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1 Introduction: Uncertainty in Risk Analysis

1.1 Uncertainty in risk analysis: why

By definition, risk analysis deals with situations with uncertainty, i.e., with
situations in which we do not have a complete and accurate knowledge about
the state of the system. It is therefore very important that we be able to
represent uncertainty in risk analysis as adequately as possible.

1.2 First component of uncertainty description: interval
(set) uncertainty

In order to fully describe a system, we must know the exact values of all the
physical quantities characterizing this system. For example, in environmental
problems related to chemical pollution, a polluted system (e.g., a lake) can be
fully described if we know the exact concentration of different pollutants in
different parts of the lake.

Thus, to describe the uncertainty of our knowledge about a system, we must
describe the uncertainty with which we know the values of each of the quantities
(parameters) describing the system. Uncertainty means that we do not know
the exact value of the quantity, several different values may be possible. For
example, we may not know the exact value of the concentration but we may
know that this concentration is between, say, 10−5 and 10−3. In this case,
any value from the interval [10−5, 10−3] is possible (Moore, 1979), (Hansen,
1992), (Hammer et al, 1993), (Kearfott, 1996), (Kearfott & Kreinovich, 1996),
(Berleant & Kuipers, 1997), (Interval, 2001).

An important risk-related situation that leads to intervals is when a mea-
surement does not detect any presence of a certain substance because its con-
centration x is below the detection limit D. In this case, the only information
we have about x is that x belongs to the interval [0, D].

In general, we usually known an interval x of possible values of the unknown
quantity x – or, sometimes, a more general set X of possible values of x (different
from an interval, e.g., the union of two intervals).

1.3 Second components of uncertainty description: prob-
abilistic uncertainty

The set X of possible values describes which values of the analyzed quantity
are possible and which values are not. In addition to this information, we often
know which values are more probable and which are less probable. In other
words, we often have some information about the probability of different values
x from the interval (set) x of possible values.
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1.4 Probabilistic uncertainty: traditional techniques

In some cases, we know the exact expression for this distribution. In these cases,
we can use standard statistical techniques to represent, elicit, and aggregate
uncertainty. A survey of the corresponding techniques as applied to risk analysis
is given, e.g., in (Clemen & Winkler, 1999).

1.5 The need for techniques corresponding to partial in-
formation about probabilities

In many other real-life situations, however, we have only partial information
about the probabilities. To handle such situations, it is necessary to expand
known statistical techniques of representing, eliciting, and aggregating uncer-
tainty to problems in which we only have partial information about the proba-
bilities.

1.6 Section’s conclusions

Uncertainty is very important in risk analysis. A natural way to describe this
uncertainty is to describe a set of possible values of each unknown quantity (this
set is usually an interval), plus any additional information that we may have
about the probability of different values within this set. Traditional statistical
techniques deal with the situations in which we have a complete information
about the probabilities; in real life, however, we often have only partial infor-
mation about them. We therefore need to describe methods of handling such
partial information in risk analysis; see, e.g., (Goodman et al., 1997), (Gebhard
& Kruse, 1998).

1.7 What we are planning to do

The main objective of this report is to present an overview of risk-oriented
techniques for dealing with partial information about probabilities. Several such
techniques have been presented, often on a heuristic basis, without a proper
justification typical for traditional statistical techniques. Our goal is:

• to overview these techniques,

• to describe natural properties of these techniques,

• to provide the justification of each of these techniques, and,

• based on these justifications, to explain when each of these techniques
should be used.
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2 What Is a Natural Way of Representing Par-
tial Information About Probabilities?

2.1 Introduction to the problem

2.1.1 Which representation of probability distribution should we
choose?

In probability theory, there are many different ways of representing a probability
distribution. For example, one can use a probability density function (pdf),
or a cumulative distribution function (CDF), or a probability measure, i.e., a
function which maps different sets into a probability that the corresponding
random variable belongs to this set. The reason why there are many different
representations is that in different problems, different representations turned
out to be the most useful.

We would like to select a representation which is the most useful for prob-
lems related to risk analysis. To make this selection, we must recall where the
information about probabilities provided by risk analysis is normally used.

2.1.2 How is the partial information about probabilities used in risk
analysis?

The main objective of risk analysis is to make decisions. A standard way of
making a decision is to select the action a for which the expected utility (gain)
is the largest possible. This is where probabilities are used: in computing, for
every possible action a, the corresponding expected utility. To be more precise,
we usually know, for each action a and for each actual value of the (unknown)
quantity x, the corresponding value of the utility ua(x). We must use the
probability distribution for x to compute the expected value E[ua(x)] of this
utility.

In view of this application, the most useful characteristics of a probability
distribution would be the ones which would enable us to compute the expected
value E[ua(x)] of different functions ua(x).

2.1.3 Which representations are the most useful for this intended
usage? General idea

Which characteristics of a probability distribution are the most useful for com-
puting mathematical expectations of different functions ua(x)? The answer to
this question depends on the type of the function, i.e., on how the utility value
u depends on the value x of the analyzed parameter.
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2.2 Enter moments

2.2.1 Smooth utility functions naturally lead to moments

One natural case is when the utility function ua(x) is smooth. We have already
mentioned, in Section 1, that we usually know a (reasonably narrow) interval
of possible values of x. So, to compute the expected value of ua(x), all we need
to know is how the function ua(x) behaves on this narrow interval. Because the
function is smooth, we can expand it into Taylor series. Because the interval is
narrow, we can safely consider only linear and quadratic terms in this expansion
and ignore higher-order terms:

ua(x) ≈ c0 + c1 · (x− x0) + c2 · (x− x0)2,

where x0 is a point inside the interval. Thus, we can approximate the ex-
pectation of this function by the expectation of the corresponding quadratic
expression:

E[ua(x)] ≈ E[c0 + c1 · (x− x0) + c2 · (x− x0)2],

i.e., by the following expression:

E[ua(x)] ≈ c0 + c1 · E[x− x0] + c2 · E[(x− x0)2].

So, to compute the expectations of such utility functions, it is sufficient to know
the first and second moments of the probability distribution.

In particular, if we use, as the point x0, the average E[x], the second moment
turns into the variance of the original probability distribution. So, instead of
the first and the second moments, we can use the mean E and the variance V .

2.2.2 From numerical moments to interval-valued moments

When we know the exact probability distribution, we must use the exact values
of the first and the second moment (or mean and variance).

If we only have a partial information about the probability distribution,
then we cannot compute the exact value of these moments; instead, we have
intervals of possible values of these moments. So, from this viewpoint, a natural
representation of the partial information about the probability distribution is
given by intervals E and V of possible values of mean E and variance V .

2.3 Enter CDFs and p-bounds

2.3.1 In risk analysis, non-smooth utility functions are common

In engineering applications, most functions are smooth, so usually the Taylor
expansion works pretty well. In risk analysis, however, not all dependencies are
smooth. There is often a threshold x0 after which, say, a concentration of a
certain chemical becomes dangerous.
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This threshold sometimes comes from the detailed chemical and/or physical
analysis. In this case, when we increase the value of this parameter, we see
the drastic increase in effect and hence, the drastic change in utility value.
Sometimes, this threshold simply comes from regulations. In this case, when
we increase the value of this parameter past the threshold, there is no drastic
increase in effects, but there is a drastic decrease of utility due to the necessity
to pay fines, change technology, etc. In both cases, we have a utility function
which experiences an abrupt decrease at a certain threshold value x0.

2.3.2 Non-smooth utility functions naturally lead to CDFs

We want to be able to compute the expected value E[ua(x)] of a function ua(x)
which changes smoothly until a certain value x0, then drops it value and con-
tinues smoothly for x > x0. We usually know the (reasonably narrow) interval
which contains all possible values of x. Because the interval is narrow and the
dependence before and after the threshold is smooth, the resulting change in
ua(x) before x0 and after x0 is much smaller than the change at x0. Thus, with
a reasonable accuracy, we can ignore the small changes before and after x0, and
assume that the function ua(x) is equal to a constant u+ for x < x0, and to
some other constant u− < u+ for x > x0.

The simplest case is when u+ = 1 and u− = 0. In this case, the desired
expected value E[u(0)

a (x)] coincides with the probability that x < x0, i.e., with
the corresponding value F (x0) of the cumulative distribution function (CDF).
A generic function ua(x) of this type, with arbitrary values u− and u+, can be
easily reduced to this simplest case, because, as one can easily check, ua(x) =
u− + (u+ − u−) · u(0)(x) and hence, E[ua(x)] = u− + (u+ − u−) · F (x0).

Thus, to be able to easily compute the expected values of all possible non-
smooth utility functions, it is sufficient to know the values of the CDF F (x0)
for all possible x0.

2.3.3 From CDF to interval-valued CDF

When we know the exact probability distribution, we must use the exact values
F (x) of the CDF. If we only have a partial information about the probability
distribution, then we cannot compute the exact values F (x) of the CDF. In-
stead, for every x, we have an interval [F−(x), F+(x)] of possible values of the
probability F (x).

Comment. That in practice, we often do not have the exact values of the prob-
abilities, only intervals of possible values of these probabilities, is a well-known
fact in probability theory and practice, including risk-related practical applica-
tions; see, e.g., (Kuznetsov, 1991), (Walley, 1991), (Whalen, 1994), (Nguyen et
al., 1997), (Levi, 2000), (de Cooman et al., 2001).
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2.3.4 The notion of a p-bound

What are the properties of these bounds? From the definition of a CDF, it
easily follows that x ≤ y implies F (x) ≤ F (y). Is a similar property true for the
bounds F−(x) and F+(x)?

In principle, if we use different methods to compute these lower and upper
bounds for different x and y, we may get values x and y for which x ≤ y
and F+(x) > F+(y). However, this non-monotonicity can be easily corrected.
Indeed, due to the fact that x ≤ y, we have F (x) ≤ F (y). Thus, due to the fact
that F+(y) is an upper bound for F (y), it is also an upper bound for F+(x), and
a better upper bound than F+(x). By combining all the bounds corresponding
to all the values y ≥ x, we get a new (better) upper bound:

F+
new(x) def= max

y:x≤y
F+(y).

It is easy to check that the new upper bound is already monotonic, e.g., if x ≤ y,
then F+

new(x) ≤ F+
new(y).

Similarly, for every y ≤ x, the lower bound F−(y) for F (y) is also a lower
bound for F (x). By combining all the bounds corresponding to all the values
y ≤ x, we get a new (better) lower bound:

F−new(x) def= max
y:y≤x

F−(y).

It is easy to check that the new upper bound is already monotonic, e.g., if x ≤ y,
then F−new(x) ≤ F−new(y).

In view of this “correcting” procedure, we can, without losing generality, as-
sume that both bounds F−(x) and F+(y) are monotonic, i.e., that both bounds
are CDFs. Such a pair of two CDFs which bounds the (unknown) actual CDF
is called a probability bound, or a p-bound, for short.

So, from this viewpoint, a natural representation of the partial information
about the probability distribution is given by a p-bound.

2.3.5 Comment: real numbers, intervals, and probability distribu-
tions are particular cases of p-bounds

It is worth mentioning that several other types of uncertainty can be viewed as
particular cases of p-bounds.

For example, the case of complete certainty, when we know the exact value
x0 of the desired quantity, can be represented as a p-bound in which

F−(x) = F+(x) =
{

0 if x ≤ x0,
1 otherwise

8



-

6

x

F (x)

x0

1

The case when our only information about x is that x belongs to the interval
[x−, x+] can be represented by the following p-bound:

F−(x) =
{

0 if x ≤ x+,
1 otherwise

F+(x) =
{

0 if x ≤ x−,
1 otherwise

-

6

x

F (x)

x− x+

1

Finally, a probability distribution with a CDF F (x) can be represented as a
p-bound with F−(x) = F+(x) = F (x).

2.4 Beyond moments and p-bounds

2.4.1 What representation is the most appropriate for both types of
decision making problems?

In the previous text, we have argued that:

• for decision problems with smooth utility functions, the best representa-
tion is by interval mean and interval variance, and

• for decision problems with discontinuous utility functions, the best repre-
sentation of partial information is a p-bound.

Therefore, ideally, if we want to be able to use our partial information about the
probabilities in all possible decision problems, we should represent this partial
information by keeping both p-bounds and interval moments.
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One of the ultimate objectives of our research is to be able to handle such
combined data. We are working on it, but at present, we have not yet fully
developed the corresponding techniques. So, instead of keeping both represen-
tations (p-bounds and interval moments), we must select one of them.

Of the two corresponding representations of a probability distribution, CDF
is much more informative: if we know CDF, we can compute the moments, but
if we only know the moments, we can have many different CDFs. Thus, because
we want to make our representation as informative as possible, it makes sense
to use CDFs and their interval analogues – p-bounds.

p-bounds are actively used in risk analysis; see, e.g., (Ferson et al., 2001),
(Ramas, 2001). p-bounds is what we will be using in this survey.

2.4.2 A brief comment: how to transform moments into p-bounds

Because we want to represent every piece of information about a probability
distribution as a p-bound, we must, in particular, represent the information
about the moments as a p-bound. The general way of representing such an
information is given in (Ferson et al., 2001), (Ramas, 2001). For example, if we
know the interval [x−, x+] on which the distribution is located, and if we know
its mean E, then we can conclude that F (x) ∈ [F−(x), F+(x)], where, e.g.,

F+(x) = min
(

1,
x+ − E

x+ − x

)
.

2.4.3 What if we are not sure about the intervals either: from in-
tervals to fuzzy numbers

Before we start the actual survey, let us make one important comment. In the
above arguments, we assumed that, when we are given an interval x of possible
values of x, we are thus 100% guaranteed that the actual value x belongs to
this given interval. In reality, often, there is a possibility that x is outside this
interval. For example, the interval x may come from statistical analysis, when
it arises as confidence interval corresponding to a certain confidence level.

In this case, we know, e.g., that x belongs to x with confidence 99%. In
statistics, the probability of an error is usually used as a numerical characteristic
of confidence; so, e.g., the case when x ∈ x in 99% of the cases is described by
confidence level α = 0.01.

In principle, most statistical methods enable us to make conclusions of dif-
ferent levels of confidence. Therefore, in addition to the original confidence
interval that corresponds to a confidence level α, we can get another confidence
level corresponding to a smaller confidence level α′ < α. However, to decrease
the confidence level, i.e., to increase our belief that the actual (unknown) value
x belongs to the interval x, we must widen the interval. So, the interval xα′

correspond to the new confidence level α′ < α must contain the interval xα

corresponding to the original confidence level α.
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To describe uncertainty, it therefore makes sense to keep not just a single
interval corresponding to a single confidence level, but to keep several intervals
corresponding to different confidence levels. In more precise terms, we have
several confidence values 0 < α1 < . . . < αn < 1, and for each of these values,
we have intervals xαi

which are nested (like Russian matrioshka dolls), i.e., when
αi < αj , then xαi

⊇ xαj
.

In principle, we can have an interval xα corresponding to every possible value
α ∈ (0, 1). From the mathematical viewpoint, a sequence of nested intervals is
exactly what is called a fuzzy set (Zadeh, 1965), (Zadeh, 1973), (Klir & Yuan,
1995), (Nguyen & Kreinovich, 1996), (Nguyen & Walker, 1999), (Dubois &
Prade, 2000), or, to be more precise, a very specific type of a fuzzy set called a
fuzzy number. Specifically, a fuzzy set (or, to be more precise, a fuzzy subset of
the real line) is defined as a function µ(x) from real numbers into the interval
[0, 1]. A fuzzy set is called a fuzzy number if there exists a threshold value x0

such that the function µ(x) is (non-strictly) increasing for x ≤ x0 and (non-
strictly) decreasing for x ≥ x0. Each fuzzy number can be characterized by its
nested α-cuts, i.e., intervals xα = {x |µ(x) ≥ α}.

Vice versa, if we know the nested sequence of intervals xα, then we can easily
find a fuzzy number µ(x) for which these particular intervals are α-cuts: indeed,
for every x, µ(x) can be found as the largest α for which x ∈ xα.

Many interval operations have been extended to fuzzy numbers, and the
resulting extended operations have been successfully applied in many practical
problems, including problems related to decision making (Kacprzyk & Fedrizzi,
1990), (Slowinski, 1998) and risk analysis (Chang, 1974), including risk analysis
related to nuclear energy (Uhrig & Tsoukalas, 1999); see also (Dubois et al.,
1997), (Tsoukalas & Uhrig, 1997), (Nguyen & Sugeno, 1998), (Bezdek et al,
1999), (Bezdek et al., 1999a), (Zimmerman, 1999). However, in spite of the
examples of successful applications of some fuzzy number techniques in risk
analysis, the general techniques for such usage have not been fully developed.
Development of such techniques is one of the important future directions of our
research.

2.4.4 What if we are not sure about the intervals: from p-values to
hybrid numbers

In the previous subsection, we remarked that because we are never 100% con-
fident in an interval, it makes sense, instead of using a single interval, to use
several intervals corresponding to different confidence levels. In particular, this
conclusion can be applied to intervals [F−(x), F+(x)] of possible values of CDF
F (x). So, instead of a single p-bound, we get several nested p-bounds corre-
sponding to different confidence levels.

The resulting construction combines the ideas from two most frequently used
techniques for describing uncertainty:

• probability – because we are combining bounds on CDFs, and
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• fuzzy – because for every x, we have a nested sequence of intervals, i.e., a
fuzzy number.

In view of this combination, the nested collection of p-bounds is called a hybrid
number (Cooper et al., 1996).

From the viewpoint of risk-related applications, the situation with p-bounds
is similar to the situation with fuzzy numbers: there are several successful ap-
plications, but overall, the development of the corresponding techniques is far
from completion. Developing such techniques is one of the important future
research directions.

2.5 Section’s conclusions

A natural way to represent partial information about probabilities is by using
a p-bound, i.e., a pair of CDFs F−(x) and F+(x) for which F−(x) ≤ F+(x).
In particular, a real number, an interval, and a probability distribution are all
particular cases of p-bounds. In this survey, we will mainly overview operations
with p-bounds.

It is desirable, in the future, to extend these operations in two directions:

• to the cases when, in addition to a p-bound, we also know intervals for
mean and variance; and

• to the case, when, instead of single p-bound, we have a hybrid number,
i.e., a nested collection of p-bounds corresponding to different confidence
levels.

Because fuzzy numbers are a particular case of hybrid numbers, operations with
hybrid numbers will generalize not only our operations with p-bounds, but also
known operations with fuzzy numbers.
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3 Elicitation of Uncertainty in Risk Analysis:
Where Do p-Bounds Come From?

3.1 Where do p-bounds come from: a brief classification
of sources

Where does uncertainty description come from? In the ideal case, when there
is no uncertainty, we should be able to measure the exact values of all the
quantities and thus, get a complete description of the system under study.

Measurements are never absolutely accurate, so, even when we are able to
measure the values of the quantities of interest, the results of these measure-
ments are not exact. Thus, measurement results – coming from (inevitably)
uncertain measurements are the first source of our information about uncer-
tainty.

Measurement results are the closest we can get to the ideal complete descrip-
tions; so, it is desirable to have as many measurements as possible. However,
in some real-life situations, it is very difficult (or even impossible) to directly
measure the quantities of interest. For example, in geophysical applications, it is
difficult to impossible to measure the characteristics of the deep geological lay-
ers. To compensate for the rarity of the corresponding measurement results, we
can use the experience of human experts, e.g., geologists. Thus, expert knowl-
edge is the second major source of our information about uncertainty; see, e.g.,
(Ayyub, 2001).

In some real-life situations, we do not have measurement results, and we do
not have any specialists who possess a definite knowledge about this particular
system. In some of such cases, we do not have a large amount of information
about this specific system, but we know that this system belongs to a certain
class, and we have a general information about systems of this class. In such
situations, we can extract some information about uncertainty from this general
information, i.e., from the first principles.

Finally, in some practical situations, we do not have any direct information
about the quantity of interest y. This is a very typical situation in science and
engineering: for example, we cannot directly measure a distance to a star, or
the amount of oil in a given area. In this case, what we can do is find some other
quantities x1, . . . , xn which can be directly measured (or at least estimated), and
which are, in a known (or postulated) way, related to the desired quantity x.
For example, to measure the distance to a nearby star, we can use the fact that
the direction to the star differs while the Earth goes around the Sun. Based on
the difference (“parallax”) between the corresponding angles x1 and the known
radius of the Earth’s orbit x3, we can reconstruct the desired distance by using
known trigonometric formulas y = f(x1, x2, x3).

In general, if we know the relation y = f(x1, . . . , xn) between the quantity
of interest y and the quantities x1, . . . , xn about which we can collect some
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information, we gather the information X1, . . . , Xn corresponding to xi, and
then use this information to get an (indirect) estimate of y.

Summarizing: there are four different sources of information about uncer-
tainty: measurements, expert estimates, first principles, and indirect estimates.
In this section, we will give a brief overview of these four sources of p-bounds.

3.2 p-bounds from measurements

3.2.1 Case of exact measurements

We will start with the simplest case in which measurements are so accurate
that they can be considered absolutely precise. We have n measurement results
x1, . . . , xn, and we want to reconstruct the p-bound from these results.

After these measurements, we get n values, each of which occurred 1 out
of n times. It is therefore natural to represent these measurement results by
the following “empirical” distribution: we have x1 with probability 1/n, x2

with probability 1/n, etc. Because we represent every probability distribution
by its CDF, we should represent this distribution as a CDF Fn(x). For that,
we must first sort the values x1, . . . , xn in increasing order into a sequence
x(1) ≤ . . . ≤ x(n), and then, design the following CDF:

Fn(x) =





0 if x ≤ x(1),
1/n if x(1) < x ≤ x(2),
2/n if x(2) < x ≤ x(3),
. . .
k/n if x(k) < x ≤ x(k+1),
1 if x(n) < x

In particular, for n = 3, the distribution Fn(x) looks as follows:

-

6

x

Fn(x)

x(1) x(2) x(3)

The actual (unknown) CDF F (x) can differ from the above histogram-type
distribution Fn(x). The difference between F (x) and Fn(x) can be bounded if
we use Kolmogorov-Smirnov criterion, according to which, for any given level
of certainty, for each interval [x−, x+] (on which the variable is located), and
for any number of measurements n, we can find the value D (which decreases
to 0 as n increases) such that |F (x) − Fn(x)| ≤ D for all x. Thus, for every
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x, 0 ≤ F (x) ≤ 1 and Fn(x) − D ≤ F (x) ≤ F+(x) + D. Combining these two
inequalities, we conclude that

F (x) ∈ F(x) = [F−(x), F+(x)],

where:

F−(x) = max(Fn(x)−D, 0); F+(x) = min(Fn(x) + D, 1).

This is the desired p-bound.
An illustrative example is given by the following figure:

-

6

x

F(x)

x(1) x(2) x(3)

3.2.2 Case of measurements with known upper bounds on measure-
ment errors

As we have mentioned, measurements are never absolutely accurate, there is
always a measurement error, i.e., a non-zero difference between the actual and
measured values. We have also mentioned that the simplest possible information
about this error is the upper bound. Let us therefore consider a situation in
which we have n measurement results x1, . . . , xn, and n upper bounds ∆i on
the measurement errors. How to construct a p-bound in this case?

For every i, because the i-th measured value is xi, and the upper bound of
the measurement error of i-th measurement is ∆i, the only information that
we have about the actual (unknown) value x̃i of the i-th measured quantity is
that this quantity belongs to the interval [x−i , x+

i ], where x−i = xi − ∆i and
x+

i = xi + ∆i.
If we knew the actual values x̃i, then we could compute the histogram CDF

Fn(x), and then expand it by an appropriate value D to get the desired p-
bound. In reality, we only know the intervals of possible values of each x̃i. So,
instead of finding the exact histogram, we should find, for each x, the interval
of possible values of Fn(x) for different x̃i ∈ [x−i , x+

i ], and then increase the
resulting interval by D in both up and down directions.

The value Fn(x) is the number of values ≤ x divided by n. The larger the
values from the intervals [x−i , x+

i ] we select, the smaller this probability. Thus,
the value Fn(x) is the smallest if we take the values x+

i . Similarly, the value
Fn(x) is the largest if we build the histogram distribution by taking the smallest
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values x−i from all the intervals [x−i , x+
i ]. As a result, we get the following

algorithm for computing the corresponding p-bound:

• First, we sort the values x+
1 , . . . , x+

n in increasing order into a sequence
x+

(1) ≤ . . . ≤ x+
(n), and then, design the following CDF:

F−n (x) =





0 if x ≤ x+
(1),

1/n if x+
(1) < x ≤ x+

(2),

2/n if x+
(2) < x ≤ x+

(3),

. . .
k/n if x+

(k) < x ≤ x+
(k+1),

1 if x+
(n) < x

• Second, we sort the values x−1 , . . . , x−n in increasing order into a sequence
x−(1) ≤ . . . ≤ x−(n), and then, design the following CDF:

F+
n (x) =





0 if x ≤ x−(1),
1/n if x−(1) < x ≤ x−(2),
2/n if x−(2) < x ≤ x−(3),
. . .
k/n if x−(k) < x ≤ x−(k+1),

1 if x−(n) < x

• Finally, we conclude that

F (x) ∈ F(x) = [F−(x), F+(x)],

where:

F−(x) = max(F−n (x)−D, 0); F+(x) = min(F+
n (x) + D, 1).

This is the desired p-bound.

3.2.3 Important comment: relationship between interval measure-
ments and Dempster-Shafer techniques

For precise measurements, we had a direct interpretation of the histogram distri-
bution Fn(x): it describes the distribution in which we have x1 with probability
1/n, x2 with probability 1/n, etc. The resulting p-bound is, therefore, a com-
bination known as a mixture:

Fn(x) =
1
n
· Fx1(x) + . . . +

1
n
· Fxn(x),
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where Fy(x) is a p-bound (actually, a CDF) that describes the exactly known
real number (we have described this CDF in the previous section).

A similar interpretation
makes sense for the mixture p-bound [F−n (x), F+

n (x)]: with probability 1/n,
we have a real number from the interval x1 = [x−1 , x+

1 ]; with probability 1/n, we
have a real number from the interval x2 = [x−2 , x+

2 ]; etc. The resulting p-bound
is, therefore, a combination

Fn(x) =
1
n
· Fx1(x) + . . . +

1
n
· Fxn

(x),

where Fy(x) = [F−y , F+
y ] is a p-bound that describes the interval y (we have

described this p-bound in the previous section), and addition of two intervals is
understood as a component-wise operation:

[F−(x), F+(x)] + [G−(x), G+(x)] def= [F−(x) + G−(x), F+(x) + G+(x)].

In other words,

F−n (x) =
1
n
· F−x1

(x) + . . . +
1
n
· F−xn

(x);

F+
n (x) =

1
n
· F+

x1
(x) + . . . +

1
n
· F+

xn
(x).

The above representation, in which:

• with probability 1/n, we have a real number from the interval x1;

• with probability 1/n, we have a real number from the interval x2,

• etc.

is a particular case of so-called Dempster-Shafer representation, in which we
have:

• n sets (e.g., intervals) x1, . . . ,xn (called focal elements),

• n probabilities p1, . . . , pn that add up to 1 (these probabilities are called
masses),

and we know that we can divide the general population into n groups, so that
elements of i-th group all belong to the interval xi and the portion of elements
which belongs to i-th group is equal to pi.

The above interpretation corresponds to xi = [x−i , x+
i ] and p1 = . . . = pn =

1/n.
Likewise, every Dempster-Shafer “knowledge base” can be represented as a

p-bound
Fn(x) = p1 · Fx1(x) + . . . + pn · Fxn(x),
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i.e., with
F−n (x) =

∑
{pi |x+

i ≤ x}
and

F+
n (x) =

∑
{pi |x−i ≤ x}.

