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This paper presents a brief introduction into interval computations and their use in
aerospace applications.
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1. Introduction: Data Processing and Interval Computations

1.1. Data Processing

In many real-life problems, we are interested in the value y of a physical quantity
which is difficult or impossible to measure directly. For example, we cannot directly
measure the distance to a star, or the amount of oil in a given area. To measure
this quantity y, we:

e measure some other quantities x1,...,z, which are related to y by a known
dependence y = f(z1,...,2,), and then

e compute the estimate ¥y for the desired quantity y by applying the algorithm
f to the results T; of measuring the quantities z;: ¥ = f(Z1,...,ZTn)-

This two-stage process is called indirect measurement, and computing f is called
data processing.

For example, to estimate the amount of oil in a given area, we may use geophys-
ical data plus satellite images of this area.

1.2. Error Estimation of the Results of Data Processing: Mathematical
Statistics and Interval Computations

Values Z; come from measurements, and measurements are never 100% accurate;
therefore, Z; # x;. Due to the inaccuracies Az; = T; — z; of direct measurements,
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the result §y = f(Z1,...,Zy) is, in general, different from the desired value y =
f(z1,...,25): Ay =7y —y # 0. In practical applications, it is extremely important
to know what are the possible values of the difference Ay.

For example, if our estimate for amount of oil in a given area is ~100 mln. ton,
then whether we start exploiting this oil or not depends on the accuracy of this
estimate:

o If the measurement error Ay does not exceed 10 mln. ton, then the actual
value can be anywhere from 90 to 100, and we should recommend exploitation.

e On the other hand, if the measurement error Ay can be as large as 100
mln. ton, then this means that the actual value y can actually be equal
to 0 (meaning that there may be no oil at all). In this case, further, more
accurate measurements are needed because we can make a decision.

To estimate Ay, we must have some information about the errors Ax; of direct
measurements. What type of information can we have?

e The manufacturer of the measuring instrument gives us a guaranteed error A;,
i.e., a value for which |Az;| < A;. (Without such a guarantee, a measurement
result does not restrict possible values of z; and thus, it is not a measurement.)

e In some cases, in addition to the upper bounds A;, we know probabilities of
different values of Ax;.

If we know probabilities, then we have a typical problem of mathematical statistics:
given probability distributions for Az; = Z; — Ax;, find the probability distribution
for y = f(x1,-..,z,)- To get the probabilities of Ax;, we calibrate the measuring
instrument, i.e., we compare its results with the results of a better (standard)
measuring instrument.

However, there are two important situations when we do not know these prob-
abilities:

e In fundamental physics, we perform measurements on the cutting edge, so no
better instrument is possible at all.

¢ In manufacturing, calibration of all sensors is potentially possible, but, in
practice, too expensive.

When we do not know the probabilities, we only know that |Z; — z;| < A, i.e., the
only information about z; is that z; belongs to the interval [Z; — Ay, Z; + A;]. For
example, if the measured value of the current is # = 1 A, and the manufacturer
guarantees the measurement error to be within +0.1 A, then the actual value of z
can be any number from the interval [0.9,1.1].

In this case, the problem of estimating the error of indirect measurement can be
reformulated as follows:

o we know n intervals x; = [Z; — A, T; + Ay,
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e we know an algorithm f which transforms n real numbers z;,...,z, into a
real number y, and

e we want to compute the interval
Y = F Xty Xn) = {f(@1, . 70) | 3 € X1},

This problem is called the basic problem of interval computations, and methods for

solving this problem are called interval mathematics®>8.

1.3. Linearization Is Not Always Possible

If a function f is smooth, and the errors Az; are small, then we can neglect quadratic
terms in f, and get explicit formulas for y. Due to our approximation, we get
approrimate endpoints of the interval y: the actual values y can be, therefore,
slightly outside this approximate interval.

In many applications, it is OK, but in some real-life situations, the consequences
of a possible error are so serious that we need to guarantee that y is contained in
the resulting interval y.

1.4. Interval Computations are Difficult

In general, the interval computation problem is NP-hard even for quadratic func-
tions f(z1,...,zn) (see, e.g., *). In plain English, this means that it is highly
unprovable that we will be able to find a general feasible algorithm that computes
the exact range for all functions f and all intervals x; in reasonable time. Since we
cannot compute the exact range, what can we do instead?

