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Abstract: Many application-oriented mathematical models deal
with real numbers. In real life, due to the inevitable measurement

inaccuracy, we do not know the exact values of the measured
quantities, we know, at best, the intervals of possible values.

It is thus desirable to analyze how the corresponding
mathematical results will look if we replace numbers by intervals.
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1 Introduction: Why interval mathe-
matics?

Mathematical models normally deal with real num-
bers. In real life, due to the inevitable measurement
inaccuracy, we do not know the exact values of the
measured quantities, we know, at best, the intervals
of possible values. Thus, with applications in mind,
it is desirable to revisit computational formulas and
related mathematical results and see what they look
like if we use intervals instead of real numbers.

In particular, if we know only the intervals � , � for
two numbers � and � , then the set of possible values
of ����� (correspondingly, of ���	� ) also forms an
interval. It is natural to call this interval the sum � � �
(corr., product) of the original intervals � and

�
.

2 First algebraic aspect: Adding inter-
val data. How do intervals change
simple algebraic shapes?

2.1 Simplest shape: (hyper)plane

The simplest possible shape is a hyperplane, which
can be defined as a solution set for a system of linear
equations 
� �
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���
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�
�
�

i.e., in matrix form, ���
�
� , where �

���
�
�����

,�
���
�
���

, and �
���
�
���

.

2.2 Linear equations with interval coeffi-
cients: polytope

A natural idea is to consider the matrix �
� � � �!� �

and the vector
� �"� � � �

with interval coefficients� �!� and
� �

. Then, it is natural to define the solution
set as the set of all solutions � of the system �#�

�
�

for all �%$�� and all ��$ � , i.e., for which �
�!�
$ �
���

and �
�
$ �
�

for all & and ' .
Definition 2.1. Let � be an interval matrix, and let( be an interval vector. We say that a vector � is a
solution for the system �)�

� �
of interval linear

equations if there exists a matrix �%$�� and a vector��$ � for which ���
�
� .

Theorem 2.1 [1]. For every system of interval linear
equations, its set of solutions is a polytope.

In other words, for every set of interval linear equa-
tions, the border of its solution set is piece-wise lin-
ear (hyperplanar).

2.3 Symmetric linear equations with inter-
val coefficients: piece-wise quadratic
shape

When we consider symmetric interval matrices � ,
i.e., matrices for which �

��� � � �*� , then it is natural to
restrict ourselves only to symmetric matrices ��$+� .

Definition 2.2. Let � be a symmetric interval ma-
trix, and let ( be an interval vector. We say that a
vector � is a s-solution for the system �)�

� �
of



interval linear equations if there exists a symmetric
matrix ��$�� and a vector ��$ � for which �#�

�
� .

Theorem 2.2 [2, 3, 6]. For every system of interval
linear equations � �

� �
, its set of s-solutions has a

piece-wise quadratic border.

In other words, the border of this set consists of
finitely many pieces each of which can be described
by a quadratic equation:� �

�
� � ��� � �

�
� �
�
� � ���

�
� �
�
���
� ���

2.4 Linear equations with interval coeffi-
cients and general linear dependence
between 	�

� and ��
 : arbitrary algebraic
sets

The symmetry relation �
�!� �
�
�*�

is a particular case
of linear dependence between the coefficients �

�!�
.

The corresponding equations �#�
�
� can be de-

scribed if we fix the values �
���

for &�� ' , and then
take �

�*���
�
���

.

Symmetry is just one of such relations. It is natural
to consider other relations such as antisymmetry, etc.
In general, we arrive at the following definition:

Definition 2.3. By a system of interval linear equa-
tions with dependent coefficients, we mean a system
of the type 
��
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, �
���
� , � �����
�

, and �
�
� are given real numbers, ( ���&�� � � �!� '"�$# � �!�&%'� � ), and coefficients ���

can take arbitrary values from the given intervals ( � .
Definition 2.4. We say that a vector � is a solution
to a given system of linear interval equations with
dependent coefficients if it solves a system ���

�
�

for some values � � $)( � .
To describe the set of such solutions, we must recall
two notions: the notion of a semialgebraic set and
the notion of a projection:

Definition 2.5. A set is called semialgebraic if it can
be represented as a finite union of subsets, each of
which is defined by a finite system of polynomial
equations *,+.- � � � ���/� � �10�2

� �
and inequalities of the

types *435- � � � �/�/� � �10�2"6 � and *879- � � � ���/� � �10�2;: �
(for some polynomials *

�
).