For example, for x1 = [0, 3], x2 = [1, 2], and p1 = p2 = 1/2, we get the
following p-bound:

-

6

0 1 2 3

1
2

1

3.2.4 Important comment: p-bound is not a complete description of
uncertainty information, so “no aggregation” is sometimes a
good policy

The above example is a good example to explain that although p-bound is a
useful (and often sufficient) partial information about the distribution, it is not
the complete information. Indeed, let us consider the probability that the value
x is inside the interval [2, 3].

• According to the original Dempster-Shafer representation, in which this
interval is one of the focal elements with the probability 1/2, this proba-
bility is at least as large as 1/2.

• However, if we only use the p-bound, it is quite possible that the actual
distribution includes 0.5 with probability 1/2 and 2.5 with probability 0.5.
Indeed, the corresponding CDF is within the above bounds:

-

6

0 1 2 3

1
2

1
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In this case, the probability of x to be within the interval [1, 2] is actually
equal to 0.

This example shows that when transforming the information into a p-bound
and then aggregating these results into a single p-bound, we often lose some
information. As a result, in situations where we do not have a lot of information,
it may be beneficial, instead of (or at least in addition to) converting all the
information into p-bounds and aggregating these p-bounds, to keep the original
data. In short, “no aggregation” may sometimes be a good policy.

3.2.5 Relationship between interval measurements and Dempster-
Shafer techniques (continued)

The above example also shows that although we can transform a Dempster-
Shafer knowledge base into a p-bound, we cannot uniquely reconstruct the orig-
inal knowledge base from the resulting p-bound.

Indeed, the exact same p-bound would have appeared if we started with a
different Dempster-Shafer knowledge base, in which the probabilities (masses)
are the same (p1 = p2 = 1/2), but the focal elements are different: x1 = [0, 2]
and x2 = [1, 3].

3.2.6 Case of measurements with known probability distributions
for measurement error

In addition to the upper bounds on the measurement errors, we sometimes know
(or at least postulate) the probability distributions of these errors. In this case,
for each measurement, we know the CDF Fi(x) corresponding to possible actual
values x̃i of the quantity measured in this particular measurement. Usually, this
distribution is Gaussian, or sometimes uniform.

Because each of the measurement results occurred 1 time out of n, the CDF
for describing all n measurement results can be obtained as a combination of n
CDFs Fi(x) with the coefficients 1/n (just like we did for real numbers and for
intervals):

Fh(x) =
1
n
· F1(x) + . . . +

1
n
· Fn(x).

This mixture distribution Fh(x) describes the results of the measurement. The
actual CDF F (x) may be different from Fh(x). To get the bounds for the
actual distribution, we add and subtract the parameter D coming from the
Kolmogorov-Smirnov criterion. As a result, we conclude that

F (x) ∈ F(x) = [F−(x), F+(x)],

where:

F−(x) = max(Fh(x)−D, 0); F+(x) = min(Fh(x) + D, 1).
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This is the desired p-bound.
In some cases, we get only a partial information about the probability

distribution of measurement error. In our approach, this partial informa-
tion corresponding to i-th measurement is described by a p-bound Fi(x) =
[F−i (x), F+

i (x)]. As a result of combining these p-bounds, we first get a mixture
p-bound:

Fh(x) = [F−h (x), F+
h (x)] =

1
n
· F1(x) + . . . +

1
n
· Fn(x),

i.e.,

F−h (x) =
1
n
· F−1 (x) + . . . +

1
n
· F−n (x);

F+
h (x) =

1
n
· F+

1 (x) + . . . +
1
n
· F+

n (x);

and then use this mixture p-bound to get a guaranteed enclosure for the actual
(unknown) CDF F (x):

F (x) ∈ F(x) = [F−(x), F+(x)],

where:

F−(x) = max(F−h (x)−D, 0); F+(x) = min(F+
h (x) + D, 1).

3.3 p-bounds from expert estimates

3.3.1 General overview

Information coming from measurements can be supplemented by expert knowl-
edge. We have argued, in Section 2, that the most appropriate formalism for
describing the expert information is p-bounds, i.e., estimates for the values of
the CDF F (x). However, the fact that p-bounds are a good representation for
our problems does not mean that the expert knowledge is actually presented
in this form. Our goal is to convert whatever the expert says into a p-bound.
Depending on how difficult this translation is, we will consider three types of
expert information:

First, it is possible that an expert’s information is expressed directly in our
desired form, as estimates for the values F (x). This information is already in
the form a p-bound, so no further transformation is needed.

Second, it is also possible that the expert provides us with numerical esti-
mates for some other characteristics of the probability distribution, e.g., shape
of the distribution, its moments (first and second), percentiles, mode (for a
unimodal distribution), bounds on density, information about symmetry, etc.
There exist algorithms (Ferson et al., 2001), (Ramas, 2001) that translate this
information into p-bounds. (We have already mentioned some such algorithms
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when we talked, in Section 2, about the necessity to describe moments in terms
of p-bounds.)

From the viewpoint of translation into p-bounds, the most difficult third type
of expert knowledge is when an expert does not provide us with any numerical
information, but instead, describes his opinion by using words from natural
language. For example, an expert can say that the value x is “small”, or “around
0.5”. This clearly is an additional information, but how can we describe it in
terms of p-bounds?

3.3.2 Case of natural-language estimates

The problem with words from natural language is that they are usually vague.
Let us take the word “small” as an example. When the value of, say, concentra-
tion, is really small, everyone would 100% agree that this value is small indeed.
When the value is really large, everyone would agree that this value is not small.
For intermediate values, however, we typically have some disagreement.

The need to translate expert knowledge from natural language to a
computer-understandable language of real numbers was recognized as early as
the 1960s, when the designs for the first expert systems were begun. A special
formalism called fuzzy logic was created to help us capture the meaning of words
for manipulation by software. In this formalism, to represent a meaning of a
word like “small”, we assign, to every possible value x, a degree µsmall(x) to
which x is small. This degree is also called a membership value or a subjective
probability. The dependence of this degree on x is called a membership function,
or a fuzzy set.

Where do the values µ(x) come from? There are several dozen different
techniques for eliciting these values; see, e.g., (Klir & Yuan, 1995), (Nguyen &
Walker, 1999). Sometimes, the experts can present these real numbers directly.
If they cannot, then for every x, we can poll several (N) experts on whether they
believe that this particular values x is, say, small, and if M out of N experts
answer “yes”, we take µ(x) = M/N . This amounts to a social specification of
a membership function. What is a natural way to translate these membership
values into p-bounds?

We will answer this question on the example of membership functions of three
most frequent types; for a general background on probabilstic interpretations of
fuzzy, see also (Kreinovich, 1997), (Walley & de Cooman, 2001). The first type
is a function which describes words like “large”, for which µ(x) is increasing
from 0 at x = 0 to 1 for x →∞. Let us give a simple example of such function:

µlarge(x) =





0 if x ≤ 1,
x− 1 if 1 ≤ x ≤ 2,
1 if x > 2
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Suppose that the expert tells us that the actual value of some quantity X is
large. What does it say about the possible values of the probability F (x) (that
X ≤ x) for different x?

Let us start with a value x ≤ 1. For this value, µlarge(x) = 0. This means
that the values below x cannot be large, so it is reasonable to take F (x) = 0.

Let us now take a value x ≥ 2. For this value, µlarge(x) = 1, which means
that the value x is definitely large. Based on the expert opinion, we only know
that the actual value X is large. It may be below x with probability 1; in this
case F (x) = 1. It may be above X with probability 1; in this case, F (x) = 0.
So, here, the corresponding value of the p-bound (i.e., the interval of possible
values of F (x)) is F(x) = [0, 1].

What if x is in between 1 and 2, e.g., x = 1.6? In this case, the probability
µ(x) that x is large is equal to 0.6. Because the function µ(x) is increasing, the
probability µ(X) that X is large even smaller for X < x. Thus, out of all large
values, values ≤ 0.6 should have a frequency ≤ 0.6. So, because we know that
actual value X is large, we conclude that the probability F (x) cannot exceed
0.6.

In general, the value F (x) cannot exceed the probability µ(x), i.e., µ(x)
serves as the upper part F+(x) of the p-bound. The lower part F−(x) should
be 0, because we may have X so large than it is much larger than 2.

Combining these three cases, we conclude that for increasing membership
functions µ(x) like “large”, a natural translation of the membership function is
a p-bound [0, µ(x)].

The second type of membership functions that we will consider is a function
which describes words like “small”, for which µ(x) is decreasing from 1 at x = 0
to 0 for x →∞. Let us give a simple example of such function:

µsmall(x) =
{

1− x if 0 ≤ x ≤ 1,
0 otherwise
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Suppose that the expert tells us that the actual value of some quantity X is
small. What does it say about the possible values of the probability F (x) (that
X ≤ x) for different x?

Let us start with a value x ≥ 1. For this value, µsmall(x) = 0, which means
that the value x is definitely not small. Based on the expert opinion, we only
know that the actual value X is small. All values X which can be small (i.e.,
for which µ(X) > 0) are below 1, so they are all below x. Thus, all values of X
are below x with probability 1, and F (x) = 1.

What if x is in between 0 and 1, e.g., x = 0.2? In this case, the probability
µ(x) that x is small is equal to 0.8. Hence, the probability that any larger
value X > x is “small” also does not exceed 0.8. This means that if F (x) is
smaller than 1−0.8 = 0.2 (e.g., equal to 0.1) then there will be more than > 0.8
of values which are ≥ x, and thus, some values X > x cannot be reasonably
called small, in contradiction to the expert’s opinion. So, if the actual value
X is small, the probability F (x) cannot exceed 0.2. In general, the value F (x)
cannot be smaller than 1−µ(x), i.e., 1−µ(x) serves as the upper part F−(x) of
the p-bound. The upper part F+(x) should be 1, because we may have X = 0
with probability 1.

Combining these two cases, we conclude that for increasing membership
functions µ(x) like “small”, a natural translation of the membership function is
a p-bound [1− µ(x), 1]:
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Finally, we can consider membership functions describing terms like “around
x0”, which increase from 0 to 1 until they reach a certain value x0, and then
decrease from 1 to 0. For such membership functions, possible values (i.e.,
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values for which the degree µ(x) is large enough) are concentrated around the
real number x0, that is why such membership functions are called fuzzy numbers.

As an example, we will consider the following function corresponding to
“around 1”:

µ≈1(x) =





x if 0 ≤ x ≤ 1,
2− x if 1 ≤ x ≤ 2,
0 otherwise

-

6

¡
¡

¡
¡

¡
¡

¡
¡@

@
@

@
@

@
@

@
x

µ(x)

0 1 2

1

For a membership function of this type, with a maximum at some value x0,
similar arguments lead to the following p-bound [F−(x), F+(x)]:

F−(x) =
{

0 if x ≤ x0,
1− µ(x) if x > x0

F+(x) =
{

µ(x) if x ≤ x0,
1 if x > x0

In particular, for the above membership function “around 1”, the corresponding
p-bound has the following form:

F−(x) =





0 if x ≤ 1,
x− 1 if 1 ≤ x ≤ 2,
1 if x > 2

F+(x) =
{

x if x ≤ 1,
1 if x > 1
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These three cases can be described in a way which is similar to our transfor-
mation of measurements into p-bounds. Indeed, how can we describe a fuzzy set
that corresponds to a certain property like “around 1”? A natural way to char-
acterize a fuzzy set is to describe, for every level α, the set Xα = {x |µ(x) ≥ α}
of all the values which have this property with degree at least α. Such sets are
called α-cuts, because on the graph, they really correspond to horizontal cuts.
For example, for the above membership function “around 1”, the α-cuts are
Xα = [α, 2− α]:

-

6

¡
¡

¡
¡

¡
¡

¡
¡@

@
@

@
@

@
@

@
x

µ(x)

0 1 2

1

If we, e.g., have α-cuts X0.1, X0.2, etc., corresponding to α = 0.1, α = 0.2,
etc., this means, crudely speaking, that all experts agree that x ∈ X0, that 90%
of them agree that x ∈ X0.1, that 80% of experts agree that x ∈ X0.2, etc.,
until we reach we level X0.9 in which only 10% of the experts agree; see, e.g.,
(Nguyen & Kreinovich, 1996). So, we have a natural subdivision of experts into
10 groups: 10% believe that x is somewhere on the interval X0.1 and no narrower
bounds are possible; 10% believe that x is somewhere on the interval X0.2 and
no narrower bounds are possible, etc. We thus have a typical Dempster-Shafer
knowledge base. One can easily see that if we use the above algorithm to
transform this knowledge base into a p-bound, we get exactly the p-bound that
we came up with.

Our description of transforming expert estimates into p-bounds may look
like a success story, but the reader should be aware of the limitations and pit-
falls associated with elicitation: the results may differ drastically if we select
different set of experts, and even when two groups of experts agree, they still
may be wrong, and the resulting p-bound may not contain the actual probability
distribution.

3.4 p-bounds from first principles

3.4.1 Normal distribution

The most well-known case of p-bounds coming from the first principles is the
case of normal (Gaussian) distribution. Indeed, according to the central limit
theorem, under some reasonable conditions, the sum of many small independent
random variables tends to a normal distribution.
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Thus, when the error in the desired quantity x can be represented as the
sum x = x1 + . . .+xn of a large number of small independent error components
xi, the probability distribution for x is close to Gaussian. This is the reason
why the Gaussian distribution is so frequently observed (and used) in practice;
see, e.g., (Wadsworth, 1990). The normal distribution, like all other probability
distributions, is a degenerate (“precise”) p-bound. Alternatively, we may only
have interval of possible values for the parameters of a normal distribution. In
this case, the corresponding CDFs form a non-degenerate p-bound.

3.4.2 Cauchy distribution

There are many similar situations which lead to different classes of distributions.
For example, in a setting similar to the central limit theorem, if we keep the
variables xi small in some reasonable sense but allow them to have large (even
infinite) standard deviations by allowing thick “tails”, we get distributions from
the class of infinitely divisible distributions, the class that includes not only nor-
mal distribution, but also Cauchy distribution, with probability density function

ρ(x) =
∆

π · (∆2 + (x− a)2)
.

3.4.3 Lognormal distribution

Other examples of distributions that can be derived from first principles come
from the situations in which the error is caused by many small components
xi, but these components do not add up, they rather are combined in a more
complex manner.

Adding up corresponds to the case of additive noise n, when each error is
simply added to the actual value s, turning it into the sum s+n. In many real-life
situations, we have multiplicative noise, in which s is multiplied by some value
so that s becomes s → s ·k. The difference n = k−1 between the value k and 1
constitutes the noise. For example, when a communication signal passes through
the atmosphere, its amplitude changes depending on the specific properties of
the medium. Suppose that we have several layers with independent noise values
ni and, correspondingly, independent multiplicative coefficients ki = 1 + ni.
When a signal passes through each layer, it is multiplied by 1+ni. By the time
the signal passes through all the layers, it is multiplied by the product of many
independent coefficients ki = 1 + ni.

This example shows that it is useful to analyze the probability distribution
of the product of independent random variables whose values are close to 1.
When we apply logarithms, the product turns into the sum, so we get a normal
distribution. Thus, in general, the distribution for the product is lognormal.
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3.4.4 Weibull distributions

This example can be extended to a more general case, when the desired quantity
x describes the effect of a certain quantity y. For example, in risk analysis,
the desired quantity x may represent the effect of a certain chemical. This
effect is related to the concentration y of this chemical by some non-linear
dependence x = f(y). Addition does not make much sense for effects (this
is why the distribution of x is not Gaussian), but it often makes perfect sense
for concentrations, so it is reasonable to assume that the distribution for y is
Gaussian. Then, the distribution of the desired quantity x can be described as
the result of applying a non-linear transformation f(y) to a normally distributed
variable y. In physiology, two types of non-linear transformations are most
frequently used to describe the effect of a certain physical quantity; see, e.g.,
(Milner, 1970):

• Fechner scale, in which the perception corresponds to x = ln(y); and

• Stevens’ scale, in which the perception is best described by the value
x = yα for an appropriate parameter α.

There is a also a general symmetry-based explanation of these scales, see, e.g.,
(Nguyen & Kreinovich, 1997). Fechner’s law is a limit case of Stevens’ law when
α → 0. Thus, it is sufficient to only consider Stevens’ law.

For Stevens’ scale, the desired variable x is a power of a normally distributed
variable. The corresponding distribution is called Weibull distribution, and it
is indeed often a good fit for risk-related data. This justifies the use of Weibull
distributions as degenerate p-bounds. Alternatively, we may only have interval
of possible values for the parameters of a Weibull distribution. In this case, the
corresponding CDFs form a non-degenerate p-bound.

3.4.5 Extreme statistics

Another situation which is very useful in risk analysis applications is the sit-
uation of the “weakest link”, when a certain events happens if at least one of
the numerous quantities x1, . . . , xn exceeds a certain threshold x0. Thus, the
event occurs if the largest x = max(x1, . . . , xn) of these quantities exceeds x0.
To analyze such events, we therefore need to analyze the distribution of such
maxima. It is known that under reasonable conditions, when n →∞, the distri-
bution of the maximum tends to one of the standard distributions called extreme
statistics, or Gumbel-type distributions. Thus, for large n, we can safely assume
that the distribution of x = max(x1, . . . , xn) can be described by one of these
extreme statistics.

There are three types of extreme statistics (Galambos, 1978), (Wadsworth,
1990):

FI(x) = 1− exp(− exp(a · x + b)),
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FII(x) =
{

1− exp(1− (−x)−α) if x < 0,
1 otherwise

FIII(x) =
{

1− exp(1− xα) if x ≥ 0,
0 otherwise

3.4.6 Use of symmetry

Another use of “first principles” to derive p-bounds includes the use of symmetry
and invariance. Let us give two examples:

• Often, we have no reason to assume that some values are more probable
than others. In such situations, it is natural to select a distribution for
which the value of the probability density ρ(x) is the same for all the
points x; thus, we get a uniform distribution on an interval [a, b], for
which ρ(x) = 1/(b− a) for all x ∈ [a, b].

• Similarly, if there is no reason to believe that the probability of a correctly
functioning system to become faulty between times t and t + ∆ depend
on t, it is natural to assume that this probability is indeed constant. This
assumption leads to the exponential distribution, in which F (t) = 1 −
exp(−λ · t) for some constant λ > 0.

3.4.7 Relation with MaxEnt

It is important to make a comment here. Some of these “first principles” distri-
butions are often justified by using the Maximum Entropy principle (MaxEnt).
The entropy

S = −
∫

ρ(x) · ln(ρ(x)) dx

of a distribution with density ρ(x) describes its uncertainty, measured, e.g., by
the average number of binary (“yes”-“no”) questions that one needs to ask to
estimate the value of a randomly distributed variable with a given accuracy
ε > 0.

When we only have a partial information about the distribution, then there
are several distributions which are consistent with this information. Some of
these distributions have a larger entropy, some have a smaller one.

As an example, let us consider a situation in which all we know about a prob-
ability distribution is that it is concentrated on the interval [0, 1]. In this case,
we may have several possible distributions. We can have a uniform distribution,
for which the entropy is high. We can also have a degenerate distribution in
which the value of the quantity is equal to, say, 0.5 with probability 1. For the
second distribution, we already know the value of x exactly, so no questions
need to be asked, and S = 0.

When we want to select a single distribution representing this class of pos-
sible distributions with respect to uncertainty, then selecting a distribution in
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which x = 0.5 with probability 1 will lead to a wrong impression that there is
no uncertainty at all. Every time we select, as a representative distribution, a
distribution for which the entropy is smaller than for some other distributions
for this class, we similarly create a misrepresentation of the level of uncertainty.
From this viewpoint, it is better to select a representative distribution for which
the corresponding uncertainty is as large as possible, i.e., for which S(ρ) → max.

MaxEnt indeed leads to many of these distributions:

• If we consider all the distributions located on a given interval, then Max-
Ent leads to a uniform distribution.

• If we consider all the distributions located on values x ≥ 0 with a given
average E[x], then MaxEnt selects the exponential distribution.

• If we consider all the distributions with a given average E[x] and standard
deviation σ[x], then MaxEnt selects the Gaussian (normal) distribution.

3.4.8 p-bounds are needed in some real-life risk applications: an ex-
ample showing that MaxEnt-based techniques are not always
adequate

We have seen that the Maximum Entropy principle is a reasonable way of se-
lecting a representative probability distribution. However, we should caution
readers that some analysts do not simply use this principle to select a represen-
tative of the class of distributions, they use it to replace the class of distributions
with a single distribution. In some practical problems, this replacement is a rea-
sonable idea, and MaxEnt has many successful practical applications. However,
we would like to show that for risk problems, this idea can lead to mistaken
conclusions.

Let us consider a simple example in which we are analyzing the value of the
quantity x, e.g., a noise in some important transmission line, and we want to
make sure that this value does not exceed the transmitted signal s, because if
it does, the line becomes useless.

Let us assume that this noise x comes from a large number of possible
sources, i.e., x = x1 + . . . + xn, where xi is the amount of noise which comes
from the ith source. For each individual source of noise, we have succeeded in
decreasing it to such an extent that it no longer exceeds the detection level d.
In other words, the only information we have about each value xi is that xi

belongs to the interval [−d, d].
Because each of n components which form the noise does not exceed d, the

total noise cannot exceed n · d. In principle, it is quite possible that the noise
generated by each source is actually deterministic and equal to exactly d. In
this case, the total noise is actually equal to n · d. So, if we want to guarantee
that the noise stays below the signal level, we should require that n · d < s.
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What if we use a MaxEnt approach for this problem? For the variables
x1, . . . , xn, the only information that we have is that the corresponding vector
~x = (x1, . . . , xn) is located within a cube [−d, d]n. Thus, according to MaxEnt,
among all the probability distributions located on this cube, we should select the
one for which the entropy is the largest. Similar to the 1-D case, this MaxEnt
distribution is a uniform distribution on this cube. Therefore, if we replace the
original class of possible distributions by a single MaxEnt distribution, we thus
make an assumption that each of the variables xi is uniformly distributed on
the interval [−d, d], and that these variables are independent.

For each uniform distribution of xi, the expected value is Ei = 0, and the
variance Vi = σ2 is equal to d2/6. Because all the variables xi are independent,
the expectation E of the sum x = x1 + . . . + xn is equal to the sum of the
expectations, i.e., to 0, and the variance V [x] is equal to the sum of n variances,
i.e., to n · d2/6.

Due to the central limit theorem, for large n, the distribution of the sum
x1 + . . . + xn is close to the normal distribution with the mean 0 and variance
V . Therefore, with probability ≥ 1 − 10−8, the actual value of the quantity x
lies within 6σ from the mean. In other words, with a probability 1− 10−8, the
value of x cannot exceed 6 ·

√
n · d2/6 =

√
6n · d. So, if we replace the original

class with its MaxEnt representation, we conclude that |x| ≤ √
6n ·d. Hence, we

would conclude that as long as
√

6n·d < s, transmission is safe (with probability
of its being unsafe ≤ 10−8).

For large n, however,
√

6n ¿ n. Thus, when we select a signal s which is
slightly larger than

√
6n ·d, this signal will be much smaller than the signal level

n · d which is really needed for the safe transmission. So, the use of MaxEnt
distribution instead of the whole distribution class will lead us to an erroneous
unsafe choice.

There are many examples like this. What these example show is that in
risk analysis, we cannot replace the class of distribution (as represented by a
p-bound) by a single distribution, even by the most adequate one. In short,
what this example shows is that in many risk analysis problems, traditional
probabilistic techniques are not sufficient, we need more general, more realistic
approaches.

3.5 p-bounds from indirect estimates (measurements)

3.5.1 General overview

Finally, let us consider indirect estimation (measurement), in which we know the
relation y = f(x1, . . . , xn) between the quantity of interest y and the quantities
x1, . . . , xn about which we can collect empirical information, we gather the
information X1, . . . , Xn corresponding to xi, and then use this information to
get an (indirect) estimate of y.

A natural way to represent uncertainty about Xi is by using p-bounds, so
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we have n p-bounds X1, . . . , Xn, and we must describe the p-bound Y corre-
sponding to y = f(x1, . . . , xn).

There are several methods for solving this problem. For example, when the
p-bounds X1, . . . , Xn are actually probability distributions, then we can use a
Monte Carlo method to find Y , i.e., we can:

• simulate the random variables x1, . . . , xn distributed according to the cor-
responding probability laws,

• substitute the results x
(k)
1 , . . . , x

(k)
n of the simulation into the function f ,

and then

• extract the actual distribution for y from the results y(k) =
f(x(k)

1 , . . . , x
(k)
n ) (1 ≤ k ≤ N) of this substitution.

However, when we have only partial information about the probability distri-
bution, the problem becomes much more complex.

In general, the problem of computing the best bounds for Y is provably very
complex. Even in the case when all the inputs Xi are intervals, this problem is
known to be NP-hard; see, e.g., (Kreinovich et al., 1997). This means, crudely
speaking, that the effort needed to solve the problem increases as a function of
the number of problem elements by a function that is bounded by no polynomial
function (it grows exponentially). Consequently, although toy problems with
very few elements may be solvable in practice, but large or even moderate-sized
problems are effectively impossible to solve.

For those who are not familiar with this term, NP-hard is a computer sci-
ence precise term formalizing the intuitive notion of “very difficult (practically
impossible) to solve the corresponding general problem”.

Because we cannot have an algorithm that would generate the exact p-bound
for Y in all possible situations, we have to do two things:

• First, because there is no “universal” algorithm that would find an exact
p-bound for an arbitrary function f , we can try to find a class of functions
for which the corresponding computation is possible.

• Second, because there is no algorithm that would always find an exact
upper bound, we should develop algorithms which find an approximate
(enclosing) p-bound. This enclosing p-bound may not be always exact,
but we want to make it as close to the actual p-bound as possible.

Let us briefly overview the results of both efforts.

3.5.2 Case of simple functions f(x1, . . . , xn)

In risk analysis, often, the formulas are pretty simple. For example, the en-
vironmental effect y of a certain chemical can be simply proportional to the
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product of the concentration x1 and the exposure time x2. If we have p-bounds
for the concentration x1, for the exposure time x2, and for the coefficient of
proportionality x3, then the problem becomes simply: given p-bounds X1, X2,
and X3 for x1, x2, and x3, find the p-bound Y for the product y = x1 · x2 · x3.

For such simple functions, there are exact formulas describing the corre-
sponding p-bounds; see, e.g., (Ferson et al., 2001), (Ramas, 2001). The resulting
combination depends on whether the variables xi are independent or correlated.
How can we describe the corresponding degree of dependence?

We are describing uncertainty in terms of bounds on CDFs. So, if we have
two variables x1 and x2, then their uncertainty is described by bounds on the
values F1(x1) and F2(x2). Dependence or correlation relate to describing a
joint distribution for x1 and x2 based on the marginal distributions F1(x1) and
F2(x2). For the 2-D joint distributions, the arguments similar to the ones that
justified the selection of CDFs leads us to considering 2-D CDFs F (x1, x2) =
P (X1 ≤ x1 &X2 ≤ x2).

In these terms, independence means that F (x1, x2) = F1(x1) · F2(x2). In
other words, if we know the two probabilities p1 = F1(x1) and p2 = F2(x2),
then the joint probability F (x1, x2) is equal to p1 · p2. It is natural to try
to describe possible dependencies in terms of similar probability-combination
functions. Specifically, for each values p1 ∈ [0, 1] and p2 ∈ [0, 1], we describe
p1 ∗ p2 as the the joint probability F (x1, x2) corresponding to the values x1 and
x2 for which F1(x1) = p1 and F2(x2) = p2. The resulting combination operation
∗ : [0, 1]× [0, 1] → [0, 1] is called a copula; see, e.g., (Nelsen, 1999).