We wanted to compute the exact range y because we wanted to get an interval
that is guaranteed to contain the desired value y, and the range definitely contains
this value. If we cannot compute the exact range in reasonable time, we can compute
the approximate interval Y for the range. The only way to guarantee that the new
interval still contains y is to make sure that this new intervals contains the entire
range y C Y, i.e., that this interval is an enclosure for the desired range.

In these terms, interval mathematics is an art of computing good narrow enclo-
sures for the range of a given function f(z1,...,z,) on given intervals xi,...,X,.

1.5. Methods of Interval Mathematics: A Very Brief Introduction

Interval mathematics started, in the 1950s, with the observation that for simple
arithmetic operations f(x1,%2) = x1 + x2, 1 — T2, etc., the range can be computed
explicitly; e.g.:

[z1

o]+ [zy, 23] = [27 + 25,2 + 23 ];

[z, 2f] = [2y, 2] = [0y —af, 2 — 23 ];

[.Z'l_,:l:'ii_] ) [-Tz_am;_] = [mln(ml_ $2_7m1_ .’L';_,.'L'—f xz_,mi" 1';_),

max(a:f : (L';,IL'; : fl';_,mi'_ : -'1727,.'171‘_ : .TL’;_)]
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The corresponding expressions are called formulas of interval arithmetic.

It turns out that we can use these expressions to get reasonable enclosures for
arbitrary functions f. Indeed, when the computer computes the function f, it
parses the function, i.e., it represents the computation as a sequence of elementary
arithmetic operations. It can proven, by induction, that if we start with intervals
and replace each arithmetic operation with the corresponding operation of interval
arithmetic, at the end, we get an enclosure for f. For example, if f(z) = z- (1 —z),
represent f as a sequence of two elementary operations:

e r:=1— 1z (r denotes the 1st intermediate result);
o y:=x-r.
In the interval version, perform the following computations:
er:=1-x;
e y:=Xx-r.
In particular, when x = [0, 1], compute the intervals r := [1,1] — [0,1] = [0, 1], and
y :=[0,1]-[0,1] = [min(0-0,0-1,1-0,1-1),max(0-0,0-1,1-0,1-1)] =[0,1].

The interval [0, 1] is indeed an enclosure of the actual range [0,0.25].

The enclosure obtained by using the above simple idea is often too wide. One
of the main objectives of interval computations is to make this enclosure narrower.
One way to do that is to use the mean value theorem, according to which f(z) =
fzo) + f1(€) - (x — mo) for some value £ between x¢ and z. Thus, if we take, as xo,
the midpoint of the interval x of width w, we will have |z —zo| < w/2, f'(§) € f'(x),
and thus, f(x) C f(zo) + f'(x) - [-w/2,w/2]. If we do not know the exact range
f'(x), we can use the enclosure for this range. Similar formulas can be easily written
for the case of several variables.

In many cases, the above idea leads to a reasonable enclosure. If the enclosure is
still too wide, we can divide the original box x; X ... X x,, into sub-boxes, compute
the enclosure for each of these subboxes, and then take the union of the resulting
enclosures.

2. Why Intervals in Aerospace Applications?

Interval computations started with planning a mission to the Moon. To get guar-
anteed estimates for this problem, Ramon E. Moore, then Stanford’s Ph.D. student
working on 1959 NASA-oriented project, pioneered the new techniques.

Why methods of interval computations are needed in aerospace applications:

e First, we want to guarantee a mission, we want to guarantee that a spaceship
hits the Moon (or another planet), and interval computations provide us with
the guaranteed computation results.
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e Second, many NASA missions are missions into the unknown. We simply do
not know the exact values of the parameters characterizing the distant planet’s
surface, or the corresponding probabilities; the only thing we may know for
planning a mission are intervals of possible values of these parameters.

e Finally, one of the main goals of NASA missions is to produce solid scientific
results, and “solid” means guaranteed.

In this paper, we will consider two case studies of using intervals in aerospace appli-
cations: processing remote sensing data and detecting possible faults in aerospace
structures.

