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Abstract: How is fuzzy logic usually formalized? There are many
seemingly reasonable requirements that a logic should satisfy: e.g.,
since A& B and B& A are the same, the corresponding and-operation
should be commutative. Similarly, since A& A means the same as A4,
we should expect that the and-operation should also satisfy this
property, etc. It turns out to be impossible to satisfy all these
seemingly natural requirements, so usually, some requirements are
picked as absolutely true (like commutativity or associativity), and
others are ignored if they contradict to the picked ones.

This idea leads to a neat mathematical theory, but the analysis of
real-life expert reasoning shows that all the requirements are only
approximately satisfied. we should require all of these requirements
to be satisfied to some extent. In this paper, we show the preliminary
results of analyzing such operations. In particular, we show that
non-associative operations explain the empirical 7 £+ 2 law in
psychology according to which a person can normally distinguish
between no more than 7 plus minus 2 classes.
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1 Introduction

In many application areas, there are tasks which take
a lot of expert’s time; example: interpreting the satel-
lite photos. It is desirable to automate these time-
consuming tasks.

One of the main obstacles to automating expert ac-
tivity is the fact that experts often cannot express
their activity in precise terms, they use vague (fuzzy)
terms from natural language to describe it. For exam-
ple, in satellite photo interpretation, an expert may
follow a rule like “if an object is very small, it is
probably a speckle unless a similar object appears on
different photos of the same area”; here, “very small”
and “similar” are examples of fuzzy terms from nat-
ural language.

To describe such fuzzy words, L. Zadeh proposed
to use a special generalization of 2-valued logic
called fuzzy logic, in which a statement, in addi-
tion to being absolutely true and absolutely false,

can also take additional truth values corresponding
to uncertainty. How is fuzzy logic usually formal-
ized [10, 14]? There are many seemingly reason-
able requirements that a logic should satisfy: e.g.,
since A& B and B& A are the same, the correspond-
ing and-operation should be commutative. Similarly,
since A& A means the same as A, we should ex-
pect that the and-operation should also satisfy this
property, etc. It turns out to be impossible to sat-
isfy all these seemingly natural requirements, so usu-
ally, some requirements are picked as absolutely true
(like commutativity or associativity), and others are
ignored if they contradict to the picked ones.

This idea leads to a neat mathematical theory, but
the analysis of real-life expert reasoning shows that
all the requirements are only approximately satisfied.
Therefore, to achieve a more adequate representation
of expert reasoning, instead of fixing some require-
ments as absolute and ignoring the others, we should
require all of these requirements to be satisfied to



some extent. In this paper, we show the preliminary
results of analyzing such operations.

In particular, we show that non-associative opera-
tions explain the empirical 7 = 2 law in psychol-
ogy according to which a person can normally distin-
guish between no more than 7 plus minus 2 classes.

2 First Approach

If we know the degrees of certainty (subjective prob-
abilities) p(S1) and p(S2) in two statements S; and
Sa, then possible values of p(S; & S») form an inter-
val

p = [max(p1 + p2 — 1,0), min(pi, p2)].

As a numerical estimate, it is natural to use a mid-
point of this interval:

def
P& p2 =

1 1 .
3 -max(p; +p2 —1,0) + 3 -min(p1,p2); (1)

Similar, for the “or”-operation, we can take
the midpoint of the corresponding interval

[max(p1, p2), min(p1 + p2,1)]:
def
PV =

1 1 .
3 -max(p1,p2) + 3 -min(p1 +p2,1).  (2)