So, it is natural to use copulas to describe dependence. There are numerous
reasonable reasonable copula operations. The most frequently used copulas are
the product p1 · p2, which corresponds to independence, and min(p1, p2) and
max(p1 + p2 − 1, 0), which describe the possible bounds for F (x1, x2) when we
have no information about the possible dependence between x1 and x2.

The existing algorithms (Ferson et al., 2001), (Ramas, 2001) describe the
results of applying standard arithmetic operations (+,−, ·, /) and elementary
functions under these and several other reasonable copulas.

3.5.3 Computing enclosures

Even for simple arithmetic operations, the exact formulas for p-bounds were only
obtained in the 1980s. Not surprisingly, for many even slightly more complex
functions f(x1, . . . , xn) – not to say anything about really complex ones – we
do not know how to compute the exact p-bounds for Y .

The fact that we know the p-bounds for the results of arithmetic operations
enables us to compute the enclosure for the resulting p-bound as follows:

• first, we parse the expression f(x1, . . . , xn), i.e., represent computing f as
a sequence of basic arithmetic operations;
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• then, we replace each operation with the corresponding operation with
p-bounds, and perform these operations in the original order.

For example, if f(x) = x·(1−x), we represent f as a sequence of two elementary
operations:

• r := 1− x (r denotes the 1st intermediate result);

• y := x · r.
If we know the interval x = [0, 1] of possible values of x, then we perform the
following computations:

• r := 1− x;

• y := x · r.
For intervals,

x1 − x2 = [x−1 − x+
2 , x+

1 − x−2 ],

x1 · x2 =

[min(x−1 · x−2 , x−1 · x+
2 , x+

1 · x−2 , x+
1 · x+

2 ), max(x−1 · x−2 , x−1 · x+
2 , x+

1 · x−2 , x+
1 · x+

2 )].

In particular, when x = [0, 1], we compute the intervals r := [1, 1]−[0, 1] = [0, 1],
and

y := [0, 1] · [0, 1] = [min(0 · 0, 0 · 1, 1 · 0, 1 · 1), max(0 · 0, 0 · 1, 1 · 0, 1 · 1)] = [0, 1].

The interval [0, 1] is indeed an enclosure for the actual p-bound [0, 0.25].
Sometimes it is possible by rearranging expressions to obtain narrower p-

bounds. For example, in the above example, if the square of the quadratic
equation is completed to yield:

f (x) =
1
4
−

(
x− 1

2

)2

,

then the exact range is returned if this expression is computed using interval
arithmetic. There exist many methods for performing such computations, and
several packages are available, the most actively used is GlobSol; these methods
and packages (including GlobSol) are presented at the interval computations
website (Interval, 2001).

These methods and packages are currently oriented towards interval com-
putations, mainly because p-bounds were mostly used for simple operations.
Because a p-bound is, in effect, a collection of intervals, we expect these meth-
ods to be naturally generalizable to arbitrary p-bounds.
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3.5.4 An important case of p-bounds from indirect estimates (mea-
surements): algorithms for “black-box” programs

In many real-life applications, an algorithm for computing f(x1, . . . , xn) may be
written in a language for which a parser is not available, or a program is only
available as an executable file, with no source code at hand. In such situations,
when we have no easy way to analyze the code, the only thing we can do is to
take this program as a black box: i.e., to apply it to different inputs and use the
results of this application to compute the desired p-bound.

Such black-box algorithms are summarized in the survey (Trejo &
Kreinovich, 2001). For example, a reasonable Monte Carlo type algorithm
exists for computing the interval bound for the case when the inputs are in-
tervals. Specifically, we know that xi ∈ [x̃i − ∆i, x̃i + ∆i], and we want to
compute the upper bound ∆ on the error ỹ − y, where ỹ = f(x̃1, . . . , x̃n) and
y = f(x1, . . . , xn). If we get this upper bound, we will then compute the interval
Y for y as [ỹ −∆, ỹ + ∆].

This algorithm uses the Cauchy distribution. The algorithm: for k =
1, 2, . . . , N , repeat the following:

• use a standard random number generator to compute n real numbers
r
(k)
i , i = 1, 2, . . . , n, that are uniformly distributed on the interval [0, 1];

• compute δ
(k)
i = ∆i · tan(π · (r(k)

i − 0.5));

• compute the (Euclidean) length δ(k) =
∥∥∥~δ (k)

∥∥∥ of the vector ~δ (k) =

(δ(k)
1 , . . . , δ

(k)
n );

• compute the normalized coefficient K
(k)
norm = δ(k)/δ0 (for an appropriate

small constant δ0);

• compute the auxiliary vector ~β (k) = ~δ (k)/K
(k)
norm with components β

(k)
i =

δ
(k)
i /K

(k)
norm;

• substitute x̃i + β
(k)
i into the program f and compute

c(k) =
δ(k)

δ0
·
(
f

(
x̃1 + β

(k)
1 , . . . , x̃n + β(k)

n

)
− ỹ

)
;

• compute ∆ by applying the bisection method to solve the equation

1

1 +
(

c(1)

∆

)2 + . . . +
1

1 +
(

c(N)

∆

)2 =
N

2

on the interval
[
0,max

∣∣c(k)
∣∣].
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This method works well when the intervals are narrow enough relative to the
curvature of the function evaluated.

It is worth mentioning that the use of Cauchy distribution in the above algo-
rithm may seem somewhat counterintuitive. Indeed, in the interval setting, we
do not know the exact probability distribution of each error ∆xi = x̃i − xi, but
we do know that each error ∆xi belongs to the corresponding interval [−∆i,∆i],
so the actual (unknown) probability distribution for ∆xi must be located on this
interval with probability 1. So, at first glance, if we want to design a simulation-
type technique for computing ∆, we should use one of such possible distributions
in our simulations. Instead, we use a Cauchy distribution for which the proba-
bility to be outside the interval [−∆i,∆i] is non-zero. In other words, in order
to make the simulations work, we use the distributions which are inconsistent
with our knowledge. The reason why such impossible distributions are useful
here is that it can be shown that if we select, for simulations, a distribution
within the corresponding p-bound, we end up with a wrong estimate.

Because a p-bound is, in effect, a collection of intervals F(x), it is reasonable
to expect that black-box algorithms like the one given above can be generalized
to arbitrary p-bounds.

3.6 Section’s conclusions

There are four different sources of information about a quantity: measurements,
expert estimates, first principles, and indirect estimates. In this section, we gave
a brief overview of these four sources as they can be used to generate p-bounds.
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4 Aggregation of Uncertainty in Risk Analysis:
Subjective vs. Mathematical Methods

4.1 Aggregation of uncertainty: an important problem

In risk analysis, we sometimes have information about a quantity coming from
different sources. We must combine this information. The information may
be redundant or mutually confirming, or the information may be partially or
even totally contradictory. The operation by which one combines estimates
obtained by different sources is called aggregation. What methods can be used
for aggregation? What principles should govern which method of aggregation
should be used in any particular situation?

4.2 Subjective (“behavioral”) methods are useful

A substantial part of information comes from experts. There are two basic ways
of combining the expert information:

• A first natural idea is to take whatever information we got from the ex-
perts, real numbers, intervals, CDFs, p-bounds, etc., and apply some al-
gorithm to combine these bounds. The corresponding aggregation meth-
ods are called mathematical because all we are doing is applying some
mathematical formulas and expressions to the pieces of information that
represent expert’s knowledge.

• A second natural idea is to ask the experts themselves to help us with
aggregating their knowledge. In this case, the result of aggregation is
determined by the experts’ behavior, by their subjective treatment of dif-
ferent uncertainties. So, such methods are called behavioral or subjective.

At first glance, one might get an impression that only mathematical methods
are useful and subjective aggregation methods are not needed at all. Indeed, the
experts’ time is extremely valuable. We have already used their time to get their
estimates of the uncertainty, something that an automatic computer program
cannot do. Why should we spend even more of their valuable time asking
them to reconcile their different estimates if there exist numerous automatic
procedures for such aggregation?

In order to answer this question, let us first ask ourselves: why do different
experts come up with different estimates? Experts often differ because they are
trying to express to different aspects of the knowledge about a quantity. As a
result:

• When we apply mathematical aggregation techniques, we use only the
values (intervals, CDFs, etc.) which resulted from analyzing different
aspects of the situation, and we ignore the experts’ arguments leading to
their estimates.
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• When we bring experts together, the experts share not only the numerical
results of their uncertainty analysis, they also share their arguments, their
perspectives, etc. As a result, each expert learns more about the analyzed
situation and is, therefore, able to use this new knowledge to update his
or her original estimate of uncertainty.

The idea to make experts themselves reconcile their differences is the main
idea behind such successful practices as doctors’ conferences. Such subjective
(behavioral) methods of combining uncertainty are widely believed to be very
useful.

4.3 It is not easy to produce a good behavioral method

At first glance, a subjective method is easy: it would seem that all we would
need to do is place several experts in one room and wait until they come out of
this room with a combined consensus decision. Alas, the reality is much more
difficult than that. Many known psychological phenomena of group interaction
get into picture and need to be dealt with:

• There is often a certain social hierarchy among experts, as a result of
which, some individuals will dominate the discussions and push their orig-
inal viewpoint.

• When we only bring together experts of approximately the same social
status, another phenomenon occurs: In order to reach a consensus, the
group may simply follow the majority, in which case it may ignore an
important idea provided by one or few experts and/or ignore an important
piece of information whose importance is advocated by the minority of
experts. As a result, in practice, the consensus will often be much more
conservative and narrow than the information warrants.

• Alternatively, a group may arrive at a more extreme position than the
information warrants. Indeed, usually, the expert’s ideas are tempered by
the implicit understanding of the overall consensus. However, when the
experts get together, they can influence this consensus and this positive
feedback can polarize the group’s resulting opinion.

To avoid such problems, several techniques have been proposed; see, e.g.,
(Clemen & Winkler, 1999). The following subsections describe the most fre-
quently used techniques.

4.4 Avoiding dominance: Delphi method

The first problem with subjective aggregation that we mentioned is that some
experts are of higher social standing in the expert community, and their opinions
may dominate other experts, to the extent that good ideas coming from less
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prominent experts may be ignored. A reasonable way to avoid this domination
is to provide every expert with all the estimates of uncertainty and arguments
in favor of these estimates, but anonymously, without disclosing who exactly
provided which estimate or which argument.

This anonymous presentation constitutes the main idea behind the so-called
Delphi method. In this method, the opinions of different experts are collected
by a facilitator and presented to all the experts anonymously. After getting this
information, experts update their estimates and send the updated estimates to
the facilitator. This procedure is repeated again and again until the experts
stop changing their estimates.

4.5 Potential drawbacks of Delphi method

The Delphi method is the safest against domination, but it drastically limits
the interaction between the experts. There are many nuances in expert opinions
and arguments that are lost in this indirect communication. As a result, in this
method, there is a considerably less potential for a fruitful cross-pollination of
ideas as compared to methods in which direct expert interaction is allowed.

4.6 Aggregation techniques which involve direct expert
interaction

We have mentioned that it is desirable to allow direct interaction between the
experts. On the other hand, if we allow non-facilitated, unstructured discus-
sions, we end up with the problems mentioned above. To avoid these problems,
we must use a facilitator and structure the discussions. Depending on the level
of structuring, there are three main techniques for such structuring:

• In decision conferencing, experts are given the freedom to follow any path
to conciliation. The facilitator does not try to structure the discussion,
and interferes only if he or she observes that the discussion is going into the
direction which may cause one of the above three problems (dominance,
ignoring minority opinions, or shifting towards an extreme stand).

• In Nominal Group Techniques, the discussion is more structured:

• first, experts present their estimates;

• then, they discuss these estimates and arguments in favor of these es-
timates; these discussions are done under the supervision of a skilled
facilitator;

• based on this discussion, each expert revises his/her estimate;

• then, if necessary, a new round of discussions follows, etc.
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• In Kaplan’s method, experts first try to get a consensus on the evidence;
then, after such a consensus is more or less reached, try to transform this
body of evidence into a joint estimate. On both stages, Nominal Group
Techniques can be used.

4.7 When expert interaction is well organized, the result-
ing consensus is reasonable

In the previous subsections, we briefly described four subjective/behavioral
methods: Delphi method, Decision Conferencing, Nominal Group Techniques,
and Kaplan’s method. There exist other subjective methods, but there four
are the most prominent and the most useful. These subjective aggregation
techniques are frequently used in risk analysis. The experience of using these
techniques is in full accordance with the above arguments:

• On the one hand, in many cases, the phenomena of domineering, ignoring,
and “extremizing” did occur, as a result of which, the resulting aggregated
estimates were less adequate than a simple arithmetic average of experts’
estimates.

• On the other hand, in the cases in which the expert interaction was well
organized, the aggregation results turned out to be reasonable, often much
better than a simple average or any other simple non-interactive aggrega-
tion.

4.8 Mathematical aggregation methods are needed too

Because subjective (behavioral) aggregation methods are very useful, a natural
question is: do we need any mathematical aggregation techniques at all? The
answer is “yes”, and the arguments in favor of these techniques are as follows:

• First of all, not all estimates come from experts. Many of them come
from measurements. These estimates are “pure” real numbers, there are
no arguments behind them, so there seems to be no advantage in letting
experts combine these real numbers.

• Even if the estimates to be aggregated come from experts, it is not always
possible to have the experts reconcile their differences. We have already
mentioned that the experts’ time is extremely valuable, so we may simply
be unable to bring them together for a reconciliation session.

• Finally, even when we bring them together and they partially reconcile
their differences – i.e., bring their estimates closer to each other – it is
quite possible that there will still be some difference of opinion between
different experts. As a result, the revised estimates – although closer to
each other than the original ones – are still different and therefore, still
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require aggregation of some kind. Because the experts failed to get a final
aggregation of their own estimates, we have no other choice but to use
some algorithms (mathematical aggregation techniques) to combine the
resulting estimates.

In all three cases, we need mathematical techniques for aggregating estimates
that involve uncertainty.

4.9 Section’s conclusions

When estimates come from experts, it is beneficial to let the experts themselves
discuss their differences and come out with the aggregated estimates. One
needs to be very careful in arranging this discussion because, unless it follows a
well-structured pattern with a skilled facilitator, the results may be worse than
simple averaging of experts’ estimates.

Moreover, even in the best situations, there may be some unresolved dif-
ferences between the expert opinions. In other cases, it is not possible to get
the experts together. It is also important to combine the experts’ opinion with
measurement results. In all these situations, we need mathematical techniques
for aggregating uncertainty that can be conducted automatically. In the follow-
ing sections, we will describe and analyze different mathematical techniques for
aggregating uncertainty.
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5 Aggregation of Uncertainty in Risk Analysis:
Outline

5.1 Aggregation techniques will be presented in the order
from the simplest to the most complex

One of the main goals of this survey is to provide explanations (justifications)
for different heuristic aggregation techniques. The formulas corresponding to
these techniques can be rather complicated, and thus, difficult to explain. To
understand the different aggregation techniques, we start by explaining them on
the simplest possible case, then we extend our understanding to more general
situations, and from there, we move to explaining the formulas for the most
general case.

Which cases are the simplest, which are next simplest? We have mentioned
that real numbers, intervals, and probability distributions are particular cases
of p-bounds. Which of these cases are the simplest? Second simplest? From the
structural viewpoint, all representations of uncertainty consist of one or several
real numbers. Specifically:

• a real number x is just a single real number;

• to represent an interval [x−, x+], we need two real numbers: its lower
endpoint x− and its upper endpoint x+;

• to represent a CDF F (x), we need to describe, for every value x, the
corresponding probability F (x);

• to represent a p-bound [F−(x), F+(x)], we need to describe, for every
value x, two real numbers – the corresponding probability bounds F−(x)
and F+(x).

The more real numbers we use to represent uncertainty, the more processing we
need to aggregate the corresponding representations of uncertainty. In view of
this, we will

• start with describing different aggregation techniques for combining real
numbers,

• then show how these techniques can be extended to intervals, and

• finally, explain how these techniques can be extended to CDFs and to the
(general case of) p-bounds.

5.2 Desired properties of aggregation techniques

From the purely mathematical viewpoint, we could consider arbitrary operations
for combining estimates involving uncertainty. However, from the common sense
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viewpoint, we want to combine different estimates in a sensible way. There are
some requirements that the aggregation operation should satisfy. These require-
ments are not absolutely necessary because, in addition to commonsense argu-
ments in favor of these requirements, there are usually some counterarguments.
However, it is desirable, when we analyze different aggregation operations, to
consider to what extent these aggregation operations satisfy these commonsense
requirements.

So, before we review different aggregation techniques, we will describe these
natural requirements in detail. The outline of the survey is

• First, we describe different commonsense requirements that an aggregation
operation should satisfy.

• Second, we describe the possible aggregation operations with real numbers,
and show which commonsense requirements they satisfy.

• Third, we describe the possible aggregation operations with intervals, and
show which commonsense requirements they satisfy.

• Fourth, we describe the possible aggregation operations with probability
distributions, and show which commonsense requirements they satisfy.

• Fifth, we describe the possible aggregation operations with p-bounds, and
show which commonsense requirements they satisfy.

• Finally, we select from among the methods considered those that, by their
properties, can be recommended for general use for aggregating estimates
involving uncertainty.
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6 Aggregation of Uncertainty in Risk Analysis:
Desirable Properties of Aggregation Opera-
tions

6.1 General outline

In this section, we will describe the properties of aggregation operations, start-
ing from the simple properties which use only one estimate X, to more complex
properties which deal with two, three, etc., different estimates, and finally, re-
quirements which deal with the aggregation operation as a whole.

We have already mentioned, in Section 5, that the commonsense require-
ments are not absolutely necessary, because there are some counterarguments.
So, after describing each commonsense requirement and listing arguments in
favor of this requirement, we will also present some counterarguments which
explain why it may make sense for an aggregation operation to violate the re-
quirement.

6.2 Commonsense requirement relating a single estimate

6.2.1 Idempotence

What if we have only one estimate X? In other words, what if two experts come
up with exactly the same X; how can we combine their knowledge?

A natural idea is that if two experts came up with the same uncertainty, this
means that this is the right representation of this uncertainty, so both experts
are right. In other words, if we combine uncertainty X with itself, we should
end up with exactly the same uncertainty X, i.e., we should have X ∗X = X. In
mathematics, this “agreement preserving” property of an aggregation operation
∗ is called idempotence. So, in mathematical terms, the first commonsense
requirement is that the aggregation operation be idempotent.

6.2.2 Idempotence: possible counterarguments

Suppose that two experts come up with exactly the same description of their
uncertainty: that the (unknown) value x of the desired physical quantity be-
longs to the interval [0, 1] with probability ≥ 90%. What would the result of
aggregating these uncertainties be?

If the two experts were using exactly the same sources of information and
used the same arguments to process these sources, then the fact that these two
experts came up with exactly the same conclusion simply confirms that they
both did the correct computations. So, when we aggregate these two uncer-
tainties, we should get the exact same uncertainty. In this case, idempotence is
justified.
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But what if the two experts used independent sources of information and end
up with exactly the same conclusion – that x ∈ [0, 1] with probability 90%? In
this case the fact that two experts, based on independent sources of information,
came up with the same conclusion, increases the reliability of this conclusion.
In this case, the result X ∗X of combining the two identical uncertainties X is
that x belongs to the interval [0, 1] with some probability p > 90%. In other
words, in this case, X ∗X is different from X – so there is no idempotence.

Another example is stories told to a police officer or evidence about a his-
torical event. If several independent witnesses tell exactly the same story, its
reliability increases.

6.3 Commonsense requirement relating two estimates

6.3.1 Commutativity

The seemingly natural requirement is that if we have two sources of information
about an uncertain quantity – e.g., two experts – then the result of aggregating
their information X and Y should not depend on the order in which these two
different pieces of information are presented. In other words, we should have
X∗Y = Y ∗X. In mathematical terms, this requirement is called commutativity.

6.3.2 Commutativity: possible counterarguments

Commutativity makes sense if there is no reason to prefer one of the two sources
of information. In real life, often, one source of information is more reliable than
the other. For example, when we combine information coming from two experts,
it is normal to give more weight to the opinion of a more respected expert –
who has a history of better estimates and better predictions. To handle such
situations, we may set up an aggregation operation X ∗ Y in such a way that
X is the information coming from a more experienced expert, and Y is the
information coming from a less experienced expert.

In this case, the result of combining uncertainties X and Y should depend
on whether X comes from the more experienced expert and Y comes from the
less experience one – in which case the result is X ∗ Y – or whether Y comes
from the more experienced expert and X comes from the less experience one –
in which case the result is Y ∗X. In other words, in this case, X ∗ Y 6= Y ∗X,
and the aggregation operation is not commutative.

6.4 Commonsense requirement relating “slightly more
than two” estimates

6.4.1 Continuity

What if we have “slightly more than two” different estimates, i.e., we have two
estimates X and Y , and a third estimate X ′ which is very close to X, which
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we symbolize as X ′ ≈ X. Because X ′ ≈ X, it is reasonable to require that
X ∗ Y is very close to X ′ ∗ Y . Symbolically, X ∗ Y ≈ X ′ ∗ Y . In other words,
it is reasonable to require that a small change in one of the uncertainties X to
be aggregated lead to only a small change in the result of the aggregation. In
mathematics, such property is called continuity.

6.4.2 Continuity: possible counterarguments

At first glance, continuity seems natural, but there are examples when it is
counterintuitive. One such example is the case when each estimate is an interval
of possible values of the desired quantity. In this case, if one piece of knowledge
is that the quantity should be in the interval x = [x−, x+], and the other piece
of knowledge is that this same quantity should be in the interval y = [y−, y+],
this means that the actual value x should belong to both intervals. The set
of all the values which belongs to both intervals x and y is the intersection
x ∩ y = [max(x−, y−), min(x+, y+)] of these intervals. So, in this case, the
aggregation operation is simply an intersection.

From the purely mathematical viewpoint, the intersection seems to have
the continuity property: indeed, both the lower endpoint max(x−, y−) and the
upper endpoint min(x+, y+) of the intersection interval are continuous functions
of the parameters x−, x+, y−, and y+ that characterize the intervals to be
aggregated. So, a small change in one of these four parameters leads to small
changes in the endpoints of x ∩ y.

However, from the commonsense viewpoint, the situation is not so simple.
What happens if we slowly move the interval y so that its intersection with
x becomes smaller and smaller and finally, empty? Before it becomes empty,
because we assumed both uncertainty intervals to be 100% reliable, we simply
conclude that the result of the aggregation is the intersection. However, when
the intersection becomes empty, it clearly means that the two intervals cannot
both reliably contain the (unknown) value of the estimated quantity, one of
these two intervals is erroneous. If we do not know which of the two intervals
is erroneous, then the only thing we can conclude about the actual value of x is
that:

• either x belongs to the first interval x (if the second interval is erroneous),

• or x belongs to the second interval y (if the first interval is erroneous).

In this case, the set of all possible values of x is the union x∪y of the two intervals
to be aggregated. This union is not an interval, so, if we want an interval which
is guaranteed to contain x, then we have to take the smallest interval that
contains this union. Whether we take the union itself or the smallest interval
containing this union, the aggregation result is not at all close to the intersection
and so, the continuity property does not hold.

Let us give a simple example. Let ε > 0 be a small real number, let Y = [1, 2],
X = [0, 1 + ε], and X ′ = [0, 1− ε]. Here:
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• Because X and Y have a non-empty intersection, the result X ∗ Y of
aggregating X and Y is their intersection: X ∗ Y = [1, 1 + ε].

• On the other hand, because X ′ and Y do not have any common points,
then, depending on whether we only allow intervals or arbitrary sets, the
result X ′ ∗ Y of aggregating X ′ and Y is:

• either the union [0, 1− ε] ∪ [1, 2],

• or the smallest interval [0, 2] which contains this union.

In this case, X ≈ X ′, but X ∗ Y 6≈ X ′ ∗ Y , i.e., the continuity property is not
satisfied.

6.5 Commonsense requirement relating three different es-
timates

6.5.1 Associativity

It is natural to require that we have three different sources of information X, Y ,
and Z, then the result of aggregating the corresponding pieces of information
should not depend on the order in which we aggregate these three pieces:

• If we first present X and Y , then we:

• first combine X and Y into a combined knowledge X ∗ Y , and

• then, when Z is presented, we combine the resulting combined knowl-
edge with Z, resulting in (X ∗ Y ) ∗ Z.

• Alternatively, if we first present Y and Z, then we:

• first combine Y and Z into a combined knowledge Y ∗ Z, and

• then, when X is presented, we combine the resulting combined knowl-
edge with X, resulting in X ∗ (Y ∗ Z).

The above requirement means that (X ∗Y ) ∗Z = X ∗ (Y ∗Z). In mathematical
terms, this requirement is called associativity.

6.5.2 Associativity: possible counterarguments

To show that the above argument is not always intuitively reasonable, let us
consider two simple examples: the one in which it is reasonable and the one in
which it is not.

Associativity is reasonable if each estimate is an interval of possible values
for a quantity. In this case, as we have mentioned when describing continuity,
one aggregation operation is simply an intersection. Intersection is, of course, an
associative operation: for every three intervals x, y, and z, the two combinations
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(x ∩ y) ∩ z and x ∩ (y ∩ z) are exactly the same: they both coincide with the
intersection x ∩ y ∩ z of all three intervals.

On the other hand, there are simple examples when associativity is not
reasonable. One such example is the arithmetic average. When we combine
two numerical values x and y and we want to get a new numerical estimate,
it is reasonable to use the arithmetic average x ∗ y

def= x + y
2 . However, the

arithmetic average is not associative: e.g.,

• 0 ∗ 1 = 0 + 1
2 = 0.5, hence (0 ∗ 1) ∗ 2 = 0.5 ∗ 2 = 1.25, although

• 0 ∗ (1 ∗ 2) = 0 ∗ 1.5 = 0.75 6= 1.25.

6.6 Commonsense requirement relating four estimates

6.6.1 Averaging property

We have already mentioned, in the previous subsections, that it is natural to
require that the result of aggregating uncertainty information should not depend
on the order in which we present different information to be aggregated. This
informal requirement seems to justify associativity (X∗Y )∗Z = X∗(Y ∗Z), but,
as we have shown, associativity is not always true for reasonable aggregation
operations: e.g., for the arithmetic average X ∗ Y = x + y

2 , (X ∗ Y ) ∗Z may be
different from X ∗ (Y ∗Z). The reason for this possible non-associativity is very
simple:

• when we combine X ∗Y and Z, we (kind of) assign “equal weight” to both
combined uncertainties X ∗ Y and Z;

• however, in reality, X ∗ Y is clearly preferable to Z, because:

• X ∗ Y combines the expertise of two experts, and

• Z contains an experience of only one expert.

If we make sure that we always combine uncertainties of the same “strength”
(e.g., coming from the same number of experts), then there is a better that the
corresponding property will hold. We can formulate this property if we have
four different estimates X, Y , Z, and T . For these four estimates, we have at
least two different options:

• In the first alternative, we do the following:

• first, we combine X with Y into X ∗ Y , and Z with T into Z ∗ T ;

• then, we combine the results X ∗ Y and Z ∗ T of these combinations
into (X ∗ Y ) ∗ (Z ∗ T ).

• In the second alternative, we do the following:
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• first, we combine X with Z into X ∗ Z, and Y with T into Y ∗ T ;
• then, we combine the results X ∗Z and Y ∗ T of these combinations

into (X ∗ Z) ∗ (Y ∗ T ).

The above informal requirement then means that

(X ∗ Y ) ∗ (Z ∗ T ) = (X ∗ Z) ∗ (Y ∗ T ).