3. Case Study: Reliable Sub-Division of Geological Areas

This case study is described, in detail, in our paper’.

In geophysics, appropriate subdivision of an area into segments is extremely
important, because it enables us to extrapolate the results obtained in some lo-
cations within the segment (where extensive research was done) to other locations
within the same segment, and thus, get a good understanding of the locations which
weren’t that thoroughly analyzed. The subdivision of a geological zone into seg-
ments is often a controversial issue, with different evidence and different experts’
intuition supporting different subdivisions.

For example, in our area — Rio Grande rift zone — there is some geochemical
evidence that this zone is divided into three segments®:

e the southern segment which is located, approximately, between the latitudes
y = 29° and y = 34°;

e the central segment — from y = 34.5° to y = 38°; and
e the northern segment — from y = 38° to y = 41°.

However, in the viewpoint of many researchers, this evidence is not yet sufficiently
convincing.

It is therefore desirable to develop new techniques for zone sub-division, tech-
niques which would be in the least possible way dependent on the (subjective)
expert opinion and would, thus, be maximally reliable. To make this conclusion
more reliable, we use, instead of the more rare geological samples, a more abundant
topographical information (this information, e.g., comes from satellite photos). We
can characterize each part of the divided zone by its topography.

In topographical analysis, we face a new problem: of too much data, most of
which is geophysically irrelevant. To eliminate some of this irrelevant data, we can
use the Fourier transform; indeed, it is known that while (at least some) absolute
values of the map (forming a so-called spectrum) are geophysically meaningful, the
phases usually are random and can be therefore ignored. So, we should only use
the spectrum.
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Table 1:
| i | 20 | 30| 31| 32| 33| 34]

| s |028|024] 021016020029

| 35 [ 36 | 37 | 38 | 30 | 40 | a1 |

| 0.31 ] 0.35 | 0.46 | 1.00| 0.80 | 0.96 | 0.74

Since we are interested only in the large-scale classification, it makes sense to
only use the spectrum values corresponding to relatively large spatial wavelengths,
i.e., wavelengths L for which L > L, for some appropriate value Lg. In particular,
for the sub-division of the Rio Grande rift, it makes sense to use only wavelengths
of Lo = 1000 km or larger.

Also, for the Rio Grande Rift, we are interested in the classification of horizontal
zones, so it makes sense to divide the Rio Grande Rift into 1° zones [y~,y*] (with
y from y~ = 30 to y* = 31, from y~ = 31 to y* = 32, ..., from y~ = 40
to yT = 41). For each of these zones, we take the topographic data, i.e., the
height h(x,y) described as a function of longitude z and latitude y, compute the
Fourier transform H(w,y) with respect to z, combine all the spectral values which
correspond to large wavelength (i.e., for which w < 1/Lg), and compute the resulting
spectral value

yT 1/Lo
S(y) = / / | (w0, )] dw dy.
y=y~ Jw=0

Since we are interested in comparing the spectral values S(y) corresponding to
different latitudes y, so we are not interested in the absolute values of S(y), only in
relative values. Thus, to simplify the data, we can normalize them by, e.g., dividing
each value S(y~) by the largest Smax of these values. In particular, for the Rio
Grande rift, the resulting values of ¥y~ = y1,y2,... and s; = S(y;)/Smax are as
follows:

Based only on these spectral values s;, we will try to classify locations into several
clusters (“segments”).

From the geophysical viewpoint, the desired zones correspond to “monotonicity
regions”: in the first zone, the values s; are (approximately) decreasing, in the
next zone, they are (approximately) increasing, etc. So, we must look for the
monotonicity regions of the (unknown) function s(y).

The problem is that the values s; are only approximately known, so we cannot
simply compare the values to determine whether a function increases or decreases.
The heights are measured pretty accurately, so the only errors in the values s; come
from discretization. In other words, we would like to know the values of the function
s(y) = S(y)/Smax for all y, but we only know the values s1 = s(y1), - .., Sn = $(yn)
of this function for the points y1,...,y,. For each y which is different from y;, it
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is reasonable to estimate s(y) as the value s; = s(y;) at the point y; which is the
closest to y (and, ideally, which belongs to the same segment as y;). For each point
yi, what is the largest possible error A; of the corresponding approximation?

