like the one
above) into an algorithm which transforms the inputs
Z1,-..,%, iNto a (defuzzified) value of the output y.
In principle, we can apply this technique to our rule
base, but the problem is that we will need too many
rules. Indeed, standard rules are based on the condi-
tions like “if z; is Ay, ..., and z,, is A, then y is
B”. In our case, we have 5 input variables, each of
which can take 4 different fuzzy values (LN, SN,



SP, and LP). So, to describe all possible combina-
tions of inputs, we must use 45 = 1,024 rules. It is
doable, but it is definitely not the simplification for
which we were looking.

To decrease the number of the resulting rules, we can
use the fact that all the rules do not distinguish be-
tween different modes. Therefore, if we permute the
values z; (e.g., swap the values z; and z5), the ex-
pert’s conclusion will not change. Hence, instead of
considering all possible combinations of z;, we can
first apply some permutation to decrease the number
of possible combinations. One such permutation is
sorting the values of x;, i.e., re-ordering these values
in the decreasing order. Let us show that if we ap-
ply the rules to thus re-ordered values, then we can
indeed drastically decrease the number of resulting
fuzzy rules.

Let y1 > ya... > y5 denote the values z1,..., 25
re-ordered in decreasing order. Let us show how,
e.g., Rules 2, 3, and 4 from the above rule base can
be reformulated in terms of these new values y;:

Rule 2. To say that all five values z; are positive is
the same as to say that the smallest of these values is
positive, so the condition of Rule 2 can be reformu-
lated as y5 > 0.

Rule 3. When 4 modes are positive and the fifth is
negative, it means that y, > 0 and y5 < 0.

We can notice that since Rules 2 and 3 have the same
conclusion, they can be combined into a single rule
with a new (even simpler) condition y4 > 0. (Indeed,
we either have y5 > O and y5 < 0; ifys > 0 and
ys > 0, then the conclusion is true because of Rule
2; ifyy > 0and ys < 0, then the conclusion is true
because of Rule 3.)

Rule 4. Similarly, its condition can be reformulated
asys > 0,ys iISSN,and y5 is SN.

As a result, we get the following new (simplified)
rule base:

1. If the “total” excess energy y1 + ... + ys attains
its largest possible value, or is close to the largest
possible value (by < 0.06), then level 5.

2. If yq > 0, then level 4.
3. Ifys3 > 0,y4 is SN, and ys is SN, then level 4.
4. Ifys > 0,y4 <0, andys is LN, then level 3.

5. Ifyy IS LP, y3 < 0, and ys is SN, then level 3.

6. Ifys isLP,y3 < 0, andys is LN, then level 2.

7. Ify, iSLP,ys is SP,ys3 < 0,y4 iSSN, and ys is
LN, then level 2.

8. In all other cases, level 1.

To transform these fuzzy rules into a precise algo-
rithm, we must select a fuzzy “and”-operation (t-
norm) and a fuzzy “or”-operation (t-conorm), e.g.,
min(a,b) and max(a,b), and a defuzzification; in
our paper, we use centroid defuzzification.

For each rule (except for the last one), we can com-
pute the degree of satisfaction for each of the con-
ditions. The rule is applicable if its first condition
holds, and the second condition holds, etc. So, to
find the degree with which the rule is applicable, we
apply the chosen “and”-operation to the degrees with
which different conditions of this rule hold.

For each level > 1, we have two rules leading to
this level. The corresponding degree of certainty is
achieved if either the first or the second of these rules
is applicable. Therefore, to find a degree to which
this level is justified, we must apply the chosen “or”-
operation to the degrees to which these two rules are
applicable.

As a result, we get the degrees d(I) with which we
can justify levels I = 2+ 5. Since the last rule (about
level 1) says that this rule is applicable when no other
rule applies, we can compute d(1) as 1—d(2)—...—
d(5). Now, centroid defuzzification leads to the re-
sulting certainty 1-d(1)+2-d(2) +. ..+ 5-d(5). This
is the value that the system outputs as the degree of
certainty (on a 1 to 5 scale) that there is a fault at a
given location.

12 Experimental results

We have applied the resulting fuzzy model to the
beams with known fault locations. The results are
as follows:

When there is only one fault, this fault can be deter-
mined as the location where the degree of certainty
attains its largest value 5. This criterion leads to a
perfect fault localization, with no false positives and
no false negatives.

When there are several faults, all the faults corre-
spond to locations with degree 4 or larger. This
criterion is not perfect; it avoids the most danger-
ous errors of false negatives (i.e., all the faults are



detected), but it has false positives, i.e., sometimes
faults are wrongly indicated in the areas where there
are none.

To make the fuzzy algorithm better, we take into con-
sideration that the vibration corresponding to each
mode has points in which the amplitude of this vi-
bration is 0. The corresponding locations are not af-
fected by this mode and therefore, the corresponding
excess energy values cannot tell anything about the
presence or absence of a fault. Therefore, it makes
sense to only consider those values z; for which the
corresponding mode energy is at least, say, 10% of
its maximum. If we thus restrict the values z;, then
the number of false positives decreases.

We tried different t-norms and t-conorms. So far,
we have not found a statistically significant differ-
ence between the results obtained by using differ-
ent t-norms and t-conorms; we hope that for more
complicated examples of 2D surfaces with faults, we
will be able to detect this difference, and thus, find
t-norms and t-conorms which are the best for fault
detection.
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