Definition 2.6. For every set < $>= 
 , and for ev-
ery subset ?

� �
& � � �/��� � &@0

� A � � � �/��� � #
�
, by a

it projection B1CD-E<F2 we mean the set of all vectors- �
�
G � �/��� � �

�
H 2 $I= 0 that can be extended to a vector- � � � ���/� � � 
 2 $J< .

It is known that a projection of a semialgebraic set is
also semialgebraic. Now, we are ready for the main
results:

of a system, is also semialgebraic, and that, vice It
is known that for every semialgebraic set < , and for
every subset ?

���
& � � ���/� � &@0

� A � � � �/�/� � #
�
, the cor-

responding projection of < , i.e., the set of all vectors- �
�
G � �/��� � �

�
H 2 $K= 0 that can be extended to a solu-

tion - � � � �/�/� � � 
 2 of a system, is also semialgebraic,
and that, vice

Theorem 2.3 [4]. For every system of interval lin-
ear equations with interval coefficients, the set of its
solutions is semialgebraic.

Theorem 2.4 [4]. Every semialgebraic set can be
represented as a projection of the set of all solutions
of a system of interval linear equations with interval
coefficients.

In this representation, we allow intervals ( � to be ar-
bitrarily wide. In terms of measurements, wide in-
tervals correspond to low measurement accuracy. It
is natural to ask the following question: if we only
consider narrow intervals, which correspond to high
measurement accuracy, will we still get all possible
semialgebraic shapes or a narrower class of shapes?

Definition 2.7 [10]. For a given LM6 � , an interval( �ON P�;Q�R � P� �KRTS is called absolutely L -narrow ifRU� L , and is relatively L -narrow if RU� L��DV P�,V .
Theorem 2.5 [5]. For every L$6 � , every semial-
gebraic set can be represented as a projection of the
solution set of some system of interval linear equa-
tions with dependent coefficients, whose intervals are
both absolutely and relatively L -narrow.



3 Second algebraic aspect: Adding in-
terval operations Interval + rational =
algebraic

3.1 Rational functions
The set of rational functions can be defined as the
smallest set of functions that contains constants and
variables and is closed under arithmetic operations
( � � Q � � � � ).
3.2 What happens if we add intervals: a

question
A natural question is: what class of functions will be
get if we add to this list the “interval” operation, i.e.,
an operation that transforms a function � of # vari-
ables and given intervals ( � � �/��� � ( 
 into the bounds
for the range

� - ( � � ���/� � ( 
 2
�

�
� - � � � �/��� � � 
 2 V � � $ ( � � �/��� � � 
 $ ( 


� �
3.3 Definitions and the main result
Definition 3.1. By interval-rational functions of
several real variables � � � � � � � � 
 , we mean functions
from the following class:

� Constants and variables �
�

themselves are
interval-rational functions.

� If � and � are interval-rational functions, then� ��� , � Q�� , � ��� , and � � � are interval-rational
functions.

� If � - � � � ���/� � � 
 ��� � � �/��� ���
	 2 is an interval-
rational function, and � � � �/��� � � 	 are intervals,
then

� - � � � ���/� � � 
 2
�

��
��� G����DG ������� � ��� ��� � � - � � � �/��� � � 
 ��� � � ���/� ���
	 2
is an interval-rational function.

� If � - � � � ���/� � � 
 ��� � � �/��� ��� 	 2 is an interval-
rational function, and � � � �/��� � � 	 are intervals,
then

� - � � � ���/� � � 
 2
�

�����
� G ��� G ������� � � � ��� � � - � � � �/��� � � 
 ��� � � ���/� ��� 	 2

is an interval-rational function.

� Only functions that are obtained by these oper-
ations are interval-rational functions.

To describe the class of all interval-rational func-
tions, we must recall the definition of an algebraic
function:

Definition 3.2. An analytic function �
�

��- � � � �/�/� � � 
 2 is called algebraic if

* - � � � ���/� � � 
 � �T- � � � ���/� � � 
 2 2
� �

for some polynomial * - � � � �/�/� � � 
 � � 
�� � 2 for which
the partial derivative �1* � � � 

� � is not identically 0
( � * � � � 

� �! 