When y > y;, the point y; is still the closest until we reach the midpoint ymiq =
(¥i+yit1)/2 between y; and y;41. It is reasonable to assume that the largest possible
approximation error |s(y)—s;| for such points is attained when the distance between
y and y; is the largest, i.e., when y is this midpoint; in this case, the approximation
error is equal t0 |$(Ymia) — Si|-

If the points y; and y;4+1 belong to the same segment, then the dependence of s(y)
on y should be reasonably smooth for y € [y;, yi+1]. Therefore, on a narrow interval
[yi, ¥it1], we can, with reasonable accuracy, ignore quadratic and higher terms in
the expansion of s(y; + Ay) and thus, approximate s(y) by a linear function. For a
linear function s(y), the difference s(ymia) —s(y;) is equal to the half of the difference
$(Yir1) — 8(y;) = Si+1 — 8i; thus, for y > y;, the approximation error is bounded by
0.5- |Si+1 - 8,’|.

If the points y; and y;+1 belong to different segments, then the dependence
s(y) should exhibit some non-smoothness, and it is reasonable to expect that the
difference |s;+1 — s;| is much higher than the approximation error.

In both cases, the approximation error is bounded by 0.5 - |s;41 — s;|. Similarly,
for y < y;, the approximation error is bounded by 0.5 - |s; — s;_1| if the points y;
and y;_1 belong to the same segment, and is much smaller if they don’t. In both
cases, the approximation error is bounded by 0.5 - |s; — s;—1|. We have two bounds
on the approximation error and we can therefore conclude that the approximation
error cannot exceed the smallest A; of these two bounds, i.e., the value

Az' =0.5- min(|s,~ — Siy |, |Si+1 — Szl)

As aresult, instead of the exact values s;, for each i, we get the interval s; = [s; , sj]
of possible values of s(y), where s;” = s; — A; and s;'r = 8; + A;. In particular, for

the Rio Grande rift, we get:
s1 = [0.26,0.30], s2 = [0.225, 0.255], s3 = [0.195,0.225],

sq = [0.14,0.18],s5 = [0.18,0.22], s = [0.28,0.30],
s7 = [0.30,0.32],s5 = [0.33,0.37], s = [0.405, 0.515],
s10 = [0.80,1.10],s11 = [0.72,0.88], 51 = [0.88, 1.04],
s13 = [0.63,0.85].

We want to find regions of uncertainty of a function s(y), but we do not know
the exact form of this function; all we know is that for every i, s(y;) € s; for
known intervals s;. How can we find the monotonicity regions in the situation with
such interval uncertainty? Of course, since we only know the values of the function
s(y) in finitely many points y;, this function can have as many monotonicity regions
between y; and y;41 as possible. What we are interested in is funding the subdivision
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into monotonicity regions which can be deduced from the data. The first natural
question is: can we explain the data by assuming that the dependence s(y) is
monotonic?

If not, then we can ask for the possibility of having a function s(y) with exactly
two monotonicity regions. If such a function is possible, then we are interested in
possible locations of such regions. If such a function is not possible, then we will
try to find a function s(y) which is consisted with our interval data and which has
three monotonicity regions, etc.

This problem was first formalized and solved in”, where we developed a linear-
time algorithm for solving this problem. By applying this algorithm, we find three
monotonicity regions: [29,34], [31,41], and [37,41] - in good accordance with the
geochemical data from5.

4. Case Study: Non-Destructive Testing

This case study is described, in detail, in our papers®?°.

In many areas, e.g., in aerospace industry, in medicine, it is desirable to de-
tect mechanical faults without damaging or reassembling the original system. For
testing, we send a signal and measure the resulting signal. The input signal can
be described by its intensity r1,...,r, at different moments of time. The intensi-
ties s1,..., $m Of the resulting signal depend on r;: s; = f;(r1,...,rn), where the
functions f; depend on the tested structure.

Usually, we do not know the exact analytical expression for the dependency f;,
so we can use the fact that an arbitrary continuous function can be approximated
by a polynomial (of a sufficiently large order). Thus, we can take a structure, try a
general linear dependency first, then, if necessary, general quadratic, etc., until we
find the dependency that fits the desired data.