This midpoint selection is not only natural from a
common sense viewpoint; it also has a deeper jus-
tification. Namely, in accordance of our above dis-
cussion, for n = 2 statements S; and Sy, to de-
scribe the probabilities of all possible Boolean com-
binations, we need to describe 22 = 4 probabili-
ties T = p(Sl&Sg), To = p(Sl&—!SQ), r3 =
p(=S1 & S2), and x4 = p(—S1 & —S2); these proba-
bilities should add up to 1: =1 + 22 + 23 + 24 =
1. Thus, each probability distribution can be rep-
resented as a point (z1,...,24) in a 3-D simplex
S ={(z1,22,23,24) |2; > 0& 21+ ...+ 24 = 1}.
We know the values of p; = p(S1) = z1 + z2 and
p2 = p(S2) = =1 + x3, and we are interested in
the values of p(S; & S2) = z1 and p(S; V S2) =
x1 + x2 + x3. Itis natural to assume that a priori, all
probability distributions (i.e., all points in a simplex
S) are “equally possible”, i.e., that there is a uniform
distribution (“second-order probability”) on this set
of probability distributions. Then, as a natural esti-
mate for the probability p(S; & S2) of S & Sa, we
can take the conditional mathematical expectation of

this probability under the condition that the values
p(S1) = p1 and p(S2) = pa:

E(p(S1 & S2) |p(S1) = p1 &p(Sa2) = p2) =

P(z1 |21 + 22 = p1 & 71 + 73 = p2).

(This idea was proposed and described in [1, 4, 5, 6,
7]; see also [2].)

From the geometric viewpoint, the two conditions
1 + x2 = py and z; + 23 = po select a straight
line segment within the simplex S, a segment which
can be parameterized by z; € [p~,p*] = [max(pi +
p2 — 1,0), min(p1, p2)]; then, z2 = p1 — 21, 23 =
P2 — X1, and z4 = 1 — (ml + x5 + .Z'3). Since
we start with a uniform distribution on &, the condi-
tional probability distribution on this segment is uni-
form, i.e., z; is uniformly distributed on the interval
[p~,p*]. Thus, the conditional mathematical expec-
tation of x; with respect to this distribution is equal
to (p~ +p*)/2, i.e., to the midpoint of this interval.
Similarly, for an “or” operation, we can conclude that

E(p(S1V S2) | p(S1) = p1 &p(S2) = p2) =

1

1 .
5 - max(pi, po) + 5 - min(py + p2, 1).

There is a problem with these operations. Indeed,
any “and” operation p; & p» enables us to produce
an estimate for P(S; & S») provided that we know
estimates p; for p(S;) and py for p(Ss). If we are
interested in estimating the degree of belief in a con-
junction of three statements Sy & Ss & S3, then we
can use the same operation twice:

o first, we apply the “and” operation to p; and p,
and get an estimate p; & p» for the probability
of Sl & 52;

e then, we apply the “and” operation to this
estimate p; &p. and ps3, and get an es-
timate (p; & p2) & ps for the probability of
(S1 & S2) & Ss.

Alternatively, we can get start by combining S
and Ss, and get an estimate p; & (p2 & ps) for
the same probability p(S; & S2 & S3). Intuitively,
we would expect these two estimates to coincide:
(p1 & p2) & ps = p1 & (p2 & p3), i.e., in algebraic
terms, we expect the operation & to be associative.
Unfortunately, midpoint operations are not associa-
tive: e.g.,

(0.4&0.6)& 0.8 = 0.2& 0.8 = 0.1,



while

0.4& (0.6&0.8) = 0.4& 0.5 = 0.2 # 0.1.

By itself, a small non-associativity may not be so
bad:

e associativity comes from the requirement that
our reasoning be rational, while

o it is well known that our actual handling of un-
certainty is not exactly following rationality re-
quirements; see, e.g., [15].

So, it is desirable to find out how non-associative can
these operations be.

To be more precise, we know that the midpoint op-
erations are non-associative, i.e., that sometimes,
(a&b)&c # a& (b&c). We want to know how
big can the difference (a & b) & ¢ — a & (b& c) can
be.

Theorem 1[8].

max |[(a&b)&c—a& (b&c)| = é

a,b,c

Theorem 2[8].

max|(aVb)Ve—aV (bVc)|

a,b,c n 9

Human experts do not use all the numbers from
the interval [0, 1] to describe their possible degrees
of belief; they use a few words like “very proba-
ble”, “mildly probable”, etc. Each of words is a
“granule” covering the entire sub-interval of values.
Since the largest possible non-associativity degree
[(a&b)&c — a& (b& c)| is equal to 1/9, this non-
associativity is negligible if the corresponding realis-
tic “granular” degree of belief have granules of width
> 1/9. One can fit no more than 9 granules of such
width in the interval [0, 1]. This may explain why hu-
mans are most comfortable with < 9 items to choose
from — the famous “7 plus minus 2” law; see, e.g.,
[11, 12].