This property is (unlike associativity) true for the arithmetic average, and there-
fore, in mathematics, it is called the averaging property; see, e.g., (Suppes et al.,
1989) where this property is called bisymmetry.

6.6.2 Averaging property: possible counterarguments

Possible counterarguments against the averaging property are the same as
against commutativity. Often, one source of information is more reliable than
the other, so we want to give it preferential treatment. If an aggregation op-
eration X ∗ Y is set up in such a way that X comes from a more experienced
expert, then combinations (X ∗Y )∗(Z ∗T ) and (X ∗Z)∗(Y ∗T ) may correspond
to different orderings of the experts’ experience and thus, may lead to different
aggregation results.

6.7 Commonsense requirement about the aggregation op-
eration as a whole

6.7.1 Computational simplicity

The main reason why we look for aggregation operations is because we want
to solve practical problems. If we have a mathematically perfect aggregation
operation that needs years of computations on the fastest computers, then this
operation is useless in practical problems that require a solution this year. It
is therefore reasonable to consider only operations whose computations do not
require too much time, i.e., in computer science terms, computations whose
computational complexity is not too high. This requirement for computational
simplicity accords with the well-known Occam’s razor principle according to
which, it is reasonable to select, among all possible hypotheses, the one which
is the simplest. Algorithmic Information Theory has provided a theoretical
justification for this principle; see, e.g., (Li & Vitányi, 1997) and (Fox et al.,
1998). There is also empirical evidence that in general, the simplest techniques
for aggregating estimates are indeed the best (Clemen & Winkler, 1999); see,
however, (Cox, 1999) for counterexamples.

6.7.2 Computational simplicity: possible counterarguments

There may be situations when the above argument does not apply and computa-
tionally intensive aggregation operations are preferable. Indeed, we are talking
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about the situations of risk analysis, so it all depends on what kind of risk we
are talking about:

• If the risk includes a possible minor increase of a pollutant’s level in a lake,
a problem that can be corrected, then it is acceptable to use an approxi-
mate easier-to-compute aggregation technique when making a decision.

• On the other hand, if the risk includes a catastrophic nuclear explosion,
then it may be preferable, when estimating the probability of this risk, to
use methods which are as accurate as possible, even if it means spending
much more effort on computing.

6.8 Section’s conclusions

When analyzing different aggregation operations, it is reasonable to check
whether these operations satisfy the following properties which are desirable:
idempotence, commutativity, continuity, associativity, averaging property, and
computational simplicity. These properties may not be essential because, as
we have shown, there are reasonable examples when requiring these properties
would be counterintuitive.
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7 Aggregation of Uncertainty in Risk Analysis:
Case of Real Numbers

7.1 General classification

7.1.1 Incertitude vs. variability

Let us start the description of possible aggregation techniques with the simplest
possible case in which each piece of information to be aggregated is a real num-
ber. Suppose we have two real number x1 and x2. In order to find out the best
way of aggregating these two real numbers, let us first ask a question: why are
these two real numbers different? There can be two reasons for this difference:

• One possibility is that in both cases, we are measuring (or estimating) the
same (unknown) quantity x. Because measurements (and estimates) are
never absolutely accurate, each result of measuring x is different from the
actual value x. So, x1 is different from x, x2 is different from x, and these
two measurement results x1 and x2 are different from each other. In such
situations, the difference between x1 and x2 is caused by incertitude.

• Another possibility is that the quantity in which we are interested may
change in time and/or it may vary slightly from one point to another. In
this situation, the difference between the measurement results x1 and x2

can be explained simply by the fact these measurements were made at
slightly different moments of time and in slightly different places. In such
situations, the difference between x1 and x2 is caused by variability.

Of course, it is also possible that we have both incertitude and variability: the
actual value of the measured quantity does vary from place to place and, on top
of that, the measured value differs from the actual one.

7.1.2 Averaging vs. enveloping

In case of incertitude, both values x1 and x2 are estimates for the unknown
(actual) value x. There are two possible approaches to combining these two
values. At present, a typical approach is to combine these two numerical esti-
mates x1 and x2 into a (hopefully) better numerical estimate x̃. The resulting
estimate combines (“averages”) the numbers x1 and x2; therefore, we will call
such aggregation operations averaging operations. From the practical viewpoint,
averaging has advantages and disadvantages.

• The main advantage of averaging is that it compacts the information,
i.e., no matter how many numerical estimates we combine, the resulting
estimate is a single number.
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• The main disadvantage of averaging is related to its main advantage: it
compacts the information and, as a result, the aggregated value lacks
information on the original incertitude.

In the pre-computer era, when we had to process all the data manually, we could
only process a small amount of numbers. In this situation, compactification is
necessary, and so averaging was, in effect, the only choice. That is why averaging
methods have been traditionally prevailing in data processing. Yes, averaging
has a disadvantage, but since it was the only choice, we had to live with it.

With modern computers that can process (and do process) millions of data
points, compactification is no longer necessary. Since we do not have to use aver-
aging, we no longer have to tolerate its disadvantage, i.e., the loss of incertitude.
It is therefore reasonable to consider aggregated estimates which preserve this
incertitude, i.e., which “envelope” both values x1 and x2 to be aggregated. Such
enveloping methods propagate incertitude.

In case of variability, the selection of an aggregation operation is simpler.
Indeed, in this case, both values x1 and x2 are possible values of the analyzed
quantity. Thus, a natural goal is to describe the set of possible value of this
quantity, i.e., to provide an envelope for the values x1 and x2. In other words, for
variability, only enveloping operations make sense. In the following subsections,
we will first describe more traditional averaging aggregation methods, and then
enveloping methods.

7.2 Arithmetic average: its origin and properties

7.2.1 Averaging operation: loss minimization naturally leads to the
arithmetic average

Let us start with describing averaging aggregation operations for the case of
incertitude. Each of the two measurement results x1 and x2 is presumably close
to x. The purpose of an averaging aggregation is to replace both x1 and x2 by a
single value x̃. We want this aggregated value x̃ to be as close to x as possible.
How can we do that?

Let us first consider the simplified situation when there is only one measure-
ment result: x1. In this case, the only information that we have about the actual
(unknown) value x is that x is close to x1. Thus, in this simplified situation,
the only possible way to make sure that x̃ is close to the unknown value x is to
make sure that x̃ is close to x1, i.e., that the deviation ∆x1 = x̃− x1 is small.

Similarly, in the simplified situation when there is only one measurement
result x2, the only possible way to make sure that x̃ is close to the unknown
value x is to make sure that x̃ is close to x2, i.e., that the deviation ∆x2 = x̃−x2

is small.
In our case, we know two approximations to x: x1 and x2. Thus, to make

absolutely sure that the aggregated value x̃ is close to x, we should make sure
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that x̃ is close both to x1 and x2, i.e., that both differences ∆x1 and ∆x2 be
small.

The smaller the differences, the better. The larger the differences, the further
x̃ away from the actual value x and hence, the larger the loss caused by using, in
decision making, the aggregated estimate x̃ instead of the actual value x. To find
the optimal value of x̃, we want to describe the objective function J(∆x1, ∆x2)
that describes this loss.

In describing this function J , we will use the same idea that we used when we
described a natural way of representing partial information about probabilities.
Specifically, we assume that this function J is smooth (infinitely differentiable).
In this case, because the measurements errors are usually reasonably small, we
can expand the function J into Taylor series and retain only linear and quadratic
terms in its expansion and ignore cubic and higher-order terms. As a result, we
get the general expression

J(∆x1, ∆x2) = a0 + a1 ·∆x1 + a2 ·∆x2 + a11 ·∆x2
1 + a12 ·∆x1 ·∆x2 + a22 ·∆x2

2.

Because we do not have any reason to prefer negative or positive values of the
difference ∆x1, it makes sense to assume that the value of the loss function
will not change if we replace ∆x1 by −∆x1: J(−∆x1, ∆x2) = J(∆x1,∆x2).
Substituting these two requirements into the general quadratic expression, we
conclude that

J(−∆x1, ∆x2) =

a0 + a1 · (−∆x1) + a2 ·∆x2 + a11 · (−∆x1)2 + a12 · (−∆x1) ·∆x2 + a22 ·∆x2
2 =

a0 − a1 ·∆x1 + a2 ·∆x2 + a11 ·∆x2
1 − a12 ·∆x1 ·∆x2 + a22 ·∆x2

2 =

J(∆x1, ∆x2) = a0 + a1 ·∆x1 + a2 ·∆x2 + a11 ·∆x2
1 + a12 ·∆x1 ·∆x2 + a22 ·∆x2

2

for all possible values ∆x1 and ∆x2. The two polynomials are equal for all
possible values of the variables if and only if all their coefficients are equal,
hence −a1 = a1 and −a12 = a12, i.e., a1 = a12 = 0. Similarly, it makes sense to
require that the value of the loss function will not change if we replace ∆x2 by
−∆x2: J(∆x1,−∆x2) = J(∆x1,∆x2). Substituting this requirement into the
general quadratic expression, we conclude that a2 = 0 and therefore

J(∆x1, ∆x2) = a0 + a11 ·∆x2
1 + a22 ·∆x2

2.

Because there is no reason to prefer one measurement over another, it makes
sense to require that the loss function will not change if we swap the differences
∆x1 and ∆x2, i.e., to require that J(∆x2, ∆x1) = J(∆x1,∆x2). This condition
leads to a11 = a22, i.e., that

J(∆x1,∆x2) = a0 + a11 · (∆x2
1 + ∆x2

2).
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Because we want the loss to be the smallest when ∆x1 = ∆x2 = 0, we can
therefore conclude that a11 > 0. The resulting loss function

J(x̃− x1, x̃− x1) = a0 + a11 · ((x̃− x1)2 + (x̃− x2)2)

can be easily minimized by explicitly differentiating the loss function relative to
x̃ and equating this derivative to 0. The resulting minimum is the arithmetic
average:

x̃ =
x1 + x2

2
.

Similarly, when we have more than two measurements x1, . . . , xn, then, to make
sure that the aggregate value x̃ is close to the actual (unknown) value x, we must
look for an aggregated value x̃ that is close to all of these measurement results,
i.e., for which all n differences ∆xi

def= x̃− xi, 1 ≤ i ≤ n, are small. Similarly to
the case of two measurements, we can expand the corresponding loss function
J(∆x1, . . . , ∆xn) into Taylor series and keep only linear and quadratic terms in
this expansion. It also makes sense to require that the value of the loss function
should not change if we simply change the sign of one of the differences ∆xi, or
permute the values ∆xi. As a result, we conclude that:

J(∆x1, ∆x2) = a0 + a11 · (∆x2
1 + . . . + ∆x2

n).

In this case, the minimum is also attained for the arithmetic average:

x̃ =
x1 + . . . + xn

n
.

Thus, loss minimization naturally leads to the use of arithmetic average as an
aggregation operation.

From the commonsense viewpoint, arithmetic average is a very reasonable
aggregation operation. The arithmetic average corresponds to a natural idea of
“splitting the difference”. Indeed, when the first expert measures the value of
the quantity as x1, and the second expert measures the same quantity as x2,
with the difference x2 − x1, the natural way of reconciling this difference is to
split it in half, i.e., to replace both estimates by the common estimate

x1 +
1
2
· (x2 − x1) = x2 +

1
2
· (x1 − x2) =

x1 + x2

2
.

7.2.2 An alternative derivation of arithmetic average of two mea-
surement results

For two measurement results, there is simpler alternative way of showing that
arithmetic average is indeed a natural aggregation operation. This explanation
is based on the fact that we are dealing with the case of incertitude, where the
actual measured value x is the same, and the difference between the measure-
ment results is caused by the fact that measurements are inaccurate.

53



A natural characteristic of the measurement inaccuracy is the upper bound
∆ on the measurement error xi − x. If we know ∆, then, from the fact the
measurement result is x1, we can conclude that the actual (unknown) value of
the measured quantity x belongs to the interval [x1−∆, x1+∆]. Similarly, from
the second measurement result x2, we conclude that the actual value belongs
to the interval [x2 − ∆, x2 + ∆]. Because the value x must belong to both
intervals, these two intervals [x1 −∆, x1 + ∆] and [x2 −∆, x2 + ∆] must have
a non-empty intersection. Because we know that the actual value x belongs to
this intersection, we would like to select the aggregated value x̃ in such a way
that it should also belong to this intersection.

Because we do not know the actual value ∆, we should select x̃ that belongs
to this intersection for all possible values ∆. Which values ∆ are possible? From
the fact that |x1 − x| ≤ ∆ and |x2 − x| ≤ ∆, we can conclude, using triangle
inequality, that |x2−x1| ≤ |x1−x|+ |x2−x| ≤ 2∆, therefore, ∆ ≥ |x1−x2|/2.
When ∆ = |x1 − x2|/2, i.e., when ∆ is equal to exactly the half of the distance
between x1 and x2, the intersection of the corresponding intervals [x1−∆, x1+∆]
and [x2−∆, x2 +∆] consists of a single point: the midpoint (x1 +x2)/2 between
x1 and x2. Thus, the only way to make sure that the aggregated value belongs to
the intersection for all possible ∆ is to select this midpoint (arithmetic average)
as the desired averaging operation. (One can show that the arithmetic average
indeed belongs to the intersection for all possible ∆.)

7.2.3 Warning: this alternative derivation does not lead to arith-
metic average for more than two measurement results

The above derivation is simpler than analyzing a loss function, but it has a
problem: it does not scale to aggregation of three or more measurement results
x1, . . . , xn. In this case, the only value that belongs to the intersection of all
the intervals [xi − ∆, xi + ∆] for all possible values ∆ – i.e., for all the values
∆ for which these n intervals have a non-empty intersection – is the midpoint
0.5 · x(1) + 0.5 · x(n) between the smallest x(1) and the largest x(n) of the n
measurement results.

This formula is different from the arithmetic average. It is rather a weighted
average (see below).

7.2.4 Properties of arithmetic average

In the previous section, we enumerated reasonable properties of aggregation
operations. Let us check which of these properties hold for arithmetic average:

• Arithmetic average is clearly idempotent: x ∗ x = x + x
2 = x.

• Arithmetic average is also clearly commutative: x ∗ y = y ∗ x.

• Arithmetic average is continuous: the function x + y
2 is continuous in both

x and y and thus, small changes in x and y lead to a small change in x∗y.
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• We have already mentioned that the arithmetic average is not associative.

• Arithmetic average satisfies the averaging property.

• Finally, the arithmetic average is very easy to compute, so it clearly sat-
isfies the condition of computational simplicity.

7.3 Weighted average

7.3.1 From arithmetic average to weighted average

When we derived the formula for the arithmetic average, we assumed that all
measurements (estimates) xi are of equal quality. In reality, some measurements
may be more accurate than others, some estimates may be done by experts
who are more reliable that others, etc. How can we take such differences into
consideration?

In some sense, non-associativity is a blessing in disguise, because it enables
us to describe combinations of measurement results of different quality. Indeed,
why is (x ∗ y) ∗ z different from x ∗ (y ∗ z)? As we have discussed in our analysis
of the averaging property,

• the arithmetic average combination rule ∗ corresponds to the case when
both values to be aggregated are of equal accuracy, but

• x ∗ y is more accurate than z, because:

• x ∗ y combines the results of two measurements (or, in case of expert
estimates, the expertise of two experts), and

• z contains only a single measurement (or the experience of only one
expert).

We can use this idea to describe a general combination of measurements or ex-
pert estimates of different accuracy. Let us start with a simple physical example.
Let us assume that we have two rocks of different weight. If the weight of the
second rock is exactly double the weight of the first one, we can say that the
second rock is equivalent to two rocks of the same weight as the first one. If the
weight of the second rock is 5/4 of the weight of the first rock, we can say that
the first rock is equivalent to 4 pieces of the same weight, and the second rock
is equivalent to 5 pieces of the same weight. The cases when the weight ratio
is irrational can be approximated by rational ratios and thus, also described in
this form.

Similarly, if the sources to be aggregated are of different accuracy, we can
assume that the first value is equivalent to a combination of k measurement
results of equal accuracy, and the second value is equivalent to a combination
of l 6= k measurement results of the same accuracy.
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In other words, the corresponding aggregation operation can be described
as an operation which transforms the result x̄1 of aggregating k measurements
x1, . . . , xk of equal accuracy and the result x̄2 of aggregating l measurements
xk+1, . . . , xk+l of the same accuracy into the result x̄ of aggregating all k + l
values x1, . . . , xk, xk+1, . . . , xk+l. Due to the above arithmetic average formula,

x̄1 =
x1 + . . . + xk

k

and
x̄2 =

xk+1 + . . . + xk+l

l
.

Thus, x1 + . . . + xk = k · x̄1, xk+1 + . . . + xk+l = l · x̄2, hence,

x1 + . . . + xk+l = (x1 + . . . + xk) + (xk+1 + . . . + xk+l) = k · x̄1 + l · x̄2,

and
x̄ =

x1 + . . . + xk+l

k + l
= w1 · x̄1 + w2 · x̄2,

where we denoted w1 = k/(k + l) and w2 = l/(k + l).
In other words, the resulting aggregation operation is the weighted average

x1 ∗x2 = w1 ·x1 +w2 ·x2 for some weights w1 and w2 for which w1 ≥ 0, w2 ≥ 0,
and w1 + w2 = 1.

In the general case, when we combine n measurement results, we get a general
formula for the weighted average:

x̃ = w1 · x1 + . . . + wn · xn,

where wi ≥ 0 and w1 + . . . + wn = 1.

7.3.2 Where do we get the weights for a weighted average?

• If we have some information about the relative accuracy of different esti-
mates, we can use this information to determine the weights:

• If each measurement result xi comes from averaging a sample of size
Ni, then, as we have mentioned, we should take

wi =
Ni

N1 + . . . + Nn
.

• If the values xi represent expert estimates, then the weights wi are
proportional to trustworthiness of different experts.

• The weights could also depend on the order of the measurement results.
In this case, we have an expression of the type

x̃ = w1 · x(1) + . . . + wn · x(n),
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where
x(1) ≤ x(2) ≤ . . . ≤ x(n)

is the result of sorting the original measurement results in increasing order.
Yager calls these Ordered Weighted Averages (OWA) (Yager, 1988), (Yager
& Kelman, 1996), (Yager & Kacprzyk, 1997), (Nguyen & Kreinovich,
1997), (Grabisch et al., 1998), (Kelman & Yager, 1998), (Fodor & Yager,
2000). When wi = 1/n, these degenerate to the simple arithmetic average.
There are several non-degenerate examples of such combinations:

• When we explained the arithmetic average for n = 2, we derived a
formula 0.5·x(1)+0.5·x(n) which corresponds to choosing w1 = wn =
0.5 and w2 = w3 = . . . = wn−1 = 0.

• Formulas of this type are used in robust statistics (Wadsworth, 1990),
i.e., in statistical processing in which we do not know the exact shape
of the probability distribution, only a general class to which this
shape belongs.

• Similar formulas are used not only in more mathematical applica-
tions, but in common sense as well. For example, when a panel of
judges from different countries judge, e.g., figure skating, then, due
to highly politicized nature of sports, a judge from the same country
as the athlete is usually biased in favor of this athlete, and a judge
from this country’s main rival is usually biased against the athlete.
These biased estimates have little to do with the actual performance
of the athlete, so it is desirable to eliminate them. To eliminate these
biased estimates, we delete the highest grade (which most proba-
bly comes from the positively biased judge) and the lowest grade
(which most probably comes from the negatively biased judge). The
remaining grades are averaged. This procedure corresponds to se-
lecting w1 = wn = 0 and w2 = w3 = . . . = wn−1 = 1/(n− 2).

• The weight of the evidence may also depend on how recent this evidence is.
The exact dependence of the weight on the date depends on the problem:

• If we are estimating the current value of the quantity, then, due to
possible change in time, we should put more weight to more recent
measurements and less weight to more distant ones.

• On the other hand, if we are estimating the value of the quantity
at a certain time in the past (e.g., if we are trying to reconstruct
a past event), then, vice versa, we should put more weight on past
measurements and less weight to more recent ones.
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7.3.3 Properties of weighted average

Weighted average is idempotent but not commutative, and continuous but not
associative. It is computationally simple but does not satisfy the averaging
property.

To be more precise, weighted average is almost associative; we just simply
have to change the weights. For example, if we start with an arithmetic average
operation x ∗ y = x + y

2 , then the arithmetic average

x ∗ y ∗ z =
x + y + z

3

of three values x, y, and z is different from (x ∗ y) ∗ z, but we can get x ∗ y ∗ z

as a weighted average of x ∗ y = x + y
2 and z:

x ∗ y ∗ z =
2
3
· (x ∗ y) +

1
3
· z.

7.4 Weighted average with interval weights

7.4.1 Motivations

In some cases, we do not know the exact values of the weights wi, only intervals
wi = [w−i , w+

i ] of possible values of these weights. These interval weights must
be consistent in the sense that there should exist values wi ∈ wi for which
w1 + . . . + wn = 1. One can check that this consistency is equivalent to the
following inequality:

w−1 + . . . + w−n ≤ 1 ≤ w+
1 + . . . + w+

n .

There are several different values of the weights, so instead of a single weighted
average, we have an interval of possible values of the weighted average:

x =
{∑

wi · xi

∣∣ wi ∈ wi,
∑

wi = 1
}

.

7.4.2 Algorithm

The endpoints x− and x+ of this interval x can be computed as follows:

• First, we sort the values xi in increasing order. Without losing generality,
we can assume that the values xi are already sorted, i.e., that

x1 ≤ x2 ≤ . . . ≤ xn.

• Second, we find the value k from 1 to n for which

w−1 + . . . + w−k−1 + w−k + w+
k+1 + . . . + w+

n ≤ 1 ≤
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w−1 + . . . + w−k−1 + w+
k + w+

k+1 + . . . + w+
n .

When n is small, this value can be found by simply trying all k from 1 to
n; when n is large, we can use bisection by first trying k = 1 and k = n,
then trying a midpoint (1 + n)/2, etc.

• Then, we compute

wk = 1− (w−1 + . . . + w−k−1 + w+
k+1 + . . . + w+

n )

and take

x+ = w−1 · x1 + . . . + w−k−1 · xk−1 + wk · xk + w+
k+1 · xk+1 + . . . + w+

n · xn.

• Next, we find the value l from 1 to n for which

w+
1 + . . . + w+

l−1 + w−l + w−l+1 + . . . + w−n ≤ 1 ≤

w+
1 + . . . + w+

l−1 + w+
l + w−l+1 + . . . + w−n .

When n is small, this value can be found by simply trying all l from 1 to
n; when n is large, we can use bisection by first trying l = 1 and l = n,
then trying a midpoint (1 + n)/2, etc.

• Then, we compute

wl = 1− (w+
1 + . . . + w+

l−1 + w−l+1 + . . . + w−n )

and take

x− = w+
1 · x1 + . . . + w+

l−1 · xl−1 + wl · xl + w−l+1 · xl+1 + . . . + w−n · xn.

7.4.3 Examples

Let us give two examples.
The first example is the simpler: we have two values x1 and x2 to be ag-

gregated, and we have no information about the corresponding weights w1 and
w2. This means that each of the weights can take any value from the interval
[0, 1], i.e., that w1 = w2 = [0, 1]. In terms of bounds, w−1 = w−2 = 0 and
w+

1 = w+
2 = 1. To find the result of the corresponding aggregation, we first sort

the values; let us assume that they are already sorted, i.e., that x1 ≤ x2. In
this case, w−1 + w−2 ≤ 1 = w−1 + w+

2 , so k = 2, w2 = 1 − w−1 = 1 − 0 = 1, and
x+ = w−1 · x1 + w2 · x2 = x2. Similarly, x− = x1, so the resulting interval is
x = [x1, x2]. In other words, the aggregated interval is the simply the smallest
interval containing the values x1 and x2 – i.e., the envelope of the values.

This conclusion makes perfect sense because for different values of w1 ≥ 0
and w2 = 1−w1, the combination w1 ·x1 +w2 ·x2 ranges from x1 (when w1 = 1)
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to x2 (when w1 = 0 and w2 = 1), covering all the intermediate values for w1

between 0 and 1.
Similarly, if we have n measurement results x1, . . . , xn, and we do not have

any information about the weights wi (i.e., wi = [0, 1]), then the aggregated
interval is x = [x(1), x(n)].

The second example is about the case when we have some information about
the weights. Let x1 = 1, x2 = 2, x3 = 3, and let wi = [0.25, 0.35] for all i. In
his case,

0.95 = w−1 + w+
2 + w+

3 ≤ 1 ≤ w+
1 + w+

2 + w+
3 = 1.05,

so k = 1, w1 = 1− (w+
2 + w+

3 ) = 1− 0.7 = 0.3, and

x+ = w1 · x1 + w+
2 · x2 + w+

3 · x3 = 0.3 · 1 + 0.35 · 2 + 0.35 · 3 = 2.05.

Similarly,

0.95 = w+
1 + w+

2 + w−3 ≤ 1 ≤ w+
1 + w+

2 + w+
3 = 1.05,

so l = 3, w3 = 1− (w+
1 + w+

2 ) = 1− 0.7 = 0.3, and

x− = w+
1 · x1 + w+

2 · x2 + w3 · x3 = 0.35 · 1 + 0.35 · 2 + 0.3 · 3 = 1.95.

Thus, the aggregated interval is x = [1.95, 2.05].

7.4.4 Properties

Weighted average with interval weights is idempotent but not commutative,
continuous but not associative. It does not satisfy the averaging property but
it is computationally simple.

7.5 More general averaging operations

7.5.1 Problems with arithmetic average and weighted average

At first glance, arithmetic average and its minor modification – weighted av-
erage – sound reasonable, and for many practical problems, these methods are
very useful. However, in some practical situations, we get somewhat counterin-
tuitive results when aggregating expert estimates in risk analysis. Sometimes,
we need to estimate the value of a small quantity, e.g., concentration x of a
certain pollutant in a lake. Experts may give answers which differ by orders
of magnitude: e.g., three experts can give estimates as 10−5, 10−6, and 10−7.
When the experts give these estimates, of course, they do not mean that, in
their opinion, the concentration is, say, exactly 10−7. Rather, an expert means
that the actual value is around 10−7, i.e., of order 10−7. What happens if we
use arithmetic average to combine these estimates? As a result, we get

x̃ =
10−5 + 10−6 + 10−7

3
≈ 1

3
· 10−5.
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In other words, as a result of the aggregation, instead of some meaningful “av-
erage” of the three expert estimates, we get, as an aggregated value, the answer
which is, in effect, the opinion of the first expert. In general, when we use the
arithmetic average to aggregate values of different orders of magnitude, we get,
in effect, the largest of the estimates. The situation is not helped much if we
allow weights, unless, of course, we assign a tiny weight (about 0.1 or 0.01) to
the expert whose estimates is the largest. This may not sound so bad if we
aggregate the opinions of only three experts, but what if we had dozens of them
and one expert has an orders of magnitude higher value, arithmetic average will
be dominated by the opinion of this particular expert.

This problem is not limited to risk analysis; it is well known in statistics,
where, in the presence of outliers, the arithmetic average stops making sense.
Within robust statistics (Wadsworth, 1990), several modifications of arithmetic
average have been developed to solve this problem. Let us show that similar
modifications naturally appear in our risk-analysis problems.

7.5.2 From arithmetic average to geometric average and generalized
average

In the above text, we derived the arithmetic average formula from several as-
sumptions which, at that time, seemed to be pretty natural (and which are,
in many applications, quite natural). Because in some practical situations, the
resulting formulas turn out to be counterintuitive, this means that in these sit-
uations, some of our original assumptions are not as intuitively reasonable as
we originally thought.