If a structure has no faults, then the surface is usually smooth. As a result,
the dependency f; is also smooth; we can expand it in Taylor series. Since we are
sending relatively weak signals r; (strong signals can damage the plane), we can
neglect quadratic terms and only consider linear terms in these series; thus, the
dependency will be linear.

A fault is, usually, a violation of smoothness (e.g., a crack). Thus, if there is a
fault, the structure stops being smooth; hence, the function f; stops being smooth,
and therefore, linear terms are no longer sufficient. Thus, in the absence of fault,
the dependence is linear, but with the faults, the dependence is non-linear. So, we

can detect the fault by checking whether the dependency between s; and r; is linear.
z(lc) gk) c

to these inputs, and check whether the dependence is linear. In this case, the values

rgk) and sg.k) are the inputs x1,...,Z,, but the desired ¢ is a qualitative (yes-no)

variable: we simply want to know whether there is a fault or not. If there is a fault,

then we would also like to make a quantitative conclusion of its size, location, etc.,

but the most important part of the analysis is to check whether there is any fault

at all.

So, we send several different inputs, measure the values r;"’ and s orresponding
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If the measurements were ideal, all we had to do was to check whether there are
values aj; for which, for all j and for all measurements k, we have:

(0

aj0+aj1-rgk)+...+ajn-r$f)=sJ

Solvability of a system of linear equations is easy to check.

In reality, the situation is more complicated. Measurement are usually imprecise:
the result Z of measuring the actual value x is somewhat different from the actual
value z. In many real-life situations, we do not know the probabilities of different
values of measurement error Az = ¥ — z, we only know the upper bound A of
the corresponding measurement error. As a result, the only information that we
have about the actual value z of the measured quantity is that it belongs to the
interval x = [z — A,z + A]. So, in practice, instead of the exact values of 0

i
k) (k) (k)

, we have intervals r;”’ and s;" of possible values of these quantities. The

question becomes: are these intervals consistent with the linearity, i.e., are there
§’“) € rgk) and sg-k) € sg-k) for which, for some values a;;, the above linearity

formulas hold.

and s
J
values r

In general, the solvability of the corresponding system of interval linear equa-
tions is an NP-hard problem 4, but for some cases, efficient algorithms have been
developed. For example, when we have only one (non-negative) input and only one
output, with non-intersecting intervals r(!) < r(® < .. the solvability of the corre-
sponding system of linear equations can be proven to be equivalent to the following
inequality:

sO— — g(k)+ s+ — gk)—
ST e S S
We tested this method on the dependence of the energy E of the ultrasound response
on the voltage V that causes the original ultrasound signal. The results show that
non-linearity is indeed an indication of a fault:

For faultless plates, the above inequality is indeed true, meaning that the mea-
surement results are consistent with linearity.

For plates with faults, this inequality is not satisfied, meaning that the depen-
dence is non-linear.

5. Other Applications and Future Work

Other successful aerospace applications of interval techniques® range from telema-
nipulation to robot navigation to analysis of multi-spectral satellite images.
Another application is to eliminating outliers from a gravity database. The
University of Texas at El Paso hosts a huge complied database of gravity measure-
ments. These measurements can be very useful for geophysics. The main problem
with this database is that some measurement results are erroneous (outliers), and
these erroneous results spoil the analysis. A natural approach to eliminating the
outliers is as follows: if the difference between the measured gravitational forces in
two nearby points is larger than physically possible, this means that one of these
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measurement results in an error. Since differences are small, at first glance, we can
o of o o
use linearization: Af =~ E Dz - Az;. However, in this case, linearization does not
»

work because for the expressiozn describing dependence of the gravitation field on
the parameters derivatives can take arbitrary large values. Here, interval techniques
help.

How can we make these applications even more successful? A natural way to
do that is to take into consideration that engineers and scientists traditionally use
statistical methods to describe uncertainty. In many practical situations, we do not
know the probabilities, so intervals are a reasonable approach. In many practical
cases, however, we have partial information about probabilities. Interval methods
ignore this information; so, we need combined methods which would take this partial
information into consideration.
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