This general psychological law has also been con-
firmed in our specific area of formalizing expert
knowledge: namely, in [3], it was shown that this
law explains why in intelligent control, experts nor-
mally use < 9 different degrees (such as “small”,

“medium”, etc.) to describe the value of each char-
acteristic.

Instead of selecting a midpoint, we can make a more
general selection of a value in the interval p. By a
choice function, we mean a function s that maps ev-
ery interval u = [u~, "] into a point s(u) € u so
that for every cand A > 0:

o s([u” +c,ut +c]) =s(u,ut]) +c
(shift-invariance);

o s([A-um, A ut]) = X s([um,ut))
(unit-invariance).

Proposition 1 [13]. Every choice function has the
forms(ju™,u™]) =a-u™ + (1 — ) - ut for some
a €[0,1].

The combinationp = a-p~ + (1 —a) -p* (first pro-
posed by Hurwicz [9]) has been successfully used in
areas ranging from submarine detection to petroleum
engineering [13]; in [17], this approach is applied to
second-order probabilities.

With this approach, we get the following formulas
which generalize the above definitions:

p & po dga'max(lh +p2—1,0)+

(1 — @) - min(py, p2); 3)
PV € a-max(pr,p)+
(1 —a)-min(p; + p,1). (4)
Theorem 3 [8].
mgax|(a&b)&c—a&(b&c)| =
a-(1-a)
2+a-(1—-a)’
mglx|(avb) Ve—aV (bVe)| =
a-(1—a)
24+a-(1—a)

Comment. This non-associativity degree is the small-
est (= 0) when o = 0 or & = 1, and the largest
(= 1/9) for midpoint operations (« = 0.5).

In our proof, it was useful to first show that the
new operations have some properties of associativ-
ity: namely, it turns out that for every «, both opera-
tions are semi-associativein the sense thata < b < ¢
impliesthata & (b& c) > b& (a & c) > c& (a & b).



3 Second Approach

A t-norm a & b describes the degree to which two
conditions A and B are both satisfied if we know
that the first condition A is satisfied with a degree a,
and the second condition B is satisfied with a degree
b.

In effect, t-norms describe the situations when both
conditions are absolutely necessary, so that if one of
the conditions is not satisfied, we completely reject
the corresponding alternative. There are many such
situations, but there are also many other situations,
in which, although we say that we want the first con-
dition to be satisfied and the second condition to be
satisfied, etc., but if one of these conditions is not
satisfied, we may still consider the corresponding al-
ternative.

For example, a computer science department may be
looking for a person who is a brilliant researcher and
a very good lecturer and is knowledgeable in all the
areas of computer science, i.e., in data structures and
in operating systems and in software engineering etc.
Ideally, all these conditions should be met. However,
if a brilliant researcher with a reputation of a good
lecturer applies for a position, then, even if he does
not know anything about operating systems, a de-
partment would most probably not definitely reject
him.

In short, in many real-life situations, even if one of
the conditions A, B is not satisfied at all, e.g., if
a = 0, we may still have some non-zero degree of
belief in the conjunction A& B — in direct contrast to
the fact that for at-norm, in this case, 0 & b = 0. This
difference between the formal notion of a t-norm and
the human use of “and” was noticed several decades
ago, in the experiments of H.-J. Zimmerman and
P. Zysno described in [18]. To get a more adequate
description of human “and”-operations, the authors
of [18] propose to use, instead of t-norm, a combi-
nation (e.g., linear combination) of a t-norm and a
t-conorm, e.g., to use a combination

def
p1L& P2 =

a-min(pg,p2) + (1 — ) - max(py, p2).  (5)

Such a combination is also not associative. How non-
associative can it be? To answer this question, we
prove that it is semi-associative:

Proposition 2. If a > b > ¢, then

a& (b&c) > b& (a&c) > c& (a&b).