� �
). We say that the corresponding

polynomial * - � � � ���/� � � 

� � 2 defines the algebraic
function �T- � � � ���/� � � 
 2 .
Definition 3.3. Assume that " is an open domain in= 
 . We say that an algebraic function �$#%"'& =
can be locally represented by an interval-rational
function if for almost every point - � � � �/��� ��� 
 2%$
" there exists a neighborhood ( and an interval-
rational function � - � � � ���/� � � 
 2 such that for all �

�
- � � � ���/� � � 
 2 from ( , � - � 2

�
��- � 2 .

Here, almost every is understood in the usual math-
ematical sense: a property is true for almost every
point if the set of all points in which it is not true has
Lebesgue measure 0.

Theorem 3.1 [8]. Every interval-rational function is
algebraic.

Theorem 3.2 [8]. Every algebraic function can be
locally represented by an interval-rational function.

In other words, if we add an interval substitution op-
eration to the original list of algebraic operations de-
scribing rational functions, we get an arbitrary alge-
braic function.

3.4 A more computer-realistic notion of “al-
most all” and the corresponding result

In mathematics, “almost all” usually means “all
points, except for points from a set of Lebesgue
measure 0” (or, “except for points from a set of a
small Lebesgue measure”). In the existing com-
puters, however, only rational numbers are repre-
sented. The set of all rational numbers is countable
and has, therefore, Lebesgue measure 0; so the stan-
dard mathematical notion of “almost all” is not very
computer-realistic.

In real life, when we say that “an algorithm is ap-
plied to real numbers � � � ���/� � � 
 ”, we usually mean
that this algorithm is applied to rational numbers� � � �/��� � � 
 that are )1Q close to � � � ���/� � � 
 , where )



is the computer precision. So, if we fix ) 6 � ,
we can say that an algorithm � works for # real
numbers � � � �/��� � � 
 if it works fine for all tuples
of rational numbers - � � � �/��� � � 
 2 that are )1Q close to- � � � �/�/� � � 
 2 .
Now, we have real-valued inputs on which the algo-
rithm works fine, and real-valued inputs on which
it does not. For real-valued inputs, we can apply
Lebesgue measure.

Definition 3.4.

� Let )I6 � be a real number. We say that points�
�
- � � � �/��� � � 
 2 ���

�
- � � � ���/� ��� 
 2 $'= 
 are

) Q close if V �
�
Q �
�
V � ) for all & .

� Let
� A = 
 be a bounded set, and let )&6 �

be a real number. We say that a point � $ = 

) Q possibly belongs to

�
if there exists a point

� that is )1Q close to � and that belongs to
�

.

� We say that a bounded set
� A = 
 is- ) ��� 2 Q small if the set of all points that

) Q possibly belong to
�

has Lebesgue measure� � .
� We say that a bounded set

�
is small if for ev-

ery � , there exists a ) for which the set
�

is- ) ��� 2 Q small.

� We say that a set
��� = 
 (not necessarily

bounded) is small if for every R 6 � , the in-
tersection

���
N
Q R � RTS 
 is small.

� We say that a property * - � 2 holds for
computer-realistically almost every � if the set
�
��V��4* - �12

�
of all � for which * is false is

small.

If a property * - � 2 is almost always true in this sense,
this means, crudely speaking, that for any given � ,
we can choose a computer precision ) so that for all� except for a set of measure � � , we can guarantee
that * - � 2 is true even when we only know compo-
nents �

�
with precision ) .

We can now reformulate the above Definition 3.3 and
Theorems 3.1 and 3.2 in terms of this new computer-
realistic definition of “almost all”.

Definition 3.5. Assume that " is an open domain
in = 
 . We say that an algebraic function � #%" &= can be computer-realistically locally represented
by an interval-rational function if for computer-
realistically almost every point - � � � �/��� ��� 
 2 $ " ,

there exists a neighborhood ( and an interval-
rational function � - � � � ���/� � � 
 2 such that for all �
from ( , � - �12

�
�T- �12 .