Basically, we had four assumptions:

• that the objective function is smooth – this still seems like a reasonable
assumption;

• that there is no reason to prefer positive or negative errors – this also
seems reasonable;

• that there is no prior reason to prefer one expert to another – this is also
still reasonable;

• and, finally, the assumption that the quality of an approximation depends
on the difference between the original and the approximated values.

This last assumption is what is suspect in our current example. Let us use this
assumption to compare the following two situations:

• in the first situation, the actual value is 10−7 and an expert estimates it
as 10−6;

• in the first situation, the actual value is 10−6 and an expert estimates it
as 10−5.
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In both cases, an expert errs by an order of magnitude, so intuitively, the errors
in these two situations should be of similar graveness. However, based on the
above assumption, we end up with a completely different conclusion. In fact,

• in the first situation, the difference between the actual and the estimated
values is 0.9 · 10−6, although

• in the second situation, the difference between the actual and the esti-
mated values is 0.9 · 10−5.

In the second situation, the difference is 10 times larger than in the first one, so,
according to the above assumption, the expert’s estimate in the first situation
is much more accurate than in the second one.

This example shows that the above assumption is not intuitively reasonable.
How can we modify this assumption so that it will become intuitively reasonable
again? The main problem with the above assumption is that it compared the
values of the estimated quantity. From the intuitive viewpoint, we are interested
not in the values themselves, but rather in their effect, or their perception.
Researchers in psychology and psychophysiology have discovered that if we want
to capture difference in perception and/or difference in effect, we must use
not the original physical scale, but its non-linear rescaling X = f(x) for some
function f(x). The meaning of this scale is that the difference between the
values x and x′ is perceived to be the same as the difference between the values
y and y′ if and only if X−X ′ = Y −Y ′, where X = f(x), X ′ = f(x′), Y = f(y),
and Y ′ = f(y′) represent the values x, x′, y, and y′ in the new scale.

Two types of rescaling are most frequently used; see, e.g., (Milner, 1970):

• Fechner scale, in which the perception corresponds to X = ln(x); and

• Stevens’ scale, in which the perception is best described by the value
X = xα for an appropriate parameter α.

There is a also a general symmetry-based explanation of these scales, see, e.g.,
(Nguyen & Kreinovich, 1997).

To describe the approximation accuracy, we must use the difference not
between the values expressed in the original scale, but between the values ex-
pressed in a new scale. In the new scale, all four above assumptions are valid
and therefore, in the new scale, the appropriate aggregation operation is the
arithmetic average.

How will this aggregation operation look in the original scale? If we start
with two values x and y in the original scale, then to find the aggregation result
x ∗ y in the original scale, we must do the following:

• first, transform x and y into the new scale, thus computing X = f(x) and
Y = f(y);

• compute the arithmetic average Z = X + Y
2 of the values X and Y ;
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• transform the value Z into the original scale by applying the inverse func-
tion f−1:

x ∗ y = f−1(Z) = f−1

(
X + Y

2

)
= f−1

(
f(x) + f(y)

2

)
.

Specifically:

• for Fechner law, f(x) = ln(x), and x∗y =
√

x · y, i.e., we get the geometric
average;

• for Stevens’ law, f(x) = xα, and

x ∗ y =
(

xα + yα

2

)1/α

.

Similarly, for aggregating n values x1, . . . , xn, we get the formula

x1 ∗ . . . ∗ xn = f−1

(
f(x1) + . . . + f(xn)

n

)
.

Specifically:

• for Fechner law, f(x) = ln(x), and

x1 ∗ . . . ∗ xn = n
√

x1 · . . . · xn;

• for Stevens’ law, f(x) = xα, and

x1 ∗ . . . ∗ xn =
(

xα
1 + . . . + xα

n

n

)1/α

.

In particular:

• when α → −∞, the corresponding operation tends to the minimum
min(x1, . . . , xn);

• when α → 0, the corresponding operation tends to the geometric average
n
√

x1 · . . . · xn;

• when α = 1, the corresponding operation coincides with the original arith-
metic average;

• when α → ∞, the corresponding operation tends to the maximum
max(x1, . . . , xn).

In particular, if we apply the geometric average to three estimates 10−7, 10−6,
and 10−5, we get a reasonable aggregation result 10−6.
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7.5.3 Properties of geometric average and generalized average

Because geometric average and generalized average (with finite α) are, in fact,
arithmetic average described in a different scale, these aggregation operations
have exactly the same properties as the arithmetic average: they are idempotent,
commutative, continuous, non-associative, satisfy the averaging property, and
are computationally simple.

The operations min and max corresponding to the limit cases α = ±∞ have
an additional property of associativity.

7.5.4 Weighted geometric and generalized average

If we apply weighted average Y = w1 · X1 + . . . + wn · Xn (
∑

wi = 1) to the
values Xi expressed in the new scales, then, in the original scales, we get the
following operations:

• for Fechner law, f(x) = ln(x), and

x1 ∗ . . . ∗ xn = xw1
1 · . . . · xwn

n ;

• for Stevens’ law, f(x) = xα, and

x1 ∗ . . . ∗ xn = (w1 · xα
1 + . . . + wn · xα

n)1/α.

7.5.5 Properties of weighted geometric and generalized average

Similar to simple weighted average, weighted geometric and generalized average
are idempotent, not commutative, continuous, not associative, not satisfying
the averaging property, and computationally simple.

7.5.6 Weighted geometric and generalized average with interval
weights

If we only know the intervals wi of possible values of the weights, then we can
compute the weighted geometric and generalized average of the values x1, . . . , xn

as follows:

• first, transform the values x1, . . . , xn into the new scale, thus computing
X1 = f(x1), . . . , Xn = f(xn);

• second, we use the above algorithm to compute the interval [X−, X+]
corresponding to the weighted average of Xi with interval weights wi.

• finally, we transform the interval [X−, X+] into the original scale by ap-
plying the inverse function f−1, i.e., by computing x = {f(X) |X ∈
[X−, X+]}. Because each rescaling function f(x) is monotonic, to compute
the range x = f([X−, X+]) of the function f(x) on the interval [X−, X+],
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it is sufficient to compute the values f(X−) and f(X+) of the function
f(x) on the endpoints of this interval. The resulting values f(X−) and
f(X+) form the desired interval.

Of course, similarly to the case of weighted geometric and generalized average
with numerical weights, we can describe this algorithm more directly:

• First, we sort the values xi in increasing order. Without losing generality,
we can assume that the values xi are already sorted, i.e., that

x1 ≤ x2 ≤ . . . ≤ xn.

• Second, we find the value k from 1 to n for which

w−1 + . . . + w−k−1 + w−k + w+
k+1 + . . . + w+

n ≤ 1 ≤
w−1 + . . . + w−k−1 + w+

k + w+
k+1 + . . . + w+

n .

• Then, we compute

wk = 1− (w−1 + . . . + w−k−1 + w+
k+1 + . . . + w+

n )

and take either

x+ = x
w−1
1 · . . . · xw−

k−1
k−1 · xwk

k · xw+
k+1

k+1 · . . . xw+
n

n ,

or

x+ = (w−1 ·xα
1 + . . .+w−k−1 ·xα

k−1 +wk ·xα
k +w+

k+1 ·xα
k+1 + . . .+w+

n ·xα
n)1α.

• Next, we find the value l from 1 to n for which

w+
1 + . . . + w+

l−1 + w−l + w−l+1 + . . . + w−n ≤ 1 ≤
w+

1 + . . . + w+
l−1 + w+

l + w−l+1 + . . . + w−n .

• Then, we compute

wl = 1− (w+
1 + . . . + w+

l−1 + w−l+1 + . . . + w−n )

and take
x− = x

w+
1

1 · . . . · xw+
l−1

l−1 · xwl

l · xw−
l+1

l+1 · . . . xw−n
n ,

or

x− = (w+
1 ·xα

1 + . . .+w+
l−1 ·xα

l−1 +wl ·xα
l +w−l+1 ·xα

l+1 + . . .+w−n ·xα
n)1/α.

The desired interval is formed by the endpoints x− and x+. To be more precise:

• for geometric average and for α > 0, the desired interval is [x−, x+];

• for α < 0, the desired interval is [x+, x−].
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7.5.7 Weighted geometric and generalized average with interval
weights: Properties

Weighted geometric and generalized average operations with interval weights
are idempotent but not commutative, continuous but not associative. They
don’t satisfy the averaging property, and computationally simple.

7.6 Envelope

7.6.1 Case of variability: envelope

In the above text, we dealt with the averaging operations. These operations
correspond to the case when the values x1, . . . , xn to be aggregated come from
measuring and/or estimating the same (unknown) quantity x (i..e, to the case
of incertitude), and our goal is to combine these estimates into a single (better)
estimate for the same quantity x.

In some practical situations, however, the difference between the measure-
ment results x1, . . . , xn is due not to incertitude, but to variability. All n values
are correct, but they represent the values of the measured property in different
zones or at different moments of time.

In this case, there is no single “actual” value of the measured quantity. The
adequate description of the quantity is not by a single value, but by a set of
possible values. Because the quantity usually changes continuously from place to
place or from time to time, we can use the “mean value” property of continuous
functions – that a continuous function attains all intermediate values – and
conclude that the set of possible values of this quantity is an interval.

In this case, the goal of the aggregation is to provide an estimate for the “vari-
ability” interval of possible values of x. We know n measured values x1, . . . , xn.
These values have been measured and thus, they are clearly possible. There-
fore, the desired interval of possible values must contain all these values. The
smallest interval that contains all these values is the interval

[x(1), x(n)] = [min(x1, . . . , xn),max(x1, . . . , xn)]

between the smallest and the largest of the n values.
Values from outside this interval may also be possible. However, because we

do not have any reason to add any specific value from outside the interval, the
best we can do is to present the interval [x(1), x(n)] as the aggregation result.
The resulting aggregation operation

x1 ∗ . . . ∗ xn = [x(1), x(n)] = [min(x1, . . . , xn), max(x1, . . . , xn)]

is called an envelope operation.
Envelope operation can be also used in the case of incertitude, when we

want to produce not a single numerical estimate, but an aggregated estimate
that combines both values x1 and x2.
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7.6.2 Relation with weighted average

We have already mentioned, when analyzing weighted average, that exactly the
same formula appears if we consider weighted average with unknown weights,
i.e., with weight intervals all equal to wi = [0, 1].

7.6.3 Properties of the envelope operation

The envelope operation is clearly idempotent, commutative, and continuous.
From the commonsense viewpoint, it is also associative (i.e., (x1 ∗x2) ∗x3 =

x1∗(x2∗x3)) and satisfies the averaging property, because the result of applying
this operation does not depend on the order in which the values x1, . . . , xn

are presented. However, because the result of aggregating two real numbers
x1∗x2 is an interval, we cannot even formalize these two properties without first
extending this operation to the case when one of the estimates to be aggregated
is an interval in order to formulate this property. We will do that in the section
devoted to operations with intervals, and the resulting operation indeed turns
out to be associative.

Finally, computing the envelope is clearly a computationally simple opera-
tion.

7.7 Mixing operation

7.7.1 Description

In accordance with our original analysis of different ways of describing uncer-
tainty, in addition to the interval of possible values, we may want to describe
the frequency of different values within this interval.

In particular, when we have n measurement results x1, . . . , xn, we can say
that each of them occurs with a frequency 1/n. In this result, the result of
aggregating n values is a probability distribution in which each of n values
occurs with exactly the same probability 1/n. This aggregation operation is
called mixing.

When describing different ways to represent uncertainty, we have concluded
that for generic risk analysis problems, CDF is the best representation for a
probability distribution. To represent the result of mixing as a CDF, we first
sort the values x1, . . . , xn, and then the resulting ordered sequence x(1) ≤ x(2) ≤
. . . ≤ x(n) to produce the resulting CDF.

Mixing operation can be also used in the case of incertitude, when we want
to produce not a single numerical estimate, but an aggregated estimate that
combines both values x1 and x2.
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7.7.2 Mixing operation: example

Let x1 = 1, x2 = −1, and x3 = 0. In this case, x(1) = −1, x(2) = 0, x(3) = 1,
and the resulting CDF looks as follows:

-

6

x

F (x)

−1 0 1

1/3

2/3

1

7.7.3 Properties of the mixing operation

The mixing operation is clearly idempotent, commutative, and continuous.
The result of applying this operation does not depend on the order in which

the values x1, . . . , xn are presented. However, we cannot yet formalize and check
associativity and the averaging property, because the result x1 ∗ x2 of mixing
two real numbers x1 and x2 is a probability distribution, and the operation has
been so far defined only for real numbers.

Finally, mixing is clearly a computationally simple operation.

7.8 Section’s conclusions

When the values x1, . . . , xn to be aggregated represent incertitude, we can either
use more traditional averaging techniques which “erase” the incertitude, or we
can use enveloping techniques which represent and propagate the incertitude.
When the values x1, . . . , xn to be aggregated represent variability, enveloping
techniques are the only choice.

Reasonable averaging techniques include the arithmetic average, the gen-
eralized averages, and the weighted versions of these operations. Reasonable
enveloping techniques lead either to an envelope [min(xi),max(xi)], or to a
probability distribution in which each value xi occurs with the same probability
1/n.
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8 Aggregation of Uncertainty in Risk Analysis:
Case of Intervals

8.1 General classification

8.1.1 Incertitude vs. variability

How can we aggregate n intervals x1, . . . ,xn? As in aggregation of real numbers,
the choice of the aggregation operation depends on whether we have incertitude
(when there is only one actual value x) or we have variability (when we have
several possible values.

For real numbers, this was the main issue. As soon as we agreed on whether
real numbers represent incertitude or variability, we get a well-formulated prob-
lem for which we can use several reasonable methods. For intervals, the sit-
uation is somewhat more complicated because even if we select incertitude or
variability, we still have several choices depending on what exactly the intervals
represent.

In the following text, we first describe all the possibilities, and then enumer-
ate aggregation techniques corresponding to these possibilities.

8.1.2 Incertitude: two options

Let us first consider the case of incertitude, when there is a single (unknown)
value of the desired quantity x, and each interval xi is a result of measuring
or estimating this unknown quantity. What operation we should choose to
aggregate these intervals depends on the relation between the intervals xi and
the unknown value x.

In order to describe different relationships, let us recall that a measuring
instrument does not usually return an interval, it returns a real number x̃. An
interval is usually obtained if we take into consideration that the measurement
result is never absolutely accurate, as a result of which the actual measured
value x usually differs from the measured result x̃. If we know the upper bound
∆ on the measurement result, then we can conclude that the actual value x
belongs to the interval [x̃ − ∆, x̃ + ∆]. This interval is then returned as the
result of the measurement.

Within this general scheme, there are two possible choices of ∆. In view
of the above description, a natural idea is to choose the value ∆ that bounds
the total error. In this case, each of n intervals xi is guaranteed to contain the
actual (unknown) value x.

However, the selection of total error bound for ∆ is not the only possibil-
ity. There is another very natural possibility for selecting ∆. Indeed, engineers
and scientists often do not use intervals to describe their uncertainty. They
get the numerical measurement results, and then they apply statistical tech-
niques (e.g., computing the arithmetic average) to process the results x̃1, . . . , x̃n
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of these measurements. In these statistical methods, it is usually assumed that
the measurement error x̃i−x is purely random. In reality, in addition to random
measurement error, there are additional (presumably small) error components
such as discretization error, un-resolved systematic error, etc. These compo-
nents are not distributed according to standard distributions, they are usually
not independent, and so treating these components by normal statistical tech-
niques can lead to inaccuracy of data processing results.

For example, if all measurement errors are independent, then, when we re-
peat the measurement sufficiently many (N) times, the standard deviation of
the average drops as 1/

√
N , so we would think that with N increasing, this

error will eventually tend to 0. However, if all the measurement results have
the same remaining systematic error component, then no amount of averaging
will decrease this error.

So, to avoid this problem and to make the the results of statistical methods
more reliable, it makes sense to replace the original values x̃i by intervals [x̃i +
∆i, x̃i + ∆i], where ∆i is the upper bound on the systematic error component.
In this representation, the actual value x of the measured quantity does not,
in general, belong to this interval xi, but the difference between x and one of
the values from xi is already a purely random error and therefore, standard
statistical methods can be applied.

Summarizing: in case of incertitude, we have two options:

• The first option is that the intervals xi contain the bounds for the total
error. In this case, the actual value x of the measured quantity belongs to
each of these intervals.

• The second option is that the intervals xi contain the bounds only for some
error components. In this case, the actual value x does not, in general,
belong to any of these intervals xi.

8.1.3 Aggregation for the second option: averaging vs. enveloping

In the second option, when each of the intervals x1, . . . ,xn to be aggregated is
an estimate for the actual (unknown) value x and does not necessarily contain
this value x, how can we aggregate these intervals? We already know, from
Section 7, how to aggregate numerical estimates. Each interval xi represents
the set of possible numerical estimates xi for x. Therefore, to describe different
possible operations x∗y = [x−, x+]∗ [y−, y+] of aggregating these intervals, it is
reasonable, for each operation ∗ that aggregates real numbers, to take, as x ∗y,
the set of possible values of x ∗ y when x ∈ x and y ∈ y.

Depending on whether we start with an averaging or with an enveloping
operation for aggregating real numbers, we end up with, correspondingly, an
averaging or an enveloping operation for aggregating intervals.
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8.1.4 Variability: two options

Similarly, in the variability case, when, say, an expert presents an interval, it
may mean two different things:

• It may mean that we have observed sufficiently many values within the
presented interval, so we claim that all values within this interval are
possible; some values from outside this interval may also be possible, but
we are not sure about them.

• It may also mean that we present an interval that contains all possible
values of x (e.g., its range), but we are not sure that all values from this
interval are actually possible. For example, we may say that the variable
should be between 0 and 1, but in reality, it may only take values from 0
to 0.3.

These two cases can be easily described in terms of the relation between the
presented interval x and the actual (unknown) interval of possible values X. In
the first case, x ⊆ X, and in the second case, X ⊆ x.

8.2 Intersection

8.2.1 Aggregation operation corresponding to the case when inter-
vals contain total error: intersection

Now that we have enumerated several possible meanings of interval data, let us
start describing the corresponding aggregation techniques. We will start with
the first option of both incertitude and variability, when each of the intervals
x1, . . . ,xn to be aggregated contain all possible values of the desired quantity.
So, we have n pieces of information, according to which x belongs to the interval
x1, to the interval x2, etc. This information can be easily aggregated; x belongs
to several intervals if and only if it belongs to their intersection. Thus, the
corresponding aggregation operation is intersection x ∗ y = x ∩ y.

This operation is easy to compute: if x = [x−, x+] and y = [y−, y+], then
the intersection is equal to x ∩ y = [max(x−, y−), min(x+, y+)].

For example, if x = [1, 3] and y = [2, 4], we get x ∩ y = [2, 3].

8.2.2 Properties of intersection

Intersection is idempotent, commutative, associative, satisfies the averaging
property, and is easy to compute.

From our list of properties, the only property that may not be fully satisfied
for intersection is continuity. We have discussed this very example when we
introduced and analyzed the continuity property:
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• If we are 100% sure that all the intervals are correct, then, because x
belongs to all of them, their intersection is non-empty. In this case, the
intersection operation is continuous.

• On the other hand, realistically, mistakes happen. What if one of the in-
tervals is erroneous: e.g., the researcher who did this measurement did not
take into account one of the error components (a very realistic situation,
by the way). In this case, the intersection may turn out to be empty, and
in this case, the aggregation operation stops being continuous.

This analysis of properties of intersection leads to a natural practical question:
what should we do if the intersection is empty? This issue commonly arises
(Kosko, 1986); for example, it arises in the analysis of expert estimates related to
computer simulations of atomic bomb detonation (Ross et al., 2000). In general,
this situation should precipitate a more careful review of the data. Something is
clearly wrong. Perhaps some of the estimates are answering different questions
or are the result of some fundamental misunderstanding. This inconsistency
provides an analyst with an opportunity to reconsider the problem. Given that
this sort of inconsistency can arise in situations where no obvious errors have
been made, we would like to proceed even though the intersection is empty.

8.2.3 What if intersection is empty?

If the intersection of all n intervals is empty, this means that at least one of
the intervals is erroneous and should be dismissed. Which interval(s) should we
dismiss?

In principle, if, say, three intervals almost coincide, and the fourth does not
have any point in common with any of the first three, there are two options:

• we can dismiss the fourth interval, or

• we can dismiss the first three intervals.

If the intervals are the only information that we have, then it might be reasonable
to prefer dismissing one interval.

In general, we would like to dismiss the smallest possible number of intervals.
If we can achieve consistency by dismissing only one interval, then, because we
do not know which of the intervals is erroneous, we could do the following:

• try all intervals whose dismissal leads to consistency,

• compute the intersection for each resulting set, and

• then (because we are not sure which is correct) take the union of the
resulting intersections.

If we cannot achieve consistency by dismissing only one interval, but we can
achieve consistency by dismissing two intervals, then we must do the following:

72



• try all pairs of intervals whose dismissal leads to consistency,

• compute the intersection for each set resulting from the dismissal of each
such pair, and

• then take the union of the resulting intersections.

The resulting algorithms are pretty straightforward, but when the number of
intervals grows, these algorithms require too much time. Indeed, if we have,
say, 1,000 intervals, and 5% of them are erroneous (a reasonable rate in real-life
measurements), this means that we have to dismiss 50 intervals out of 1,000.
In this case, to apply the above straightforward algorithm, we need to try all
possible subsets of 50 intervals from 1,000. The corresponding number of com-
binations is larger than the number of particles in the universe, and cannot be
tested. We therefore need a better indirect algorithm. Such an algorithm has
been used in (Ross et al., 2000). It consists of the following steps.

1. First, we sort all 2n endpoints

x−1 , . . . , x−n , x+
1 , . . . , x+

n

into an ordered sequence of real numbers

x(1) ≤ x(k) ≤ . . . ≤ x(2n).

2. Then, for each k = 1, . . . , 2n − 1, we consider the interval [x(k), x(k+1)].
For this interval, we check, for every i = 1, . . . , n, whether this interval
belongs to xi or not. Thus, we form the set S(k) of all indices i for which
[x(k), x(k+1)] ⊆ xi, and compute the total number |S(k)| of elements in this
set.

3. As a result of the second stage, we get 2n − 1 different values of |S(k)|.
To find the largest value (or values), we compare them with each other:
we start with the value corresponding to the leftmost interval [x(1), x(2)],
mark it as the largest-so-far, and then go over other values, replacing the
largest-so-far with the next one if the next value of |S(k)| is indeed larger.

4. Then, we take all the intervals for which |S(k)| attains the largest pos-
sible value, and take the interval envelope of the corresponding intervals
[x(k), x(k+1)]. To be more precise, it is sufficient to take the first such inter-
val [x(k), x(k+1)] and the last such interval [x(l), x(l+1)], then the resulting
aggregation is [x(k), x(l+1)].

If the intersection of n input intervals is not empty, then this algorithm returns
the intersection. Let us give a simple example how this algorithm works when
the intersection is empty. Let

x1 = [0.0, 1.0], x2 = [0.5, 1.5], x3 = [0.7, 1.2], x4 = [1.3, 1.6].
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These four intervals have an empty intersection. According to our algorithm,
first we sort all 8 values x±i into a sequence

x(1) = 0.0 ≤ x(2) = 0.5 ≤ x(3) = 0.7 ≤ x(4) = 1.0 ≤

x(5) = 1.2 ≤ x(6) = 1.3 ≤ x(7) = 1.5 ≤ x(8) = 1.6.

Then, for each of seven intervals [x(k), x(k+1)], we compute the corresponding
value |S(k)|:

|S(1)| = 1, |S(2)| = 2, |S(3)| = 3, |S(4)| = 2, |S(5)| = 1, |S(6)| = 2, |S(7)| = 1,

and select the set S(3) for which the corresponding real number is the largest.
The result of aggregation is therefore [0.7, 1.0].

In general, for two intervals x1 = [x−1 , x+
1 ] and x2 = [x−2 , x+

2 ] with an empty
intersection, this dismissive intersection leads to an interval envelope of their
union, i.e., to the interval [min(x−1 , x−2 ),max(x+

1 , x+
2 )]. Let us analyze the prop-

erties of the dismissive intersection operation. This operation is idempotent
and commutative. It is not continuous because, e.g., when a real number α
goes from positive values to 0, the dismissive intersection between the intervals
[−1, 0] and [α, 1 + α] changes from an interval [−1, 1 + α] whose width is close
to 2 to a degenerate interval [0, 0] of width 0. The dismissive intersection is not
associative; for example,

[0, 1] ∗ ([1, 2] ∗ [2, 3]) = [0, 1] ∗ [2, 2] = [0, 2],

although
([0, 1] ∗ [1, 2]) ∗ [2, 3] = [1, 1] ∗ [2, 3] = [1, 3] 6= [0, 2].

This operation does not satisfy the averaging property; for example,

([0, 1] ∗ [0, 4]) ∗ ([1, 2] ∗ [2, 3]) = [0, 1] ∗ [2, 2] = [0, 2],

although

([0, 1] ∗ [1, 2]) ∗ ([0, 4] ∗ [2, 3]) = [1, 1] ∗ [2, 3] = [1, 3] 6= [0, 2].

Dismissive intersection is easy to compute.

8.3 Averaging

8.3.1 General description

In the previous subsection, we described aggregation operations corresponding
to the case when each of the intervals to be aggregated is known to contain all
possible values of x. Let us now consider the second option, when intervals to
be aggregated do not necessarily contain all possible values of the quantity x.
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In Section 8.1, we have shown that the corresponding aggregation operations
can be obtained by using the corresponding operations for aggregating real
numbers. Namely, for each operation ∗ that aggregates real numbers, we take,
as x ∗ y, the set of possible values of x ∗ y when x ∈ x and y ∈ y.

Let us start with averaging aggregation operations. Because most averaging
operations are monotonic, from x− ≤ x ≤ x+ and y− ≤ y ≤ y+, we conclude
that x− ∗ y− ≤ x ∗ y ≤ x+ ∗ y+. Therefore, all possible values x ∗ y belong to
the interval [x− ∗ y−, x+ ∗ y+] which is, therefore, the desired aggregation:

[x−, x+] ∗ [y−, y+] = [x− ∗ y−, x+ ∗ y+].

Let us consider all real-number averaging aggregation operations one by one
and see what interval operations they lead to.

8.3.2 Arithmetic average

For arithmetic average, the above formula leads to

[x−1 , x+
1 ] ∗ [x−2 , y+

2 ] =
[
x−1 + x−2

2
,
x+

1 + x+
2

2

]
;

[x−1 , x+
1 ] ∗ . . . ∗ [x−n , y+

n ] =
[
x−1 + . . . + x−n

n
,
x+

1 . . . + x+
n

n

]
.

Similar to the case of real numbers, this operation is idempotent, commuta-
tive, continuous, not associative, satisfies the averaging property, and is easy to
compute.

8.3.3 Weighted average

For weighted average, the above formula leads to

[x−1 , x+
1 ] ∗ . . . ∗ [x−n , y+

n ] = [w1 · x−1 + . . . + wn · xn, w1 · x+
1 . . . + wn · x+

n ].

Similar to the case of real numbers, this operation is idempotent, non-
commutative, continuous, not associative, satisfies the averaging property, and
is easy to compute.

An interesting new aspect of weighted average with respect to interval data is
that with intervals instead of real numbers, we now have new criteria for select-
ing weights depending on the widths of the corresponding intervals. Specifically,
there are two possible criteria:

• If we are sure that each interval correctly describes the corresponding
systematic error, then wider intervals correspond to worse measurements,
with larger systematic error. In this case, it makes sense to assign smaller
weights to these bad measurements, thus decreasing their impact on the
aggregation result.
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• What shall we do in the opposite situation, when we are not sure that
each intervals correctly describes the corresponding systematic error? We
have already mentioned, when discussing the possibility of an empty in-
tersection, that a typical mistake of a measurer is to underestimate the
measurement error. So, if all the intervals come from the sources of approx-
imately the same measurement capability, but one of the corresponding
intervals is wider than the others, this probably means that this wider in-
terval describes the corresponding systematic error much more accurately
than the narrower ones. Because we trust wider intervals more than nar-
rower ones, we should assign larger weights to wider intervals and smaller
weights to narrower intervals.