Theorem 4.
max |[(a&b)&c—a& (b&c)|=a- (1 —a).

a,b,c

Proof of Proposition 2 and Theorem 4. Let a >
b>ec.

1°. Let us first prove that
a& (b&c) > b& (a&c).

Indeed, in this case, b& ¢ = (1 —a) -b+ «-c. Since
b < aand ¢ < a, we can conclude that b& ¢ < a.
Therefore,

a&(b&ec)=(1-a)-a+a-(b&c) =

l1-a)-a+a-(1-a)-b+a®-c.  (6)
Similarly, a & ¢ = (1 —a) -a+ « - ¢. The expression
for b& (a & c) depends on whether b > (a&c) or
not. Correspondingly, let us consider both cases.
1.1°. Let us first consider the case when

b> (a&c).
In this case,
b>(1-a)-a+a-c, (7
hence
b& (a&c)=a-(a&c)+(1—0a)-b=

a-(1-a)-a+(1—a)-b+a?-c. (8)
The difference between the expressions (6) and (8)
is equal to (1 — @)? - (a — b), so this difference is
non-negative. For this case, the desired inequality is
proven.
1.2°. Let us now consider the case when

b< (a&c).
In this case,
b<(l—a)-a+a-c, 9)
hence
b& (a&ke)=(1—-a) - (a&ke)+a-b=

1-a)?-a+a-b+a-(1-a)-c (10)



The difference between the expressions (6) and (10)
is equal to:

a-(1—a)-a—a’-b+a-2a—1)-c=
a- o,

where by o, we denoted the expression
l-a)-a—a-b+Q2a-1)-c

Due to (9), we have
a-b<a-(1—a)-a+a®-c,

hence

o> (1-a)a—a-(1—a)-a—a?c+(2a—1)-c=

1-a)?-a—(1-a)?-c=(1-a) (a—c).

Since a > ¢, we conclude that & > 0, hence the
difference between (6) and (10) is also hon-negative.
So, for this second case, the desired inequality is also
proven.

2°. Let us now prove that
b& (a&c) > c& (a & ).

Sincea > b, wehave a&b=(1—a)-a+ a-b.
From a > cand b > ¢, we conclude that

a&b=(1-a)-a+a-b>ec
Thus,
c&(a&b)=(1-a) (a&bd)+a-c=

1-a)?-a+a-(1-a)-b+a-c. (11)

To prove the desired inequality, we consider the same
two cases as in Part 1 of this proof.

2.1°. Let us first consider the case when
b> (a&c).

In this case, b& (a & c) is described by the expres-
sion (8). The difference between the expressions (8)
and (11) is equal to

(1-a)-2a—=1)-a+(1-a)*-b—a-(1-a)-c=

(1—0{)-0’,

where by o, we denoted the expression:

2a-1)-a+(1—a)-b—a-c.

Due to (7), we have
1-a)-b>(1-a)*a+a-(1-a)-c

hence

o> 2a-1)-a+(1-a)*a+a-(1—a)-c—a-c=

- (a—c).

Since a > ¢, we conclude that & > 0, hence the
difference between (8) and (11) is also hon-negative.
So, for this case, the desired inequality is proven.

2.2°, Let us first consider the case when
b< (a&c).

In this case, b& (a & c¢) is described by the expres-
sion (10). The difference between the expressions
(10) and (11) is equal to a2 - (b — ¢). Since b > ¢,
this difference is non-negative, hence the desired in-
equality holds in this case too.

This completes the proof of Proposition 2.
3°. Let us now prove Theorem 5.

Since every three real numbers can be sorted in the
ordera > b > ¢, to prove Theorem 5, it is sufficient
to consider all possible differences between the terms
a& (b&c), b& (a & c), and c& (a & b) that corre-
spondtoa > b > c.

Due to Proposition 2, the largest possible difference
d between these three terms is the difference between
the expressions a & (b& c) and ¢ & (a & b). The first
expression is described by the formula (6), the sec-
ond by the formula (11), thus, the difference between
these expressions is equal to the difference between
these formulas, i.e., to:

d=a-1-a)-a—a-1—-a)-c=

a-(1—a)-(a—-c).