Theorem 3.3 [9]. Every interval-rational function is
algebraic.

Theorem 3.4 [9]. Every algebraic function can be
locally represented by an interval-rational function.

4 Third algebraic aspect: algebraic
generalizations of intervals

4.1 Multi-D analogues of intervals: why?
What are the natural multi-D analogues of intervals?
One of the main goals of science is to predict what
will happen in the world. In other words, to pre-
dict the values of different physical quantities. Tradi-
tional prediction algorithms take as input the current
values � � � �/��� � �	� of some physical variables, and
use these value to predict the future state of the Uni-
verse. For example, in weather prediction, we take
as input the values � � � �/��� � �	� of the meteorological
parameters in different points.

There are two main ways to find the values of �
�
:

by directly measuring them, and by using the abil-
ity of an expert to give a reasonable estimate. Mea-
surements are never 100% accurate. Expert estimate
are also only approximate. As a result, we never
know the exact values of the desired physical quan-
tities � � � �/��� � � � . There are usually several different
possibilities that are all consistent with all our mea-
surements and expert estimates.

For example, if the measured value
P� � of a tempera-

ture � � is 35, and the accuracy of this measurement
is 
�� , this means that the actual value of � � can be
equal to any number from the interval

N

�� ��� � S .

For these different possibilities, the predicting algo-
rithm will lead to slightly different results. There-
fore, instead of a single predicted result, we get the
set of possible future values.

Each measurement bring an additional restriction on
the set � of all possible values of �

�
- � � � ���/� � � � 2 .

As a result, the more measurements we take, the
more complicated the shape of this set � can be.
But we need to process this set in order to get the
set of possible future values, and processing odd-
shaped sets is computationally very complicated. So,
we need to approximate these sets by sets belonging
to some pre-chosen family of simple sets (e.g., en-
close � by a ball, or by an ellipsoid, or by a paral-
lelepiped). What family should we choose?



4.2 The necessity to check consistency: mo-
tivations

Measuring devices can go wrong; expert estimates
can be wrong. As a result, different conditions on� may turn out to be inconsistent. So, before we
start processing, it would be nice to check the ex-
isting knowledge for possible inconsistencies.

In view of this necessity, it is desirable to choose the
family of approximating sets in such a way that this
check will not be computationally very complicated.

Let’s formulate this necessity in mathematical terms.
Assume that we have several pieces of knowledge
about � . Each piece of knowledge can be formulated
as a set of all the vectors � that are consistent with
this particular knowledge. So, we instead of saying
that we have several pieces of knowledge, we can
say that we have several sets � � � � �/�/� ��� � = � .
Consistency means that it is possible that a certain
value � $�= � satisfies all these properties, i.e., be-
longs to all these sets � � � � �/�/� ��� (in other words,
that � ��� � ���/� � �  

�
�

).

How can we actually check consistency? Knowledge
usually comes piece after piece, so a typical situation
is as follows. We already have a consistent knowl-
edge base. In other words, we have the pieces of
knowledge represented by sets � � � ���/� � � 3 , and these
pieces of knowledge are consistent. Then, a new
piece of knowledge arrives, described by a set � .

A natural way to check consistency is to check
whether � is consistent with each of the existing
sets �

�
. The consistency between � and each of �

�
is, of course, necessary for the new knowledge base
�
� � � �/�/� � � 3 � �

�
to be consistent. It is easy to see,

however, that this comparison is not always sufficient
(the examples of why it is not always so can be easily
extracted from the following text). So, we arrive at
the following definition:

4.3 Definitions, results, and hypotheses
Definition 4.1. We say that a family � of sets allows
checking consistency if the following is true: For ev-
ery � , and for every tuple of sets � � $�� � �/�/� � � 3 $
� � � $�� , for which the sets � � � �/��� � � 3 are consis-
tent (i.e., � � � �/�/� � � 3  

�
�

) and � is consistent
with all �

�
(i.e., � � �

�
 
�
�

for all &
�
� � �/��� � � ),

all ��� � sets � � � ���/� � � 3 � � are consistent (i.e.,� � � ���/� � � 3 � �  
�
�

).