8.3.4 Weighted average with interval weights

In accordance with the above expression, the endpoints x− and x+ of the ag-
gregated interval x can be computed as follows:

• First, we sort the values x+
i in increasing order:

x+
(1) ≤ x+

(2) ≤ . . . ≤ x+
(n).

Let w−+(i) and w+
+(i) be the lower and upper endpoints of the weight inter-

vals that corresponds to x+
(i).

• Second, we find the value k from 1 to n for which

w−+(1) + . . . + w−+(k−1) + w−+(k) + w+
+(k+1) + . . . + w+

+(n) ≤ 1 ≤

w−+(1) + . . . + w−+(k−1) + w+
+(k) + w+

+(k+1) + . . . + w+
+(n).

• Then, we compute

w+k = 1− (w−+(1) + . . . + w−+(k−1) + w+
+(k+1) + . . . + w+

+(n))

and take

x+ = w−+(1) · x+
(1) + . . . + w−+(k−1) · x+

(k−1) + w+k · x+
(k)+

w+
+(k+1) · x+

(k+1) + . . . + w+
+(n) · x+

(n).

• Next, we sort the values x−i in increasing order:

x−(1) ≤ x−(2) ≤ . . . ≤ x−(n).

Let w−−(i) and w+
−(i) be the lower and upper endpoints of the weight inter-

vals that corresponds to x−(i).
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• Then, we find the value l from 1 to n for which

w+
−(1) + . . . + w+

−(l−1) + w−−(l) + w−−(l+1) + . . . + w−−(n) ≤ 1 ≤

w+
−(1) + . . . + w+

−(l−1) + w+
−(l) + w−−(l+1) + . . . + w−−(n).

• Finally, we compute

w−l = 1− (w+
−(1) + . . . + w+

−(l−1) + w−−(l+1) + . . . + w−−(n))

and take

x− = w+
−(1) · x−(1) + . . . + w+

−(l−1) · x−(l−1) + w−l · x−(l)+

w−−(l+1) · x−(l+1) + . . . + w−−(n) · x−(n).

In particular, when wi = [0, 1] for all i, the aggregation result is the interval

[min(x−1 , . . . , x−n ), max(x+
1 , . . . , x+

n )]

– the smallest interval which contains all the intervals xi. This interval is the
envelope of the intervals x1, . . . ,xn.

8.3.5 Geometric average and generalized average

For geometric average:

x− = n

√
x−1 · . . . · x−n ;

x+ = n

√
x+

1 · . . . · x+
n .

For generalized average:

x− =
(

(x−1 )α + . . . + (x−n )α

n

)1/α

;

x+ =
(

(x+
1 )α + . . . + (x+

n )α

n

)1/α

.

These operations are idempotent, commutative, continuous, non-associative,
satisfy averaging properties, and are computationally simple.
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8.3.6 Weighted geometric average and generalized average

For geometric average:

x− = (x−1 )w1 · . . . · (x−n )wn ;

x+ = (x+
1 )w1 · . . . · (x+

n )wn .

For generalized average:

x− = (w1 · (x−1 )α + . . . + wn · (x−n )α)1/α;

x+ = (w1 · (x+
1 )α + . . . + wn · (x+

n )α)1/α.

Similar formulas can be written for geometric and generalized averages with
interval weights.

8.4 Enveloping

In the previous subsection, we considered interval aggregation operations that
result from averaging of real numbers. Let us now describe what interval aggre-
gation operations emerge if we start with enveloping operations.

8.4.1 Envelope

In the envelope aggregation of n real numbers x1, . . . , xn, the result is the inter-
val [min(x1, . . . , xn), max(x1, . . . , xn)]. So, if we want to use this operation to
combine n intervals x1 = [x−1 , x+

1 ], . . . ,xn = [x−n , x+
n ], we must take all possible

values x1 ∈ x1, . . . , xn ∈ xn, aggregate these n values, and then combine the
resulting aggregations. One can easily show that the union of all the corre-
sponding aggregation intervals is the smallest interval that contains the union
of the n intervals to be aggregated, i.e., the interval

x1 ∗ . . . ∗ xn
def= [min(x−1 , . . . , x−n ),max(x+

1 , . . . , x+
n )].

This formula makes perfect sense; indeed, e.g., in the case of variability, all
the values from each interval xi are known to be possible. Thus, a natural
aggregation operation x1 ∗ . . . ∗ xn is the envelope, the smallest interval that
contains the union of these n intervals.

Similarly to the case of aggregating point estimates, the envelope is equal to
the weighted average with interval weights wi = [0, 1].

The envelope operation is idempotent, commutative, continuous, associative,
satisfies the averaging property, and is computationally simple.

8.4.2 Mixing

Another possibility is to consider the mixing operation. As a result, we combine
each interval with probability 1/n. Mixing operation is exactly what we used
when we transformed interval measurement results into a p-bound.
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8.5 Section’s conclusions

When each of the intervals x1, . . . ,xn to be aggregated contain all possible values
of a quantity, then a natural aggregation operation is the intersection. In other
cases, we can use either averaging operations which “erase” the incertitude
or enveloping operations which preserve and propagate the incertitude. For
enveloping, aggregation leads to either the envelope [min(x−i ),max(x+

i )], or to
a p-bound in which each interval xi occurs with the same probability 1/n.
When the intervals x1, . . . ,xn to be aggregated represent variability, enveloping
techniques are the only choice.
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9 Aggregation of Uncertainty in Risk Analysis:
Case of Probability Distributions

9.1 General classification

9.1.1 Incertitude vs. variability, averaging vs. enveloping

Let us now consider probability distributions which are, of course, a special
case of p-bounds. If we have n CDFs F1(x), . . . , Fn(x), how can we aggregate
them? Similarly to aggregation of real numbers and intervals, the choice of the
aggregation operation depends on:

• whether we have incertitude – i.e., whether there is only one actual CDF
– or

• whether we have variability – when several different probability distribu-
tions are possible in different situations, and thus, we need a p-bound to
describe the resulting uncertainty.

As in the case of intervals, even after we choose incertitude or variability, we
still have several choices depending on where exactly the CDFs to be aggregated
come from, and whether we want to use averaging or enveloping. In the follow-
ing text, we first describe all the possibilities, and then enumerate aggregation
techniques corresponding to these possibilities.

9.1.2 Incertitude: two subcases

Let us first consider the case of incertitude, when there is a single (unknown)
CDF F (x), and each CDF Fi(x) to be aggregated is a result of measuring or
estimating this unknown CDF. What operation we should choose to aggregate
these CDFs depends on what causes the difference among the different CDFs,
or, equivalently, what causes the known CDFs Fi(x) to be different from the
actual probability distribution F (x). We have already described, in Section
3, where different p-bounds (and CDFs are examples of p-bounds) come from.
Based on this analysis, we can see that depending on where the CDFs come
from, there are two main sources of the differences between Fi(x) and F (x).

• One possibility is that the CDFs come from expert estimation, when an
expert estimates the values of F (x) for each x. In this case, the main source
of the difference between Fi(x) and F (x) is the estimation error, due to
which, for every x, the expert’s estimate Fi(x) of the CDF is different
from the estimated (unknown) value F (x) of the CDF. In this case, each
CDF Fi(x) is based on the data points in which the value x is known
exactly, and the probability F (x) is estimated approximately. For short,
we can say that in this case, we we have an uncertainty in probability, i.e.,
p-uncertainty.
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• Another possibility is that CDFs come from measurement. In this case, a
CDF is simply a mixture distribution representing measurement results.
For such measured CDFs, the main source of the difference between Fi(x)
and F (x) is the measurement error, due to which the measurement results
are different from the actual values of the measured quantity. In this case,
each CDF Fi(x) is based on the data points in which the probabilities 1/n
of each measured valued are known exactly, but the measured value x is
estimated approximately. For short, we can say that in this case, we we
have an uncertainty in x, i.e., x-uncertainty.

Please note that we listed these possibilities in the order which is opposite to
the order in which we presented them in describing where CDFs come from.
This change of order is not accidental. In Section 3, when we described possible
sources of p-bounds, we started with the situation of complete information, then
described different possible situations in the order of increasing incompleteness.

Expert estimates are usually less accurate than measurements, hence we
start with expert estimates and consider CDFs coming from measurements later.
In the following text, when analyzing and describing different aggregation op-
erations, we will follow this same order.

9.1.3 Variability: two subcases

Similarly to two subcases within the incertitude case, there are also two sub-
cases within the variability case: the case when the CDFs comes from expert
estimates, and the case when CDFs come from measurements.

9.2 Averaging operations for the case when CDFs come
from expert estimates: general overview

As in the cases of real numbers and intervals, for incertitude, we can use either
averaging or enveloping techniques. Let us first consider averaging techniques
for the case when CDFs Fi(x) come from expert estimates. In this case, for
every x, we have n estimates Fi(x) for the desired probability F (x). For every
x, we need to aggregate n real numbers, so we can use all the operations that
we described for aggregating (averaging) real numbers. To distinguish between
averaging the measured values xi and averaging probabilities pi, we will call
these operations, correspondingly, x-averaging and p-averaging. In these terms,
aggregation operations for the case when:

• CDFs represent incertitude and

• CDFs come from expert estimates,

correspond to p-averaging. Let us describe how different averaging operations
(described above for the general problem of aggregating real numbers) work for
p-averaging.
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9.3 Arithmetic p-average

9.3.1 General description and properties

The simplest averaging operation is the arithmetic average, when

F1(x) ∗ F2(x) =
F1(x) + F2(x)

2
,

and

F1(x) ∗ . . . ∗ Fn(x) =
F1(x) + . . . + Fn(x)

n
.

This formula is also called linear opinion pool (Clemen & Winkler, 1999).
As in the cases of real numbers and intervals, this operation is idempotent,

commutative, continuous, not associative, satisfies the averaging property, and
is easy to compute.

9.3.2 Case of real numbers

Because real numbers are a particular case of CDFs, we will try, for this and
for other aggregation operations, to analyze what these operations lead to when
applied to real numbers. Specifically, when each CDF represents an exact real
number xi, i.e., if

Fi(x) =
{

0 if x ≤ xi,
1 if x > xi,

then the p-average corresponds to what we called, in Section 7, the “mixing” of
these real numbers, when we have each real number xi with the same probability
1/n. (This is also the same operation used to generate a histogram Fn(x) from
measurement results.) Thus, every example of mixing or histogram generation
can also serve as an example of arithmetic p-averaging. It is important to
emphasize that the arithmetic p-average of n real numbers is different from
the arithmetic (x-)average of these numbers. The arithmetic x-average is a
single number (degenerate distribution), while the arithmetic p-average is a
non-degenerate probability distribution. For example, for x1 = 1, x2 = −1, and
x3 = 0, the arithmetic p-average looks as follows

-

6

x

F (x)

−1 0 1

1/3

2/3

1

82



and the corresponding arithmetic x-average is the number x = 0, which corre-
sponds to the following CDF

-

6

x

F (x)

−1 0 1

1

9.3.3 Example

In addition to these degenerate examples, let us present a simple numerical
example of arithmetic p-averaging in which the distributions to be aggregated
are not real numbers. Let

F1(x) =





0 if x ≤ 1,
x− 1 if 1 ≤ x ≤ 2,
1 if x > 2

F2(x) =
{

x if x ≤ 1,
1 if x > 1

-

6

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

x

Fi(x)

0 1 2

1

F1F2

Then, the result F = F1 ∗ F2 of p-averaging is the following CDF:

F (x) =
{

x/2 if x ≤ 2,
1 if x > 2
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9.3.4 New motivations

It is worth mentioning that for p-averaging, the use of arithmetic average is very
natural. Let us explain what we mean. In the general situation of aggregation
operations with real numbers (general in the sense that these real numbers are
not necessarily probabilities, may be measured values), we presented, in Section
7, several motivations for using arithmetic average.

For the specific case of p-averaging, when we are averaging probabilities,
arithmetic average has a very natural probabilistic meaning. To provide this
meaning, let us approach the aggregation problem from a slightly different angle.
Two experts provided us with two different estimates F1(x) and F2(x) for the
same probability F (x).

• If we trust the first expert 100%, then we simply take his/her estimate
F1(x) as the estimate for the same probability, and completely dismiss the
estimate F2(x) provided by the second expert.
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• If we trust the second expert 100%, then we simply take his/her estimate
F2(x) as the estimate for the same probability, and completely dismiss the
estimate F1(x) provided by the first expert.

If we do not any reason to prefer the first or the second expert, then it makes
sense to trust either the result of the first expert or the result of the second
expert with the same probability 0.5. If we do that, what will be the resulting
probability F (x) that X ≤ x? This probability can be computed by using the
formula of full probability:

P (X ≤ x) = P (1) · P (X ≤ x | 1) + P (2) · P (X ≤ x | 2),

where:

• P (1) = 0.5 is the probability that the first expert is correct;

• P (2) = 0.5 is the probability that the second expert is correct;

• P (X ≤ x | 1) = F1(x) is the conditional probability that X ≤ x under the
condition that the first expert is correct;

• P (X ≤ x | 2) = F2(x) is the conditional probability that X ≤ x under the
condition that the second expert is correct.

As a result, we get the formula F (x) = 0.5 ·F1(x) + 0.5 ·F2(x), which is exactly
the arithmetic p-average.

Similarly, if we have n expert estimates, then the corresponding full proba-
bility formula

P (X ≤ x) = P (1) · P (X ≤ x | 1) + . . . + P (n) · P (X ≤ x |n),

with P (i) = 1/n, also leads to the arithmetic p-average of n expert estimates
F1(x), . . . , Fn(x).

9.3.5 Relation to averaging densities

In Section 2, we argued that from the viewpoint of risk applications, CDFs are
the best characteristics to use. In view of this conclusion, we used CDFs (and
bounds for CDFs) in our survey.

However, in statistical applications, often, probability densities ρ(x) are often
used instead of CDFs F (x). In this case, it is natural to aggregate densities
ρ1(x), . . . , ρn(x) corresponding to the CDFs Fi(x) – and not CDFs themselves.
Several researchers have proposed to use the density-aggregation operations in
risk analysis as well; see, e.g., (Clemen & Winkler, 1999). A natural question
is: how are these operations related to CDF-aggregation?
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In particular, for the arithmetic average, the corresponding density-
aggregation operations are

ρ(x) =
ρ1(x) + ρ2(x)

2

and

ρ(x) =
ρ1(x) + . . . + ρn(x)

n
.

One can show that because the aggregation operation is linear, the arithmetic
average of densities leads to exactly the same resulting CDF as arithmetic p-
average of CDFs.

9.4 Weighted arithmetic p-average

9.4.1 General description and properties

If we have reasons to believe that some experts are more trustworthy than others,
then (as we have mentioned when discussing aggregation of real numbers) we
should use weighted arithmetic p-average instead of the arithmetic p-average:

F1(x) ∗ . . . ∗ Fn(x) = w1 · F1(x) + . . . + wn · Fn(x).

This formula is also sometimes called a linear opinion pool (Clemen & Winkler,
1999). The same methods as we outlined when discussing aggregation of real
numbers can be used to determine these weights.

Similar to the cases of real numbers and intervals, this operation is idempo-
tent, non-commutative, continuous, not associative, does not satisfy the aver-
aging property, but is easy to compute.

9.4.2 Case of real numbers

When CDFs are actually real numbers xi, the aggregation result coincides with
the result of translating the Dempster-Shafer knowledge base, in which we have
xi with probability wi, into a p-bound (which, for this particular knowledge
base, turns out to be a CDF). Here also, the arithmetic p-average of n real
numbers is different from their arithmetic x-average.

9.4.3 New motivation

The new motivation for the arithmetic p-average can be naturally extended to
the weighted average. Indeed, when we combine the opinions of n experts, then
the formula of full probability takes the following form:

P (X ≤ x) = P (1) · P (X ≤ x | 1) + . . . + P (n) · P (X ≤ x |n),

where:
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• P (i) is the probability that ith expert is correct; and

• P (X ≤ x | i) = Fi(x) is the conditional probability that X ≤ x under the
condition that the ith expert is correct.

This is exactly the weighted average formula for wi = P (i).
This new derivation of weighted average means that we can interpret the

weights wi as the probabilities that ith expert is correct. This is in complete
accordance with the general interpretation of the weight wi as describing trust-
worthiness of ith expert.

9.4.4 Relation to the average of densities

Similar to the case of arithmetic p-average, for the weighted p-average, we get
exactly the same result whether we combine the CDFs Fi(x), or whether we
combine the corresponding densities ρi(x). In precise terms, the weighted aver-
age density

ρ(x) = w1 · ρ1(x) + . . . + wn · ρn(x)

leads to the weighted arithmetic p-average for the corresponding CDFs:

F (x) = w1 · F1(x) + . . . + wn · Fn(x).

9.4.5 Weighted arithmetic p-average with interval weights

As in the cases of real numbers and intervals, we can consider weighted
arithmetic p-average with interval weights. The algorithm for computing the
weighted average was given when we described aggregation of real numbers in
Section 7.

This weighted average operation can be interpreted via a formula for full
probability, in which, instead of knowing the exact probability P (i) = wi that
ith expert is correct, we know only the intervals wi of possible values of these
probabilities.

In particular, when we have no prior information about the weights and
therefore, take wi = [0, 1], the aggregation results in the following interval:

[min(F1(x), . . . , Fn(x)), max(F1(x), . . . , Fn(x))].

It is worth mentioning that this is the p-bound envelope of the probability
distributions F1(x), . . . , Fn(x).

9.5 Geometric p-average and generalized p-average

9.5.1 General description and properties

When we discussed operations with real numbers in Section 7, we noticed that
in many practical cases, the arithmetic average leads to counterintuitive conclu-
sions. As an example, we used the average of three small concentration estimates
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10−5, 10−6, and 10−7, or, more generally, aggregating several values of different
orders of magnitude. For such values, the arithmetic average leads, in effect, to
selecting the largest of the values to be aggregated. This is not exactly what we
intuitively understand by averaging. We showed that a natural remedy for this
situation is the use of geometric average and generalized average.

For probability, this same example is also valid. It is quite possible that
three different experts estimate the same small probability as, correspondingly,
10−5, 10−6, and 10−7, and we do not want the result of aggregation to always
coincide with the largest estimate. So, in p-averaging, it also make sense to
consider the geometric average and the generalized average. The corresponding
formulas are:

F (x) = n
√

F1(x) · . . . · Fn(x);

F (x) =
(

F1(x)α + . . . + Fn(x)α

n

)1/α

.

Because, as we have mentioned, the geometric average comes from the fact that
effects are often logarithmically dependent on the actual values, the geometric
p-average is often called a logarithmic opinion pool (Clemen & Winkler, 1999).
One can show that when all functions to be aggregated are CDFs, the result of
this aggregation is also a CDF. Similar to the cases of real numbers and intervals,
this operation is idempotent, commutative, continuous, not associative, satisfies
the averaging property, and is easy to compute.

When α → −∞, the generalized p-average tends to min(F1(x), . . . , Fn(x));
when α → 0, it tends to geometric p-average; when α → ∞, it tends to
max(F1(x), . . . , Fn(x)). These operations min and max are implemented in
RiskCalc.

It is worth mentioning that min and max are among the main operations
used to combine uncertainty in fuzzy logic; thus, we get a new justification for
these operations. These operations also have a natural meaning in risk analysis.
For example, if we are looking for the concentration x of a certain pollutant,
then F (x) describes the probability that this concentration does not exceed x.
Several estimates give different estimates F1(x), . . . , Fn(x) for this probability.
Some of these estimates are larger, some of them are smaller.

• If we want to be extra cautious, then we take the largest of these probabil-
ities as the resulting estimate. In other words, the aggregation operation
max can be viewed as a conservative choice in risk analysis.

• Alternatively, we can believe the most optimistic estimate and take
min(F1(x), . . . , Fn(x)) as the aggregation result. Thus, min corresponds
to an “optimistic” choice in risk analysis.
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9.5.2 Case of real numbers

For the case when each distribution Fi(x) actually represents a real number xi,
the geometric p-average and the generalized p-average with α < 0 lead to the
function which is equal to 0 when x ≤ max(x1, . . . , xn) and to 1 after that.
In other words, the geometric p-average and the generalized p-average with
α < 0 lead to a real number which is equal to the maximum of real numbers
to be aggregated. So, for real numbers, geometric p-average and generalized
p-average for α < 0 are equivalent to taking a maximum.

The generalized p-average for α > 0 is also reasonably easy to describe when
the CDFs Fi(x) to be aggregated really are real numbers xi (expressed in the
CDF form). To get this description, we must first sort these real numbers into
an increasing sequence x(1) ≤ x(2) ≤ . . . ≤ x(n). Then, the aggregation result
has the following form:

F (x) =





0 if x ≤ x(1),(
1
n

)1/α

if x(1) < x ≤ x(2),

. . .(
k
n

)1/α

if x(k) < x ≤ x(k+1),

. . .
1 if x > x(n)

One can show that this distribution is equivalent to a weighted p-average of the
CDFs which correspond to the real numbers x(1), . . . , x(n), with the weights:

wi =
(

i

n

)1/α

−
(

i− 1
n

)1/α

.

Let us give two simple numerical examples corresponding to n = 2:

• when α = 1/2, we have w1 = 1/4 and w2 = 3/4;

• when α/2, we have w1 = 1/
√

2 ≈ 0.71, and w2 = 1− w1 ≈ 0.29.

In general, for α = 1 (arithmetic average), the weights are equal. For α > 1,
larger weights are assigned to smaller values. For α < 1, larger weights are
assigned to larger values xi. So,

• if we want the aggregated values to be more conservative, i.e., if we give
more weight to larger values of x, then we should use the generalized
p-average with α < 1;

• if we want the aggregated values to be more optimistic, i.e., if we give
more weight to smaller values of x, then we should use the generalized
p-average with α > 1.
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9.5.3 Relation to the average of densities

A similar aggregation operation can be proposed for probability densities; see,
e.g., (Clemen & Winkler, 1999):

ρ̃(x) = n
√

ρ1(x) · . . . · ρn(x);

ρ̃(x) =
(

ρ1(x)α + . . . + ρn(x)α

n

)1/α

.

The resulting functions ρ̃(x) are not necessarily pdfs, because they do not nec-
essarily integrate to 1. To get a pdf, we must normalize these functions by
dividing them by an appropriate constant:

ρ(x) =
ρ̃(x)∫
ρ̃(y) dy

.

Let us show that the geometric average of densities and generalized average with
α < 0 lead to counterintuitive conclusions. This will be an additional argument
in favor of selecting CDFs (and not pdfs) as the appropriate representation for
risk analysis.

We combine two pieces of knowledge, each collected from an expert. Let us
assume that according to the first expert, a variable X is uniformly distributed
on the interval [0, 1]. The corresponding pdf has the form

ρ1(x) =
{

1 if 0 ≤ x ≤ 1,
0 otherwise.

The second expert has different information about X. He believes that X is
close to 0.5, or, more precisely, that X is uniformly distributed on the narrow
interval [0.5− ε, 0.5 + ε] for some small ε > 0

ρ2(x) =

{
1
2ε if 0.5− ε ≤ x ≤ 0.5 + ε,

0 otherwise.

In this case, the function ρ̃(x) is constant on almost the entire interval [0, 1]
except for the zone [0.5−ε, 0.5+ε] where the value is larger. When we normalize
and compute the probability of being within this zone, this probability tends to
0 as ε → 0.

So, in the limit ε → 0, if one expert is absolutely sure that X = 0.5, and
another thinks that it is uniformly distributed on the entire interval [0, 1], the
corresponding density-aggregation operation completely ignores the expert who
predicts X = 0.5 and reproduces the opinion of the more cautious expert. This
is not what we intuitively expect from aggregation.

90



9.5.4 Weighted geometric p-average and generalized p-average: gen-
eral description and properties

As in the cases of real numbers and intervals, we can have weighted geometric
and generalized p-averages:

F (x) = F1(x)w1 · . . . · Fn(x)wn ;

F (x) = (w1 · F1(x)α + . . . + wn · Fn(x)α)1/α.

The weighted geometric p-average is also called a logarithmic opinion pool
(Clemen & Winkler, 1999). One can show that when all functions to be aggre-
gated are CDFs, the result of this aggregation is also a CDF. Similar to the cases
of real numbers and intervals, this operation is idempotent, non-commutative,
continuous, non-associative, does not satisfy the averaging property, but is easy
to compute.

9.5.5 Weighted geometric p-average and generalized p-average: case
of real numbers

For the case when each distribution Fi(x) actually represents a real number xi,
the weighted geometric p-average and generalized p-average with α < 0 is also
equivalent to taking a maximum. This is just like the corresponding un-weighted
operations.

The weighted generalized p-average for α > 0 can be explicitly described
when the CDFs Fi(x) really are real numbers xi (expressed in the CDF form).
To get this description, we must first sort these real numbers into an increasing
sequence x(1) ≤ x(2) ≤ . . . ≤ x(n). If we denote the corresponding weights by
w(i), we get the following formula:

F (x) =





0 if x ≤ x(1),

w
1/α
(1) if x(1) < x ≤ x(2),

. . .
(w(1) + . . . + w(k))1/α if x(k) < x ≤ x(k+1),
. . .
1 if x > x(n)

This distribution is equivalent to a weighted p-average of the CDFs which cor-
respond to the real numbers x(1), . . . , x(n), with the new weights

wnew
(i) = (w(1) + . . . + w(i))1/α − (w(1) + . . . + w(i−1))1/α.

9.5.6 Weighted geometric p-average and generalized p-average: re-
lation to the average of densities

When formulated in terms of probability density functions instead of CDFs, the
weighted geometric p-average and weighted generalized p-average have exactly
the same problem as the un-weighted ones.
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9.6 The use of copulas

In the above aggregation operations, we only used the marginal CDFs Fi(x)
corresponding to each expert’s estimates. If we have an additional information
about the dependence between expert estimates, we can improve the estimates.
For example, if we know that two experts are highly correlated, and that the
third one is completely independent from the first two, then, instead of combin-
ing the estimates of all three estimates with equal weights, we should probably
just combine the estimates of the first and the third experts.

As we have mentioned in Section 3, when we describe the probability distri-
butions in terms of CDFs, the possible independence or dependence between the
expert opinions can be described in terms of copulas. If we know the copulas de-
scribing the relation between the experts, we can therefore get better estimates
for F (x); see, e.g., (Clemen & Winkler 1999) and (Jouini & Clemen, 1996). It is
desirable to combine copula techniques with other aggregation methods. This
is one of the directions of our current research.

9.7 Averaging operations for the case when CDFs come
from measurements

9.7.1 General discussion

Let us now consider the case when the CDFs Fi(x) estimating the actual (un-
known) CDF F (x) come from measurements. We already know, from Section 7,
how to aggregate real numbers, i.e., individual measurement results. Therefore,
a natural way to aggregate the corresponding CDFs is as follows:

• first, we extract the corresponding measurement results from the CDFs;

• then, we average the extracted measurement results into aggregated esti-
mates;

• finally, we convert the resulting estimates into a new CDF.

Because in this case, we are averaging the values x of the measured quantity,
the corresponding methods are called methods of x-averaging.