Since a > ¢, the difference a — ¢ can take values
between 0 and 1, the largest value 1 attained when
a=1landc = 0. Thus,d < a- (1 —a), and
d=a-(1—a)whena =1andc = 0. Hence, the
desired maximum of the difference d is indeed equal
to a - (1 — ). The theorem is proven.

4 Third Approach

In the above text, we only talked about “and” and
“or” operations. What about more complex logical



operations? If we fix “and”, “or”, and “not” opera-
tions, then we can, in principle, knowing the degree
of belief in the basic statements, determine the de-
gree of belief in their logical combination (). To do
that, we represent the given formula @ as a combina-
tion of &, Vv, and -, and then consequently use our
chosen operations with degrees of belief instead of
these logical symbols.

There is a problem with this approach: Every ex-
pression can be described in several different ways
in terms of the basic logical operations &, Vv, and
—. For example, A — B can be represented as
B v —A, (A& B)V —A etc. These expressions
are equivalent in normal Boolean (2-valued) logic,
but if we use these expression to compute degrees
of belief, we sometimes end up with different re-
sults. E.g., in the above case, if d(A) = 0.6 and
d(B) = 0.7, and we use min, max,andz —» 1 — z
for &, Vv, and —, then the first expression leads to
max(d(B),1 —d(A)) = 0.7, while the second leads
to
max(min(d(A4),d(B)),1 — d(A)) =

max(0.6,0.4) = 0.6.

So, for as given expression F', instead of a single
value of d(F), we end up with different possible val-
ues pr(a,...,b) of d(F). It is therefore desirable
to describe the interval formed by the smallest and
the largest possible values of d(F) for all F that cor-
respond to a given formula. This idea was first de-
scribed by Tirksen in [16]. It turns out that if we
use min and max, then the smallest and the largest
values can be explicitly described.

By a propositional formula in a DNF (digunctive
normal form), we mean a formula of the type Cy v
...VCp,, Whereeach C; isof the typez; & ... & zp,
and z; are either the basic statements or their nega-
tions. We say that we have a complete DNF if each
C; contains all variables from the formula.

By a propositional formula in a CNF (conjunc-
tive normal form), we mean a formula of the type
D, & ... & Dy, where each D; is of the type z; vV
...Vz,, and z; are either the basic statements or their
negations. We say that we have a complete CNF if
each D; contains all variables from the formula.

Every propositional formula can be transformed into
a unique complete CNF or into a uniquely defined
complete DNF form. These unique formulas will
be denoted by CNF(F") and DNF(F'). For example,
A — B can be transformed into a complete CNF
form

—A V B, or into a complete DNF form (A& B) V
(mA&B)V (mA&—B).

Proposition 3 [19]. Let & = min, V = max, and

—(z) = 1—=z. Then, for every propositional formula
F(A,...,B),andfor al valuesa, ..., b,

pDNF(F)(aa"'7b) SpF(aa"wb) <

pCNF(F)(a; ooy D).

So, for every formula F', we can take

[PDNF(F) (aa ) b)apCNF(F) (aa s 5b)]
as the desired interval. In particular, for the F' =
A& B, we get the interval [p—,p™*], where: p~ =
min(a, b), and p* is equal to

min(max(1 — a,b), max(a, 1 — b), max(a, b)),

and for F = AV B, we get the interval [p~,p*],
where p~ is equal to

max(min(1 — a, b), min(a, 1 — b), min(a, b)),

and p™ = max(a, b). For these intervals, Hurwicz
criterion leads to the following operations:

a&bdéfa-min(a,b) +(1-0a)-(a®b), (12)

where

a®b:d§f

min(max(1 — a,b), max(a, 1 — b), max(a, b)),
and
aVbdga-(aEBb) + (a — a) - max(a, b), (13)

where

aEBbdéf

max(min(1 — a, b), min(a, 1 — b), min(a, b)).

Theorem 5.
a-(1-a)
mgmx|(a&b)&c—a&(b&c)| =
mgmx|(aVb)Vc—aV(ch)| = w.
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