We are interested in measurements, so it is natural
to assume that if 	 is a reasonable approximation

to sets that describe the uncertainty of our knowl-
edge, then a set 	 �+� (that is obtained from 	 by a
translation) is also a reasonable approximation. For
example, assume that we are measuring time, and as
a result we get


 � 
 � (i.e., a set 	

� N

.� � � � S ).

If we now change the starting point for measuring
time, e.g., take Q � as the new starting point, then the
same result will be expressed as 	 � �

�
� � 
 �

�N

 � ��� � S . This new set 	 � � must also be a reason-

able approximation.

Definition 4.2. We say that a family � of sets is
translation-invariant if for every 	 $
� , and for
every �+$J= � , the set 	 � � also belongs to � ; this
set 	 � � is called a translate of 	 .

Theorem 4.1 [11, 12]. Translates of a compact con-
vex set 	 allow checking consistency if and only if
	 is a parallelepiped.

So, a convex compact set 	 can be a reasonable rep-
resentation of uncertainty if and only if 	 is a par-
allelepiped. This result explains why parallelepipeds
are often used to describe uncertainty.

This result is based on the assumption that 	 is con-
vex. However, we often have knowledge that does
not correspond to a convex set. E.g., if we have
measured the value of the velocity as � � 
 � (i.e.,
the possible values form an interval

N
� � ���/S ), and this

is the only information that we have about the mo-
tion, then the set of all possible values of the velocity
components � � � ��
 � ��� forms a (non-convex) “slice”
between two spheres (of radii 9 and 11).

So, we arrive at the following open problem:

Open problem. To describe sets for which translates
allow checking consistency.

There exist non-convex compact sets with this prop-
erty: e.g., translates of 	

� � � � �
�
� = � allow

checking consistency. However, all such examples
that we have constructed so far are disconnected.
Therefore, we can formulate the following hypoth-
esis:

Hypothesis 4.1. If translates of a compact connected
set 	 allow checking consistency, then 	 is a par-
allelepiped.

To help to solve our open problem, let’s reformulate
it in terms close to those of a well-developed field of
math: namely, of homological algebra.

Definition 4.4. Assume that a set 	 � = � is
given, and a positive integer � is fixed. For every



# , # Q cochains will be defined as (completely) an-
tisymmetric functions � from

�
� � ���/� � �

� 

to a cer-

tain subset 	 
 � = � . A coboundary operator L 

transforms an # Q cochain into an - # � � 29Q cochain
as follows: - L 
 � 29- & � � ���/� � & 
 2

�

�
� 
 � -@Q � 2

� � - & � � �/��� � & ��� � ���� � � & � � � � �/�/� � & 
 2 �
where �� � means that we are skipping

� Q th variable.
We define 	 �

�
	 �
�
� , and 	 

� �

�
	 
 Q 	 
 ��/���

( # �)� times), so that 	 


�
	 � Q 	 �

�
	 Q 	 .

Comment. This definition is similar to standard def-
initions from group cohomologies, with the only
difference that in our case, the range of the func-
tions defined as cochains is not a group, it is a
subset of an additive group = � . Because of that,
we have to be careful in our definition to guaran-
tee that the coboundary of a # Q cochain will be an- #�� � 2 Q cochain. This is indeed guaranteed by our
choice of 	 
 . Similarly to traditional cohomologies,
it is easy to check that L 
 is really a coboundary op-
erator:

Theorem 4.2 [11, 12]. For every # Q cochain � ,L 
�� � - L 
 � 2
� �

.

Definition 4.5. An # Q cochain is called an# Q coboundary if it is a coboundary L 
 � � � of some- # QU� 29Q cochain � . An # Q cochain is called an# Q cocycle if L 
 �
� �

.

Comment. From Theorem 4.2, it follows that every# Q coboundary is an # Q cocycle. It turns out that the
inverse statement is true if and only if translates of
	 allow checking consistency:

Theorem 4.3 [11, 12]. Let 	 � = � . Then, trans-
lates of 	 allow checking consistency if and only if
every � Q cocycle is a � Q coboundary.

Comment. In traditional homology theory, both
the set of all # Q cocycles �



and the set of all# Q coboundaries

� 

are abelian groups. Since� 
 � �



, in this traditional theory, the condition

that every 2-cocycle is a 2-cobounbdary can be re-
formulated as 	 


� �
, where the factor-group 	 


�
� 
 � � 
 is called the second cohomology group.