Let us try to flesh out the above idea. We know how to aggregate individual
measurement results from the survey of the methods in Section 7 devoted to ag-
gregating numerical estimates. We know how to convert the resulting estimates
into a single CDF. We described it in Section 3, when we surveyed different
methods of getting p-bounds (and a CDF is, of course, a particular case of a
p-bound). So, the only step in this description for which we have not yet ex-
plained the algorithm is the first step: extracting measurement results from the
CDF.

The problem of extracting measurement results from a CDF is an inverse
problem to the problem of combining several measurement results into a single
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CDF. So, in order to find out how we can extract measurement results from a
CDF, let us recall how measurement results lead to a CDF. When we have N
measurement results x1, . . . , xN , then, to combine them into a CDF, we first
sort them into a sequence x(1) ≤ . . . ≤ x(N). Then, we design a histogram
CDF Fh(x), for which the value is 0 before x(1), 1/N between x(1) and x(2),
2/N between x(2) and x(3), etc. Thus, if we know the CDF Fh(x), we can
reconstruct each value x(k) as the first value x for which Fh(x) = k/N . This
notion can be describe in analytical terms if we use the notion of an inverse
function F−1

h (p). In these terms, out of n measurement results, the value x(k)

can be reconstructed as the percentile F−1
h (k/N).

We consider the situation when the difference between the estimates CDFs
Fi(x) and the actual (unknown) CDF F (x) is caused by measurement error.
In other words, we consider the situation in which the measurement results
x

(i)
1 , . . . , x

(i)
n used to construct each distribution Fi(x) are somewhat different

from the actual values x1, . . . , xn of the corresponding quantities. We must
therefore aggregate values coming from different measurements to improve our
estimates of xj .

In the ideal case, if we have a probability distribution F (x), then, from
this probability distribution, we could extract the actual values x(1) ≤ x(2) ≤
. . . ≤ x(n) of the measured quantities. From each measured CDF Fi(x), we can
actually extract the corresponding sorted values x

(i)
(1) ≤ x

(i)
(2) ≤ . . . ≤ x

(i)
(n). We

know that each of these measurement results is an approximation to one of the
actual values xk. Depending on how small the measurement error is, we have
two possible situations here.

If the measurement error is small, then from x(k) < x(l), it follows that the
result of measuring x(k) is still smaller than the result of measuring x(l). Thus,
in this case, the order between the measurement results mirrors the original
order between the values. In particular, the first of the sorted measurement
results x

(i)
(1) is an approximation to x(1), the second of the sorted measurement

results x
(i)
(2) is an approximation to x(2), etc. As a result, for every k, the

values x
(1)
(k), . . . , x

(n)
(k) approximate the exact same value x(k). So, we can use the

known techniques for aggregating numerical values to combine these n values
x

(1)
(k) = F−1

1 (k/N), . . . , x(n)
(k) = F−1

n (k/N) into a single estimate for x(k) – which
will then serve as the value F−1(k/N) (percentile) for the new (aggregated)
probability distribution.

In other words, if the measurement errors are small, then for every number
p = k/N , the percentile F−1(p) can be obtained by aggregating the percentiles
F−1

1 (p), . . . , F−1
n (p). Every rational number from the interval [0, 1], be defini-

tion, can be represented as k/N for some k and N . Every real number from
the interval [0, 1] can be approximated, with arbitrary accuracy, by rational
numbers. Hence, the above conclusion holds for every real number p.
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In short, if measurement errors are small, then for every p ∈ [0, 1],
to get the corresponding percentile F−1(p), we aggregate n percentiles
F−1

1 (p), . . . , F−1
n (p). In geometric terms, if we draw CDFs in the usual way,

with x horizontal and p vertical, this means that we do the averaging in each
horizontal section.

This conclusion holds if measurement errors are small. The operation prob-
ably makes intuitive sense also when the measurement errors are not small,
but our formal justification only works when the measurement errors are small.
Since we are describing justified methods in our survey, we will therefore restrict
x-averaging techniques to the case when the the errors are small. How can we
check whether these errors are small or not? In the situation under consider-
ation, when the CDFs Fi(x) come from measurements, the difference between
difference between different CDFs is caused by measurement errors:

• when the measurement errors are small, then the CDFs Fi(x) are close to
each other;

• when the measurement errors are large, the difference between different
CDFs also become large.

So, the measurement errors are small if and only if the CDFs to be aggregated
are close to each other. Thus, we can apply the above idea of horizontal x-
averaging if the CDFs to be aggregated are close enough to each other.

If the measurement errors are not small, i.e., if the CDFs to be aggregated are
not close to each other, then the approximation may change the order between
the values x(k) and x(l). In this case, the value which is first in the ordering cor-
responding to F1(x) may actually correspond to measuring the quantity which is
last in the ordering corresponding to F2(x). In this case, it does not make much
sense to match the measurement results placed on exactly the same place. So,
instead of matching each result with a precisely determined one, we can match
it with randomly selected values corresponding to F2(x). In other words, in this
case, a natural thing to do it to take a random variable x1 distributed according
to the distribution F1(x), another random variable x2 distributed according to
the distribution F2(x), aggregate these two random variables, and then take, as
the aggregated CDF, the CDF describing the distribution of the result of this
aggregation.

Let us discuss the corresponding aggregation methods in detail. We will
start with the methods of horizontal aggregation, corresponding to close CDFs
Fi(x).

9.7.2 Aggregating close CDFs: arithmetic x-average. General de-
scription and properties

In accordance with the above arguments, when CDFs are close, we should ag-
gregate, for each p, the percentiles F−1

i (p) corresponding to this particular p.
In short, we must aggregate horizontally.
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In particular, when we apply the simplest possible aggregation procedure
– arithmetic average – we conclude that for every level p, we must take an
arithmetic average of the corresponding percentiles of the CDFs Fi – i.e., points
in which the graphs of the CDFs Fi(x) intersect with this p:

F−1(p) =
F−1

1 (p) + . . . + F−1
n (p)

n
.

As in the cases of real numbers, intervals, and arithmetic p-average, this op-
eration is idempotent, commutative, continuous, not associative, satisfies the
averaging property, and is easy to compute.

9.7.3 Case of real numbers

If each of the CDFs to be aggregated represents an exact real number xi, then
the arithmetic x-average of these CDFs is simply a CDF corresponding to the
arithmetic average x = (x1 + . . .+xn)/n of these real numbers. We can immedi-
ately see that this is different from the arithmetic p-average where the result was
a mixture. Similarly, if we apply an arbitrary close-CDF aggregation operation
∗ to CDFs Fi(x) representing exact real numbers xi, we end up with a CDF that
also represents an exact real number x, specifically, the result x = x1 ∗ . . .∗xn of
applying the same aggregation operation to these real numbers. For this reason,
we see that x-averaging rather than p-averaging is the natural generalization of
averaging for real numbers.

9.7.4 Example

To illustrate this formula, we can use the same example as we used to illustrate
arithmetic p-average. In this example,

F1(x) =





0 if x ≤ 1,
x− 1 if 1 ≤ x ≤ 2,
1 if x > 2

F2(x) =
{

x if x ≤ 1,
1 if x > 1

-

6
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x

Fi(x)

0 1 2

1
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Therefore, F−1
1 (p) = 1 + p, F−1

2 (p) = p, and:

F−1(p) =
(1 + p) + p

2
=

1
2

+ p.

Hence,

F (x) =





0 if x ≤ 1/2,
x− 1/2 if 1/2 ≤ x ≤ 3/2,
1 if x > 3/2

-

6

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡
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1

The resulting CDF is different from the result of the arithmetic p-average shown
in the previous section.

9.7.5 NUREG controversy

In the 1980s, the arithmetic x-average was used in risk analysis as part of the
Nuclear Regulations Committee document NUREG-1150 (Hora & Iman, 1989).
This use was deprecated because

• first, it was claimed that this rule is not well justified;

• second, when we have outliers or other drastically different CDFs, it does
not work.

As we can see from the above text, both criticisms were true, but this does
not preclude us from recommending the use of this rule. Indeed, this rule was
not sufficiently justified at the time when it was adapted, but now it is: above,
we outlined the justification for using this rule. The only remaining problem
is that our justification only recommends the usage of this rule for combining
close CDFs.

9.7.6 Aggregating close CDFs: other x-averaging operations

In addition to arithmetic average, we can use all other averaging operations
to combine percentiles: weighted arithmetic average, geometric and generalized
average, and weighted geometric and generalized average.

The resulting x-averaging operations have exactly the same properties as
the corresponding operations with real numbers. Let us briefly describe the
corresponding formulas.
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9.7.7 Weighted arithmetic x-average

In this aggregation, the new percentile is:

F−1(p) = w1 · F−1
1 (p) + . . . + wn · F−1

n (p).

As in the cases of real numbers, intervals, and p-average, this operation is idem-
potent, non-commutative, continuous, not associative, does not satisfy the av-
eraging property, and is easy to compute.

We can also consider interval weights, in which case we get interval per-
centiles, i.e., p-bounds.

9.7.8 Geometric and generalized x-average

In this aggregation, the new percentile is either

F−1(p) = n

√
F−1

1 (p) · . . . · F−1
n (p)

or

F−1(p) =
(

F−1
1 (p)α + . . . + F−1

n (p)α

n

)1/α

.

As in the cases of real numbers, intervals, and to p-average, this operation is
idempotent, commutative, continuous, not associative, satisfies the averaging
property, and is easy to compute.

9.7.9 Weighted geometric and generalized x-average

In this aggregation, the new percentile is either

F−1(p) = F−1
1 (p)w1 · . . . · F−1

n (p)wn

or
F−1(p) = (w1 · F−1

1 (p)α + . . . + wn · F−1
n (p)α)1/α.

As in the cases of real numbers, intervals, and p-averaging, this operation is
idempotent, non-commutative, continuous, not associative, does not satisfy the
averaging property, and is easy to compute.

We can also consider interval weights.

9.7.10 Aggregating drastically different CDFs: arithmetic x-average

Let us now consider the case of drastically different CDFs F1(x), . . . , Fn(x). As
we have mentioned in the general discussion subsection of this section, to get
the aggregation of such CDFs, we do the following:

• First, we select a numerical aggregation operation ∗ (e.g., x∗y = (x+y)/2).
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• Next, we solve the following problem:

• we have a variable x1 which is distributed according to a CDF (p-
bound) F1(x);

• we have a variable x2 which is distributed according to a CDF (p-
bound) F2(x);

• . . .

• we have a variable xn which is distributed according to a CDF (p-
bound) Fn(x);

• we want to find a CDF (or p-bound) which corresponds to the quan-
tity x = x1 ∗ . . . ∗ xn.

This is exactly the problem that we mentioned when we described indirect
measurement/estimation, and all methods for solving that problem (Ferson et
al., 2001), (Ramas, 2001) are applicable here as well.

If we assume that the variables are independent (or if we assume that we
know an exact copula describing their dependence), then, as a result of the
aggregation, we get a CDF. If we do not make this assumption, then, as a result
of the aggregation, we get a p-bound.

What are the properties of the resulting aggregation operation? Even for the
simplest operation of the arithmetic average, this operation (for the case of inde-
pendent variables) is not idempotent, commutative, continuous, not associative,
satisfies the averaging property, and is computable.

An example that this operation is not idempotent is easy to generate. Let
us take F (x) in which we have 0 and 1 with equal probability 1/2, and show
that F ∗ F 6= F . Here, x1 is equal to 0 and 1 with probability 1/2, and x2 is
another variable with the same distribution which is independent from x1. By
combining 2 possible values (0 and 1) of the variable x1 with 2 possible values
(0 and 1) of the variable x2, we conclude that there are four possible values of
the pair (x1, x2): (0, 0), (0,1), (1,0), and (1,1). Each of these 4 combinations
has the same probability 1/4. As a result, the average (x1 + x2)/2 takes the
value 0 with probability 1/4, 1 with probability 1/4, and 0.5 with probability
1/2. The resulting probability distribution is clearly different from the original
distribution F (x).

The fact that this operation is not idempotent seems troubling, because
idempotence is what we naturally require of all aggregation operations. How-
ever, we might not worry about non-idempotence of this particular operation.
Although from the purely mathematical viewpoint, we do have F ∗ F 6= F ,
from the practical viewpoint, this operation was only justified for the case when
the CDFs are drastically different, so we should not apply it to the case when
F1 = F2.
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9.8 Dempster-Shafer aggregation methods

9.8.1 General description

In addition to the well justified methods described above, there are other meth-
ods for aggregating CDFs and p-bounds which are of a more heuristic nature.
In particular, such a combination method exists for Dempster-Shafer formalism.

This combination method is a natural generalization of the intersection op-
eration, according to which, if we know that x ∈ x and we know that x ∈ y,
then we can conclude that x belongs to the intersection x ∩ y.

In general, if we have two pieces of knowledge, one in which we have focal
elements xi with masses pi, and another in which we have focal elements yj

with masses qj , then Dempster’s rule (Shafer, 1984), (Shafer, 1986) tells us to
combine these two pieces of knowledge as follows. We consider all possible pairs
of intervals xi and yj which have non-empty intersection, and assign to every
such intersection xi ∩ yj the probability pi · qj . These intersections will be the
focal elements of the new knowledge bases. The use of the products of the
probabilities corresponds to an assumption of independence between the two
estimates.

Because some pairs have an empty intersection, the values pi ·qj correspond-
ing to these focal elements do not add up to 1, so we cannot just take these
products as the masses, we must first normalize them by dividing by their sum.
What we described is the original Dempster’s combination rule. There are many
modifications of this rule; see, e.g., (Yager, 1983), (Yager, 1985), (Zadeh, 1986),
(Yager, 1987), (Halpern & Fagin, 1992), (Baldwin, 1994a), (Chateauneuf, 1994),
(Dubois & Prade, 1994), (Kreinovich et al., 1994), (Kruse & Klawonn, 1994),
(Saffiotti, 1994), (Spies, 1994), (Yager et al., 1994), (Zhang, 1994), (Mahler,
1995), (Srivastava & Shenoy, 1995), (Yager, 2001). For example, instead of tak-
ing a product of probabilities (which corresponds to independence), we can use
another t-norm. This modification will be useful for our purposes.

Alternatively, instead of normalizing the values of the product, we could
keep the same as they are, and assign the rest to the entire real line. This
would mean that in the case of inconsistency (non-empty intersection), we have
no information at all. One can show that this particular modification does not
work for our problems.

Dempster’s rule and its modifications have been successfully used in many
real-life applications (Yager et al., 1994), including such various areas as

• water resource distribution (Caselton & Luo, 1992);

• databases (Baldwin, 1994);

• decision making (Jaffray, 1994);

• target identification and localization (Schubert, 1994), (Appriou, 1998),
(Jousselme et al., 2001);
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• climate change analysis (Luo & Caselton, 1997);

• audit decisions (Srivastava, 1997);

• image processing (Block & Maitre, 1998).

9.8.2 How can Dempster’s rule be applied to combining CDFs?

When we justified the use of p-bounds, we showed that an arbitrary Dempster-
Shafer (DS) knowledge base can be actually represented as a p-bound. So, if
we want to apply the Dempster’s combination rule to CDFs, we must do the
following:

• First, we transform CDF into a DS knowledge base.

• Second, we apply Dempster’s combination rule to get a new DS knowledge
base.

• Finally, we translate the resulting DS knowledge base into a p-bound.

We know, from Section 3, how to perform the second and the third steps. The
first step is somewhat ambiguous because, as we have mentioned in Section 3,
there are many ways to reconstruct a DS knowledge base from a p-bound. As in
the above general discussions, a natural way to perform the first step depends
on whether the CDFs to be aggregated come from expert estimation or from
measurements.

Let us first consider the case when the CDFs come from expert estimation.
In this case, for each given value, we estimate the probability F (x). From
the purely mathematical viewpoint, we thus have infinitely many values F (x)
for all possible values of x. In practice, of course, we discretize x; this idea
goes back to (Start, 1984). So, we consider small intervals [0,∆x], [∆x, 2∆x].
These intervals will be our focal points. The probability (mass) assigned to
each interval [x, x + ∆x] is equal to the probability to be within this interval,
i.e., to the difference F (x + ∆x)− F (x). Because the intervals are narrow, this
probability is practically equal to ρ(x) ·∆x, where ρ(x) is the pdf corresponding
to this probability distribution.

When the CDFs come from measurement, then CDF is actually the result
of combining several (N) measurement results, with equal probabilities 1/N ,
into a single CDF. In this case, a natural way is to represent the CDF as a
combination of different measurement results with probability 1/N . In other
words, we subdivide the interval [0, 1] into small subintervals [0,∆p], [∆p, 2∆p],
etc. To each of these narrow intervals, we assign the corresponding x-interval
[F−1(p), F−1(p + ∆p)]. These narrow intervals are our focal points, and each
has the probability ∆p.

We will see that for these two different DS knowledge bases, the combination
rule leads to two different aggregation operations for CDF.

100



9.8.3 Dempster-Shafer methods for the case when CDFs come from
expert estimates: main formula

In this case, the standard Dempster’s rule results in a new probability distribu-
tion whose density ρnew(x) is proportional to the product of the densities ρ1(x)
and ρ2(x) of the two probability distributions to be aggregated:

ρnew(x) =
1
N
· ρ1(x) · ρ2(x),

where N is the normalizing factor guaranteeing that
∫

ρnew(x) dx = 1, i.e.,

N =
∫ ∞

−∞
ρ1(x) · ρ2(x) dx.

9.8.4 Example

For example, if both ρi(x) are identical Gaussian distributions with standard
deviation σ, i.e., if:

ρ1(x) = ρ2(x) =
1√
2πσ

· exp
(
− x2

2σ2

)
,

then the result of the Dempster’s rule aggregation is a new Gaussian distribution
with a different standard deviation σnew = σ/

√
2.

9.8.5 Properties

The above example shows that this aggregation operation is not idempotent –
which is not a good thing. It does, however, possess other desired quantities: it
is commutative, continuous, associative, satisfies the averaging property, and is
rather easy to compute.

9.8.6 Relation with Bayesian aggregation

It is worth mentioning that the formula resulting from Dempster’s rule can
be naturally interpreted in Bayesian terms. Indeed, the general Bayes formula
describes how to update probabilities of different hypotheses. If we start with
prior probabilities P0(Hi) of different hypotheses H1, . . . , Hn, then, after the
observation E, we replace the original prior probabilities with the new values:

P (Hi) =
P (E |Hi) · P0(Hi)

P (E |H1) · P0(H1) + . . . + P (E |Hn) · P0(Hn)
,

where P (E |Hi) is the conditional probability of the observation E under the
hypothesis Hi. A natural way to apply this formula to the aggregation of several
probability distributions is as follows. As hypotheses Hi, we take different values
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of the quantity x. To be more precise, we can divide the real axis into small
intervals of length ∆x, and consider belonging to these subintervals as different
hypotheses. As prior probabilities, we take the probabilities of different values
of x according to the first of the distributions to be aggregated.

The probability of having a value equal to x (or, to be more precise, to
have a value in the interval [x, x + ∆x]) is proportional to ρ1(x) (to be more
precise, this probability is equal to ρ1(x) ·∆x). Correspondingly, the resulting
probabilities P (Hi) are proportional to the corresponding values ρ(x) of the
aggregated density function: P (Hi) ∼ ρ(x).

As the observation E, we take the opinion of the second expert, as described
by the probability distribution with the probability density ρ2(x). To apply
Bayes formula, we must estimate the conditional probability P (E |Hi) that the
second expert is right, under the condition Hi that the actual value of the
quantity is within the interval [x, x+∆x]. Intuitively, this value depends on the
probability ρ2(x) ·∆x that the second expert assigns to this interval. Indeed:

• If the second expert predicts a high probability ρ2(x) for x, and we do
observe this x, then this observation confirms that the second expert is
right. In other words, in this case, the corresponding conditional proba-
bility P (E |Hi) is (relatively) large.

• On the other hand, if the second expert predicts a very low probability
ρ2(x) for this value x – e.g., equal to 0 – and we do observe this value,
then this is a strong argument that the second expert is wrong. In other
words, in this case, the corresponding conditional probability P (E |Hi) is
(relatively) small.

Thus, the larger ρ2(x), the larger the conditional probability. In mathemat-
ical terms, it means that the value P (E |Hi) the conditional probability is a
monotonic function of ρ2(x), i.e., P (E |Hi) = f(ρ2(x)) for some increasing
function f(x).

When we substitute P0(Hi) ∼ ρ1(x) and P (E |Hi) = f(ρ2(x)) into the
Bayes formula, we conclude that the resulting aggregated density function is
proportional to ρ(x) ∼ ρ1(x) · f(ρ2(x)). This is not yet the final formula,
because we do not know yet what the function f(x) is.

To determine the function f(x), we can use the fact that we are interested
in the case when both distributions to be aggregated are equally trusted. In
this case, the aggregation result should not depend on the order in which we
present the distributions. In other words, the functions ρ1(x) · f(ρ2(x)) and
f(ρ1(x)) · ρ2(x) should differ only by a multiplicative constant. One can show
that this condition is only satisfied for a liner function f(x) = k · x, in which
case, the Bayesian combination leads to ρ(x) ∼ ρ1(x) · ρ2(x).

Thus, we get exactly the same aggregation formula as the Dempster-Shafer
method.
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9.8.7 Alternative formulas

If, instead of the product, we use a different t-norm (aggregation operation)
F (x, y), then we get an alternative formula:

ρnew(x) =
1
N
· F (ρ1(x), ρ2(x)),

where
N =

∫ ∞

−∞
F (ρ1(x), ρ2(x)) dx.

Unless F (x, y) is an idempotent operation (e.g., F (x, y) = min(x, y)), this ag-
gregation operation is still not idempotent.

9.8.8 Dempster-Shafer methods for the case when CDFs come from
measurements: formula

In this case, DS-aggregation results in a new probability distribution whose
density ρnew(x) is proportional to the maximum of the densities ρ1(x) and ρ2(x)
of the two probability distributions to be aggregated:

ρnew(x) =
1
N
·max(ρ1(x), ρ2(x)),

where
N =

∫ ∞

−∞
max(ρ1(x), ρ2(x)) dx.

9.8.9 Dempster-Shafer methods for the case when CDFs come from
measurements: examples

In view of the fact that the previous Dempster-Shafer operation turned out
to be not idempotent, let us first check this new one on the example when
ρ1(x) = ρ2(x). In this case, we get max(ρ1(x), ρ2(x)) = ρ(x), hence N = 1
and ρnew(x) = ρ1(x). This example shows that, unlike the expert-originated DS
aggregation, this aggregation operation is idempotent.

Let us now give one non-trivial example of this operation. Let ρ1(x) be a
unimodal distribution with a triangular density function:

ρ1(x) =





x if 0 ≤ x ≤ 1,
2− x if 1 ≤ x ≤ 2,
0 otherwise
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As ρ2(x), let us take a similar distribution, but shifted by 1:

ρ2(x) =





x− 1 if 1 ≤ x ≤ 2,
3− x if 2 ≤ x ≤ 3,
0 otherwise
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Here, N = 7/4, and the aggregation result ρ(x) is the following bi-modal distri-
bution:

ρ(x) =





(4/7) · x if 0 ≤ x ≤ 1,
(4/7) · (2− x) if 1 ≤ x ≤ 1.5,
(4/7) · (x− 1) if 1.5 ≤ x ≤ 2,
(4/7) · (3− x) if 2 ≤ x ≤ 3,
0 otherwise
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9.8.10 How can we describe this operation in terms of CDF?

Because p-bounds are described in terms of the cumulative distribution function
(CDF), not probability density function ρ(x), it is desirable to describe this
combination operation in terms of CDF. For that, we can use the fact that
the probability density is a slope of the CDF. So, if we start with the two
CDFs, then, in essence, on each subinterval of the real line, we pick the shape
corresponding to the steepest of the two CDFs.

Let us give a simple example. Let us consider the following two CDFs: F1(x)
corresponds to a uniform distribution on the interval [0, 1], and F2(x) is a com-
bination of two uniform distributions: on the interval [0, 2/3] (with probability
1/3) and on the interval [2/3, 1] (with probability 2/3). The corresponding
CDFs are:

F1(x) =





0 if x ≤ 0,
x if 0 ≤ x ≤ 1,
1 if x ≥ 1
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F2(x) =





0 if x ≤ 0,
(1/2) · x if 0 ≤ x ≤ 2/3,
2x− 1 if 2/3 ≤ x ≤ 1,
1 if x ≥ 1

-

6
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x

F2(x)

0 2/3 1

1

1
3

In this example, for x ≤ 2/3, F1(x) is steeper, and for x ≥ 2/3, F2(x) is steeper.
Thus, for x ≤ 2/3, we copy the CDF F1(x), and for x ≥ 2/3, we copy the CDF
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F2(x). As a result, we get the following “CDF” F̃ (x):

F̃ (x) =





0 if x ≤ 0,
x if 0 ≤ x ≤ 2/3,
2x− 2/3 if 2/3 ≤ x ≤ 1,
4/3 if x ≥ 1
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F̃ (x)
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Finally, the resulting “CDF” needs to be normalized, so we get the following
aggregated CDF F (x):

F (x) =





0 if x ≤ 0,
(1/2) · x if 0 ≤ x ≤ 2/3,
2x− 1 if 2/3 ≤ x ≤ 1,
1 if x ≥ 1
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9.8.11 Relation with previously described methods

This aggregation operation corresponds to the α = ∞ case of power “averaging”
of probability densities.

This new operation is also related to the idea of “enveloping”, combining
together ranges provided by different sources. For distributions with finite sup-
port, this statement has direct sense: indeed, the support of this new probability
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distribution, i.e., the set of all the values x for which ρnew(x) > 0, is equal to
the union of the supports of two combined ones. Indeed, ρnew(x) > 0 if and
only if max(ρ(x), ρ′(x)) > 0 if and only if (ρ(x) > 0 and ρ′(x) > 0).

For distributions like Gaussian for which the probability density function is
always positive, the support is the entire real line. For such distributions, a
relation to “enveloping” is slightly more indirect. Indeed, in practical applica-
tions of such distributions, it is usually assumed that values x corresponding to
very low probability density are impossible. For example, in normal statistical
applications of Gaussian distributions, a measurement result which differs from
the mean by more than, say, six standard deviations, is considered impossible:
a normal conclusion is that either this result is erroneous, or the distribution is
not really Gaussian.

In other words, there is a certain threshold ρ0 such that only values x
for which ρ(x) ≥ ρ0 are considered practically possible. The exact value
of ρ0 depends on the practical situation: for example, for normal distribu-
tions, people use 2σ, 3σ, and 6σ as a cut-off. If we select ρ0 as a cut-
off level for the aggregated distribution with the probability density function
ρnew(x) = (1/N) ·max(ρ(x), ρ′(x)), then the set

Snew = {x | ρnew(x) ≥ ρ0}

of all the possible values, i.e., values for which ρnew(x) ≥ ρ0, is equal to the
union of the two cut-off sets corresponding to the original distributions, albeit
with different cut-off values: Snew = S ∪ S′, where

S = {x | ρ(x) ≥ ρ1},

S′ = {x | ρ′(x) ≥ ρ1},
and ρ1 = N · ρ0.