4.4 Interval operations in an arbitrary ring
An even more general idea is to consider intervals in
an arbitrary partially ordered ring. For such rings,
unlike the ring of real numbers, the element-wise

sum and the product of intervals is not always an in-
terval. For example, on the ring of all integers, the
element-wise productN

� � � � � S �
N
� 
 � � 
 S

�
�
� � � � 
FV � � $

N
� � � � � S � � 
 $

N
� 
 � � 
/S

�
of the intervals

N
� � �5S
� �
� � �
�

and

N
� � 
 S
� �
� � � � 


�
is equal to

N
� � �5S	�

N
� � 
 S
�%�
� � � � 
 ��� ��


�
; this product

is not an integer-interval. When is it an interval?

4.5 Definitions and the Main Result

Definition 4.5. A ring � is a set of elements
with two binary operations � and � (called addition
and multiplication) that satisfies the following three
properties:

� � is an Abelian (commutative) group under ad-
dition;

� multiplication is associative;

� the right- and left-distributive laws hold, i.e.,

� �.- � ��
/2
�
� � � � � ��


and - � � �92���

�
� ��
 � � ��
 �

We say that a ring has no (proper) divisors of zero if
from � � �

� �
, it follows that �

� �
or �
� �

.

Definition 4.6. By an ordered ring, we mean a ring
� with a partial order � such that:

� there exists an element � for which �;6 � ;
� if ��� � , then for every 
 $�� , we have � ��
��� ��
 ;
� if � 6 � and � 6 � , then � � � 6 � ;

An order is called consistent if the following two
properties hold:

� if � 6 � and � � � 6 � then � 6 � ;
� if � 6 � and � ��� 6 � then �;6 � .

An order is called linear or total if for every two ele-
ments � and � , either ��� � , or �

�
� , or �;6 � .



Comment. In the following text, we will only con-
sider consistently ordered rings with no divisors of
zero.

Definition 4.7. Let � be an ordered ring with no
divisors of 0. By an interval, we mean a set

N
� � ��S
��

��$ �UV � � �)� �
�
, where � � � . The element �

is called the lower endpoint of this interval, and the
element � is called its upper endpoint. The sum and
product of two intervals are defined element-wise.

We want to reformulate the desired property — that
the element-wise sum and element-wise product of
two intervals are always intervals — in purely alge-
braic terms.

This property is true for the ring of real numbers and
it is not true for the ring of integers. From the alge-
braic viewpoint, the main difference between these
two rings is as follows:

� in the ring of real numbers, multiplication is
invertible in the sense that for every two real
numbers �  

� �
and � , there exists a number

�
(
� � � � � ) for which � � �

�
� ;

� on the other hand, multiplication in the ring of
all integers is not invertible: for example, �  

� �
,

but there exists no integer
�

for which ��� �
�


.

In view of this difference, it is natural to conjecture
that the desired interval property is equivalent to in-
vertibility of multiplication. This first guess turns
out to be wrong: there are examples of ordered rings
with the above interval property in which multiplica-
tion is not invertible. These example enable to cor-
rect the original conjecture into an exact theorem, ac-
cording to which the interval property is equivalent
to a special property called almost invertibility.

To introduce this new notion, let us first recall the
formal definition of invertibility:

Definition 4.8. Let � be a ring. We say that multi-
plication is invertible if for every two elements � and�  
� �

, there exist:

� an element
� � for which

� � � �
�
� ; and

� an element
� + for which � � � +

�
� .

If a ring has a unit element � (i.e., with an element
for which � � �

�
�)���
�
� for all � ), then a ring

is invertible if and only if it is a field (commutative

or non-commutative). In some algebra textbooks, a
field is defined as a commutative ring with a property
that non-zero elements form a group. In such books,
a non-commutative ring with this property is called a
skew field, or a s-field.

Not every ring is invertible (for example, as we have
already mentioned, the ring of all integers is not in-
vertible). There can be two reasons for that:

� In some cases, multiplication is not invertible in
the original ring, but we can still easily add in-
termediate elements and make it invertible. For
example, in the ring of integers, we do not have
a number

�
for which � � �

�


, but we have

� ��� � 
 and � � � 6 
 , so, we can add an extra
element 3/2 for which � � 
 � ��� � . If we add
all such elements, we will thus expand the ring
of integers to the field of all rational numbers.

� It can also be that an element � is “infinitely
smaller” than � in the sense that whatever ele-
ment

�
we take, we always have �)� � � � .

Rings in which this second reason is the only obsta-
cle to invertibility will be called almost invertible:

Definition 4.9. Let � be an ordered ring.

� We say that an element �  
� �

is left-infinitely
smaller than an element � (and denote it by��� � � ), if � � ��� � for all � $�� .

� We say that an element �  
� �

is right-infinitely
smaller than an element � (and denote it by��� + � ), if � � � � � for all � $ � .

Definition 4.10. Let � be an ordered ring. We say
that multiplication is almost invertible (and, respec-
tively, that the ring � is almost invertible) if for ev-
ery � and �  

� �
, the following two properties hold:

� if � is not left-infinitely smaller than � , then
there exists an element

�
for which

� � �
�
� .

� if � is not right-infinitely smaller than � , then
there exists an element

�
for which � � �

�
� .

Now, we are ready to formulate the main result of
this section:

Theorem 4.4 [7]. For every consistently ordered
ring � with no divisors of 0, the following two con-
ditions are equivalent to each other:



i) The product of every two intervals is also an in-
terval.

ii) The ring � is totally (linearly) ordered and al-
most invertible.

If one of these conditions is satisfied, then the sum of
every two intervals is also an interval.

For the rings in which there are no infinitely smaller
elements, this result can be further simplified:

Definition 4.11. We say that a ring is weakly
Archimedean if none of its elements is left- or right-
infinitely smaller than any other.

Many rings are weakly Archimedean, including the
ring of all real numbers, the ring of all integers, and
many others. A weakly Archimedean ring is almost
invertible if and only if it is invertible. Hence, we get
the following corollary:

Corollary 4.1 [7]. For every weakly Archimedean
consistently ordered ring � with no divisors of 0,
the following two conditions are equivalent to each
other:

i) The product of every two intervals is also an in-
terval.

ii) The ring � is linearly ordered and invertible.

If one of these conditions is satisfied, then the sum of
every two intervals is also an interval.

We have already mentioned that a ring with a unit
element is invertible if and only if it is a field. Hence,
we get the following second corollary:

Corollary 4.2 [7]. For every weakly Archimedean
consistently ordered ring � with a unit element � and
with no divisors of 0, the following two conditions
are equivalent to each other:

i) The product of every two intervals is also an in-
terval.

ii) The ordered ring � is a linearly ordered field.

If one of these conditions is satisfied, then the sum of
every two intervals is also an interval.

In short, this result says that for interval arithmetic to
be possible in a ring, this ring has to be a field. It is
worth mentioning that, somewhat in contrast to this
result, the intervals themselves do not form a field;
for example, the set of intervals does not even have a
distributivity property.

4.6 Auxiliary results
We have found the conditions under which both the
product and the sum of the two intervals form an
interval. It may be interesting to consider the case
when only addition is defined, and find out when, in
this case, the sum of any two intervals is also an in-
terval.

Definition 4.12. By an ordered (Abelian) group, we
mean an Abelian group

�
with a partial order � such

that:

� there exists an element � for which �;6 � ;
� if ��� � , then for every 
 $�� , we have � ��
��� ��
 .

To formulate our result, we will need the following
property:

Definition 4.13. We say that an order is 2-2-
separating if for every four elements � � � � � � � , if each
of the two elements � and � is smaller than or equal to
each of the elements � , � (i.e., if � � � , � � � , � � � ,
and � � � ), then there exist an element 
 that lies in
between, i.e., for which � � 
 � � and � � 
 � � .
Comments.

� This definition is close to the notion of TR(2,2)
(Riesz) ordered groups.

� Every group in which an order forms a lattice
has this property.

� If a group
�

is a compact topological group in
which the order is (in some reasonable sense)
consistent with topology, then this property is
equivalent to

�
being a lattice.

Theorem 4.5 [7]. Let
�

be an ordered Abelian
group. Then, the sum of every two intervals is also
an interval if and only if the order on the group

�
is

2-2-separating.
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