9.8.12 Dempster-Shafer methods for the case when CDFs come from
measurements: properties

This operation is idempotent, commutative, continuous, and rather easy to com-
pute. However, one property does not hold: this operation is not associative,
i.e., it is not true that (ρ ∗ ρ′) ∗ ρ′′ = ρ ∗ (ρ′ ∗ ρ′′) for all possible distribu-
tions ρ, ρ′, and ρ′′. As an example of non-associativity, we take three uniform
distributions: ρ(x) is a uniform distribution on the interval [−1, 0], ρ′(x) is a
uniform distribution on the interval [−0.5, 0.5], and ρ′′(x) is a uniform distri-
bution on the interval [0, 1]. Each of these three intervals has a unit length, so
each probability density function has a value 1 within this interval:
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In this example, max(ρ(x), ρ′(x)) is equal to 1 on the interval [−1, 0.5]:

-

6

x

max(ρ(x), ρ′(x))

−1 0.5

1

The integral N of the corresponding function max(ρ(x), ρ′(x)) is 3/2, hence the
normalized function (ρ ∗ ρ′)(x) has the following form:

(ρ ∗ ρ′)(x) =
{

2/3 if − 1 ≤ x ≤ 0.5,
0 otherwise
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(ρ ∗ ρ′)(x)

−1 0.5

2/3

Now,

max((ρ ∗ ρ′)(x), ρ′′(x)) =





2/3 if − 1 ≤ x ≤ 0,
1 if 0 ≤ x ≤ 1,
0 otherwise

-

6

x

max((ρ ∗ ρ′)(x), ρ′′(x))

1

1−1

2/3

Here, N = 5/3, hence:

((ρ ∗ ρ′) ∗ ρ′′)(x) =





2/5 if − 1 ≤ x ≤ 0,
3/5 if 0 ≤ x ≤ 1,
0 otherwise

-

6

x

((ρ ∗ ρ′) ∗ ρ′′)(x)

3/5

1−1

2/5

Similarly, we conclude that:

(ρ ∗ (ρ′ ∗ ρ′′))(x) =





3/5 if − 1 ≤ x ≤ 0,
2/5 if 0 ≤ x ≤ 1,
0 otherwise
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(ρ ∗ (ρ′ ∗ ρ′′))(x)

3/5
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2/5

Hence, (ρ ∗ ρ′) ∗ ρ′′ = ρ ∗ (ρ′ ∗ ρ′′). So, the aggregation operation is indeed
non-associative.

Comment. In terms of densities, the DS aggregation operation for probability
distributions consists of two steps: taking the maximum of the values of the
probability density functions and normalization. Because max(a, b) is clearly
an associative operation, non-associativity comes from normalization.

9.9 Enveloping aggregation operations for the case when
CDFs come from expert estimates

In the previous subsections, we considered averaging aggregation operations.
Let us now consider enveloping operations. These operations are necessary in
case of variability and recommended in case of incertitude. We will first consider
the case when all CDFs to be aggregated come from expert estimates.

For expert estimates, for every x, each expert provides an estimate Fi(x).
So, to aggregate the CDFs, we should combine, for each x, the corresponding
n numbers F1(x), . . . , Fn(x) into an estimate for F (x). Since in this survey,
we use p-bounds as a means of describing uncertainty, we want the resulting
estimates to form a p-bound. For a p-bound, for each x, the corresponding
estimate for F (x) is an interval. Thus, we want to combine n numerical values
F1(x), . . . , Fn(x) into an interval estimate for F (x).

In Section 7, we described two enveloping methods of combining n numbers:
the envelope method leads to an interval, and the mixture method leads to a
probability distribution. Since we want to produce an interval, we have to use
the envelope method, i.e., generate a p-bound

F1(x) ∗ . . . ∗ Fn(x) = [min(F1(x), . . . , Fn(x)),max(F1(x), . . . , Fn(x))].

This formula makes perfect sense in case of variability. Indeed, variability means
that all probability distributions Fi(x) are possible. This means that for ev-
ery x, all n values F1(x), . . . , Fn(x) are possible values of the probability F (x)
(that the actual value X is ≤ x). As in the aggregation of numerical esti-
mates (see Section 7), it is therefore reasonable to return, as a result of this
aggregation, the smallest interval that combines these n values, i.e., the interval
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[min(F1(x), . . . , Fn(x)), max(F1(x), . . . , Fn(x))]. As a result, we get the above
envelope operation which transforms CDFs into a p-bound.

As in the cases of aggregating real values and intervals, this envelope is equal
to the weighted average with interval weights wi = [0, 1/n]. The envelope op-
eration is idempotent, continuous, and computationally simple. The notions of
commutativity, associativity, and averaging property are not formally applica-
ble because we have defined this operation only for CDFs and the result of this
operation is a p-bound which is not a CDF. However, when we actually extend
this operation to p-bounds, we will see that the resulting operation is indeed
commutative, associative, and satisfies the averaging property.

In the particular case when the CDFs are real numbers x1, . . . , xn, the result-
ing p-bound describes the envelope interval [min(x1, . . . , xn),max(x1, . . . , xn)].

9.10 Enveloping aggregation operations for the case when
CDFs come from measurements

As in the discussion of averaging CDFs coming from measurements, we can
conclude that we should take, for every p, the corresponding n percentiles
F−1

1 (p), . . . , F−1
n (p), and then apply an enveloping operation to these n values.

As in the previous subsection, we can conclude that the envelope is the only
reasonable operation for enveloping the corresponding numbers (percentiles).
Therefore, for each p, we should take the envelope of these percentiles, i.e.,

[min(F−1
1 (p), . . . , F−1

n (p)), max(F−1
1 (p), . . . , F−1

n (p))].

Once can show that the resulting “x-envelope” p-bound is exactly the same as
the above p-bound corresponding to the p-envelope.

9.11 Section’s conclusions

For aggregating several probability distributions F1(x), . . . , Fn(x), the selection
of an appropriate aggregation operation depends on whether we are in the situa-
tion of incertitude, i.e., whether there is an actual (unknown) probability distri-
bution F (x), or whether we have variability, when several different probability
distributions are possible in different situation, and thus, we need a p-bound to
describe the resulting uncertainty.

When the distributions F1(x), . . . , Fn(x) to be aggregated represent incerti-
tude, traditionally, averaging aggregation techniques are used. The averaging
aggregation depends on whether these CDFs come from expert estimates or
from measurements. In this first case, we get aggregation corresponds to aver-
aging probabilities (p-averaging), in the second case, it corresponds to averaging
values of x (x-averaging).

Averaging operations “erase” the incertitude, so we recommend using
enveloping operations that preserve and propagate the incertitude. En-
veloping leads to the envelope p-bound [F−(x), F+(x)], with F−(x) =
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min(F1(x), . . . , Fn(x)) and F+(x) = max(F1(x), . . . , Fn(x)). When the dis-
tributions F1(x), . . . , Fn(x) to be aggregated represent variability, enveloping
techniques are the only choice.
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10 Aggregation of Uncertainty in Risk Analysis:
General Case

10.1 Enclosures vs. estimates

How can we aggregate several p-bounds F1(x) = [F−1 (x), F+
1 (x)], . . . , Fn(x) =

[F−n (x), F+
n (x)] into a single p-bound? As in the aggregation of intervals and

CDFs, we have several possible situations here, and the appropriate aggregation
operation depends on the situation.

First, as in the case of intervals, we have two cases depending on:

• whether the corresponding p-bounds are enclosures for the actual CDFs
or p-bounds, i.e., whether we are sure that the actual CDF or the actual
CDFs (in case of variability) are within each of n given p-bounds,

• or whether the p-bounds are estimates which do not necessarily enclose
the actual CDF (CDFs).

10.2 Enclosures lead to intersection

Let us first consider the case when each of n p-bounds Fi is an enclosure, mean-
ing that for every x, the actual (unknown) value of every possible CDF F (x)
belongs to the interval [F−i (x), F+

i (x)]. We want to generated an aggregated
p-bound which would also serve as an enclosure for all possible CDFs F (x).

The above p-bounds can be easily aggregated. Indeed, by definition of an
intersection, knowing that F (x) belong to all n p-bounds is equivalent to know-
ing that F (x) belongs to the intersection of these n p-bounds. So, the natural
aggregation operation ∗ here is the intersection

F1 ∗ . . . ∗ Fn = F,

where
F(x) = [F−(x), F+(x)] = F1(x) ∩ . . . ∩ Fn(x),

i.e.,
F−(x) = max(F−1 (x), . . . , F−n (x));

F+(x) = min(F+
1 (x), . . . , F+

n (x)).

Just like for intervals, this operation is idempotent, commutative, associative,
satisfies the averaging property, and is easy to compute.

Just like for intervals, the only property this operation does not always satisfy
is continuity. To be more precise, if all experts are correct, then the intersection
is non-empty, and the corresponding aggregation operation is continuous. How-
ever, experts can sometimes be wrong, as a result, the intersection may turn
out to be empty. What shall we do then?
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If the intersection of all n p-bounds indeed turns out to be empty, this means
that at least one of the p-bounds is wrong. Because these p-bounds come either
from experts or from measurements, we have a certain trust in these p-bounds.
We cannot avoid marking some of these p-bounds as erroneous, but it is natural
to assume that as few of them as possible are erroneous. So, a natural thing
to do is to start with an assumption that only one p-bound is wrong. So,
we sequentially check all i’s from 1 to n. For each i, we check whether the
intersection

Ii(x) = F1(x) ∩ . . . ∩ Fi−1(x) ∩ Fi+1(x) ∩ . . . ∩ Fn(x)

of all p-bounds except for ith one is non-empty. If one of these intersections is
actually non-empty, then, because we do not know which p-bound is actually
erroneous, we should take, as the desired aggregated enclosure F(x) for the
unknown (actual) CDF F (x), the union of all the non-empty intersections Ii.

If all the intersections Ii(x) are empty, this means that at least two p-bounds
are erroneous. In this case, we need to check all the pairs i1 < i2. For each such
pair, we check whether the intersection

Ii1i2(x) = F1(x)∩. . .∩Fi1−1(x)∩Fi1+1(x)∩. . .∩Fi2−1(x)∩Fi2+1(x)∩. . .∩Fn(x)

of all p-bounds except for i1th and i2th ones is non-empty. If one of these inter-
sections is actually non-empty, then, because we do not know which p-bounds
are actually erroneous, we should take, as the desired aggregated enclosure F(x)
for the unknown (actual) CDF F (x), the union of all the non-empty intersec-
tions Ii1i2 .

If all the intersections Ii1i2(x) are empty, this means that at least three p-
bounds are erroneous. In this case, we need to check all the triples i1 < i2 < i3,
etc.

10.3 Estimates: incertitude vs. variability, expert esti-
mates vs. measurements

We have described how to aggregate enclosing p-bounds. When p-bounds are es-
timates, then the appropriate aggregation selection of an aggregation operation
depends on whether we have incertitude or variability:

• We may have incertitude, when there is only one actual CDF, and a p-
bound reflects incomplete knowledge about the CDF.

• Alternatively, we may have variability, when several different distributions
are possible, and a p-bound combines the CDFs corresponding to different
distributions.

In case of incertitude, we have two further subcases:
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• One possibility is that the p-bounds come from expert estimation. In this
case, each expert estimates the values of the CDF F (x) for each x and
produces the interval [F−i (x), F+

i (x)]. So, to aggregate the p-bounds, we
should, for every x, combine the corresponding intervals.

• Another possibility is that p-bounds come from measurements. In this
case, each p-bound Fi(x) is simply a “histogram” distribution represent-
ing interval measurement results. As in the case of CDFs, a natural
way to extract these intervals from a p-bound [F−i (x), F+

i (x)] is to con-
sider, for every probability p ∈ [0, 1], the corresponding percentile inter-
vals [(F+

i )−1(p), (F−i )−1(p)]. In this case, to aggregate the p-bounds, we
should, for every p, aggregate these percentile intervals.

As in the cases of real numbers, intervals, and CDFs, in each of these cases, we
can consider either more traditional averaging operations, or more recommended
enveloping ones. Let us describe the resulting subcases one by one.

10.4 p-averaging

10.4.1 Incertitude, averaging, p-bounds come from experts: p-
averaging

Let us first consider the case when the p-bounds come from experts, represent
incertitude, and we apply averaging methods to aggregate them. In this case,
for each x, n experts provide n probability intervals [F−i (x), F+

i (x)], so we
should use interval averaging techniques to aggregate these intervals. Because
we are aggregating probabilities, we can call these techniques p-averaging. Let
us briefly overview these methods and their properties.

10.4.2 Arithmetic p-average: general description and properties

The simplest averaging operation is the arithmetic average, when

F−(x) =
F−1 (x) + F−2 (x)

2
, F+(x) =

F+
1 (x) + F+

2 (x)
2

,

of, for the general case of n ≥ 2:

F−(x) =
F−1 (x) + . . . + F−n (x)

n
; F+(x) =

F+
1 (x) + . . . + F+

n (x)
n

.

As in the case of CDFs, this operation can be naturally interpreted via the
formula of full probability.

As in the cases of real numbers, intervals, and CDFs, this operation is idem-
potent, commutative, continuous, not associative, satisfies the averaging prop-
erty, and is easy to compute.
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10.4.3 Weighted arithmetic p-average: general description and prop-
erties

If we have reasons to believe that some experts are more trustworthy than others,
then (as we have mentioned when discussing aggregation of real numbers in
Section 7) we should use weighted arithmetic p-average instead of the arithmetic
p-average:

F−(x) = w1 · F−1 (x) + . . . + wn · F−n (x);

F+(x) = w1 · F+
1 (x) + . . . + wn · F+

n (x).

The same methods as we outlined when discussing aggregation of real numbers
can be used to determine these weights.

As in the case of CDFs, this operation can be naturally interpreted via the
formula of full probability; here, the weight wi becomes the probability that ith
expert is right.

As in the cases of real numbers, intervals, and CDFs, this operation is idem-
potent, non-commutative, continuous, not associative, does not satisfy the av-
eraging property, and is easy to compute.

10.4.4 Weighted arithmetic p-average with interval weights

As in the cases of real numbers and intervals, we can consider weighted
arithmetic p-average with interval weights. The algorithm for computing the
weighted average was given when we described aggregation of real numbers.

This weighted average operation can be interpreted via a formula for full
probability, in which, instead of knowing the exact probability P (i) = wi that
ith expert is correct, we know only the intervals wi of possible values of these
probabilities.

In particular, when we have no prior information about the weights and
therefore, take wi = [0, 1], the aggregation results in the following p-bound

[min(F−1 (x), . . . , F−n (x)), max(F+
1 (x), . . . , F+

n (x))].

10.4.5 Geometric p-average and generalized p-average: general de-
scription and properties

When we discussed operations with CDFs in Section 9, we remarked that in
many practical cases, the arithmetic average leads to counterintuitive conclu-
sions: it is quite possible that three different experts estimate the same small
probability as, correspondingly, ≈ 10−5, ≈ 10−6, and ≈ 10−7, and we do not
want the result of aggregation to always coincide with the largest estimate. So,
in p-averaging, it also make sense to consider the geometric average and the
generalized average. For the geometric average, the corresponding formulas are

F−(x) = n

√
F−1 (x) · . . . · F−n (x);
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F+(x) = n

√
F+

1 (x) · . . . · F+
n (x).

For the generalized average, we get

F−(x) =
(

(F−1 (x))α + . . . + (F−n (x))α

n

)1/α

;

F+(x) =
(

(F+
1 (x))α + . . . + (F+

n (x))α

n

)1/α

.

As in the cases of real numbers, intervals, and CDFs, this operation is idempo-
tent, commutative, continuous, not associative, satisfies the averaging property,
and is easy to compute.

When α → −∞, the generalized p-average tends to

[min(F−1 (x), . . . , F−n (x)), min(F+
1 (x), . . . , F+

n (x))];

when α → 0, it tends to geometric p-average; when α →∞, it tends to

[max(F−1 (x), . . . , F−n (x)), max(F+
1 (x), . . . , F+

n (x))].

10.4.6 Weighted geometric p-average and generalized p-average:
general description and properties

As in the cases of real numbers, intervals, and CDFs, we can have weighted
geometric p-average:

F−(x) = (F−1 (x))w1 · . . . · (F−n (x))wn ;

F+(x) = (F+
1 (x))w1 · . . . · (F+

n (x))wn ;

and weighted generalized p-average:

F−(x) = (w1 · (F−1 (x))α + . . . + wn · (F−n (x))α)1/α;

F+(x) = (w1 · (F+
1 (x))α + . . . + wn · (F+

n (x))α)1/α.

As in the cases of real numbers, intervals, and CDFs, this operation is idempo-
tent, non-commutative, continuous, non-associative, does not satisfy the aver-
aging property, and is easy to compute.

10.4.7 The use of copulas

As in the case of CDFs, if we know the copula C(x, y) that describes the depen-
dence between different expert opinions, we can use these copulas to combine
the probability intervals F1(x) = [F−1 (x), F+

1 (x)] and F2 = [F−2 (x), F+
2 (x)].

Because copulas are increasing functions, to find the interval of possible values
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of C(F1(x), F2(x)) when F1(x) ∈ F1 and F2(x) ∈ F2(x), it is sufficient to apply
the copula operations to the smallest and largest values from these intervals.
As a result, we get the following aggregation operation:

F(x) = [C(F−1 (x), F−2 (x)), C(F+
1 (x), F+

2 (x))].

As we have mentioned in our description of the use of copulas in aggregat-
ing CDFs, it is desirable to combine copula techniques with other aggregation
methods. This is one of the directions of our current research.

It is worth mentioning that when for p-bounds, when probabilities are known
with an interval uncertainty, there are alternative definitions of independence
and dependence. Different definitions may be more appropriate in different
practical situations involving risk analysis; see, e.g., (Couso et al., 2000).

10.5 x-averaging

10.5.1 Incertitude, averaging, p-bounds come from measurements:
x-averaging

Let us now consider the case when the p-bounds Fi(x) come from measurements,
represent incertitude, and we apply averaging methods to aggregate them. We
already know, from Section 8, how to aggregate intervals, i.e., individual interval
measurement results. Therefore, a natural way to aggregate the corresponding
p-bounds is as follows:

• first, we extract the corresponding interval measurement results from the
p-bounds;

• then, we combine (aggregate) the extracted interval measurement results
into aggregated estimates;

• finally, we transform the resulting interval estimates into a new p-bound.

Because in this case, we are aggregating (averaging) intervals of values x of
the measured quantity, the corresponding methods are called methods of x-
averaging.

How can we extract interval measurement results from a p-bound? As in
the case of CDFs, a natural way to do that is to take the percentile intervals
[(F+

i )−1(p), (F−i )−1(p)] corresponding to each p-bound [F−i (x), F+
i (x)].

As in the case of CDFs, if the measurement error is small, i.e., if all p-bounds
are reasonably narrow and close to each other, it is reasonable to aggregate, for
every p, the percentile interval [(F+)−1(p), (F−)−1(p)] corresponding to the
aggregated p-bound can be obtained by aggregating the percentile intervals
[(F+

1 )−1(p), (F−1 )−1(p)], . . . , [(F+
n )−1(p), (F−n )−1(p)]. In short, if measurement

errors are small, then for every p ∈ [0, 1], to get the corresponding percentile
interval, we aggregate n percentiles intervals corresponding to p-bounds to be
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aggregated. In geometric terms, if we draw CDFs in the usual way, with x
horizontal and p vertical, this means that we do the averaging in each horizontal
section.

If the measurement errors are not small, i.e., if the p-bounds to be aggre-
gated are not close to each other and/or not small, then, as in the case of
CDFs, a natural thing to do it to take a random variable x1 distributed ac-
cording to some distribution from the p-bound F1(x), another random variable
x2 distributed according to some distribution from the p-bound F2(x), aggre-
gate these two random variables, and then take, as the aggregated p-bound, the
p-bound describing all possible distributions resulting from this aggregation.

Let us discuss the corresponding aggregation methods in detail. We will start
with the methods of horizontal aggregation corresponding to close p-bounds Fi.

10.5.2 Arithmetic x-average, general description and properties

In accordance with the above arguments, when p-bounds are close, we should
aggregate, for each p, the percentile intervals corresponding to this particular
p. In short, we must aggregate horizontally.

In particular, when we apply the simplest possible aggregation procedure –
the arithmetic average – we conclude that for every level p, we must take an
arithmetic average of the corresponding percentile intervals of the p-bound Fi,
i.e.,

(F−)−1(p) =
(F−1 )−1(p) + . . . + (F−n )−1(p)

n
;

(F+)−1(p) =
(F+

1 )−1(p) + . . . + (F+
n )−1(p)

n
;

As in the cases of real numbers, intervals, CDFs (and as for the arithmetic
p-average), this operation is idempotent, commutative, continuous, not associa-
tive, satisfies the averaging property, and is easy to compute.

10.5.3 Weighted arithmetic x-average

In this averaging, the new percentile interval is:

(F−)−1(p) = w1 · (F−1 )−1(p) + . . . + wn · (F−n )−1(p);

(F+)−1(p) = w1 · (F+
1 )−1(p) + . . . + wn · (F+

n )−1(p).

As in the cases of real numbers, intervals, CDFs (and as for p-averaging), this
operation is idempotent, non-commutative, continuous, not associative, does
not satisfy the averaging property, and is easy to compute.

We can also consider interval weights, by using the algorithm for aggregating
with interval weights presented in the section for aggregating real numbers.
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10.5.4 Geometric and generalized x-average

In this averaging, the new percentile interval is either

(F−)−1(p) = n

√
(F−1 )−1(p) · . . . · (F−n )−1(p),

(F+)−1(p) = n

√
(F+

1 )−1(p) · . . . · (F+
n )−1(p),

or

(F−)−1(p) =
(

((F−1 )−1(p))α + . . . + ((F−n )−1(p))α

n

)1/α

.

As in the cases of real numbers, intervals, CDFs (and as in p-averaging), this
operation is idempotent, commutative, continuous, not associative, satisfies the
averaging property, and is easy to compute.

10.5.5 Weighted geometric and generalized x-average

In this aggregation, the new percentile interval is either

(F−)−1(p) = ((F−1 )−1(p))w1 · . . . · ((F−n )−1(p))wn ,

(F+)−1(p) = ((F+
1 )−1(p))w1 · . . . · ((F+

n )−1(p))wn ,

or
(F−)−1(p) = (w1 · ((F−1 )−1(p))α + . . . + wn · ((F−n )−1(p))α)1/α.

As in the cases of real numbers, intervals, CDFs (and as in p-averaging), this
operation is idempotent, non-commutative, continuous, not associative, does not
satisfy the averaging property, and is easy to compute. We can also consider
interval weights.

10.5.6 Averaging drastically different and/or wide p-bounds: arith-
metic x-average

Let us now consider the case of drastically different and/or wide p-bounds
F1(x), . . . ,Fn(x). As we have mentioned, to get the aggregation of such p-
bounds, we do the following:

• First, we select a numerical aggregation operation ∗ (e.g., x∗y = (x+y)/2).

• Next, we solve the following problem:

• we have a variable x1 which is distributed according to some distri-
bution from a p-bound F1(x);

• we have a variable x2 which is distributed according to some distri-
bution from a p-bound F2(x);
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• . . .

• we have a variable xn which is distributed according to some distri-
bution from a p-bound Fn(x);

• we want to find a p-bound which corresponds to all resulting distri-
butions of the quantity x = x1 ∗ . . . ∗ xn.

This is exactly the problem that we mentioned when we described indirect
measurement/estimation, and all methods for solving that problem (Ferson et
al., 2001), (Ramas, 2001) are applicable here as well.

Because CDFs are particular cases of p-bounds, the non-idempotence CDF
example from Section 9 shows that even in the simple case of arithmetic average
and independent xi, the corresponding aggregation operation is not idempotent.
In general, for this case (arithmetic average and independence), this aggregation
operation is commutative, continuous, not associative, satisfies the averaging
property, and is computable.

As in the case of CDFs, we should not worry about non-idempotence F1 ∗
F1 6= F1, because this operation is mainly justified when the p-bounds are
drastically different, so we should not apply it to the case when F1 = F2.

10.6 Enveloping

What are reasonable enveloping operations for aggregating n p-bounds
F1(x), . . . ,Fn(x)? These p-bounds come either from expert estimating the
probabilities, or from measurements. If p-bounds to be aggregated come from
experts, then, for each x, we have n intervals Fi(x), and we want to aggre-
gate these n intervals into a single estimate for F (x). We want these estimates
to form a p-bound, hence, for every x, we need an interval F(x). The only en-
veloping operation that combines n intervals into a single interval is the envelope
operation, for which

F(x) = [min(F−1 (x), . . . , F−n (x)), max(F+
1 (x), . . . , F+

n (x))].

Similarly, when p-bounds come from measurements, enveloping means applying
the envelope operation to the corresponding percentile intervals F−1(p). One
can show that the resulting enveloping aggregation is the same as enveloping
the intervals Fi(x).

This operation makes perfect sense for the case of variability. In this case,
we are given n p-bounds Fi, and we know that the actual CDF F (x) can be
within each of these n p-bounds. Thus, CDFs within F1 are possible, and CDFs
within F2 are possible, etc. Hence, we can have the CDF within any of these
n p-bounds. We want to aggregate this information. We know that CDFs
from F1 are possible, we know that CDFs from F2 are possible, etc. Thus, we
can conclude that all CDFs from the union of these n p-bounds are possible.
The union is not necessarily a p-bound itself: e.g., the union of the probability
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intervals [0, 1/3] and [2/3, 1] is not an interval. Because we want to describe
the aggregation result as a p-bound, it is natural to describe it as the smallest
p-bound that contains this union, i.e., their envelope

F(x) = [min(F−1 (x), . . . , F−n (x)), max(F+
1 (x), . . . , F+

n (x))].

As in the cases of aggregating real numbers, intervals, and CDFs, the en-
velope coincides with the weighted average with interval weights wi = [0, 1].
The envelope operation is idempotent, commutative, continuous, associative,
satisfies averaging property, and is computationally simple.

10.7 Dempster-Shafer approach to aggregating p-bounds

10.7.1 Formulas

When we discussed aggregation of CDFs, we have mentioned that every CDF
can be represented as a Dempster-Shafer knowledge base, with percentiles values
F−1

i (p) (or, to be more precise, with small intervals around percentile values),
as focal elements.

For a p-bound, we do not have a single percentile value, we have an interval
[(F+

i )−1(p), (F−i )−1(p)] of possible percentile values. As in the case of CDFs,
every p-bound can be represented as Dempster-Shafer knowledge base, with
the corresponding percentile intervals as focal elements. If we apply Dempster-
Shafer combination rule to combine these percentiles, we get the following for-
mula for the result [F−(x), F+(x)] of aggregating two p-bounds [F−1 (x), F+

1 (x)]
and [F−2 (x), F+

2 (x)]. First, we compute pre-normalized “CDF”s as follows:

F̃−(x) =
∫

ρ−1 (x) · (F+
2 (x)− F−2 (x)) dx +

∫
ρ−2 (x) · (F+

1 (x)− F−1 (x)) dx;

F̃+(x) =
∫

ρ+
1 (x) · (F+

2 (x)− F−2 (x)) dx +
∫

ρ+
2 (x) · (F+

1 (x)− F−1 (x)) dx.

where ρ−i (x) and ρ+
i (x) are probability density functions corresponding to CDFs

F−i (x) and F+
i (x). We can rewrite these formulas exclusively in terms of CDFs

if we use the notion of a Stieltjes integral
∫

f(x) dF (x) (which is equivalent to∫
f(x) · ρ(x) dx):

F̃−(x) =
∫

(F+
2 (x)− F−2 (x)) dF−1 (x) +

∫
(F+

1 (x)− F−1 (x)) dF−2 (x);

F̃+(x) =
∫

(F+
2 (x)− F−2 (x)) dF+

1 (x) +
∫

(F+
1 (x)− F−1 (x)) dF+

2 (x).

After we compute each “CDF”s F̃ (x), we normalize it by dividing by the nor-
malizing constant, which happens to be the value F̃+(∞) of the pre-normalized
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“CDF” F̃+(x) when x →∞:

F−(x) =
F̃−(x)

F̃+(∞)
; F+(x) =

F̃+(x)

F̃+(∞)
.

These formulas can be naturally generalized to the case when we aggregate an
arbitrary number n of p-bounds. In this case, we get:

F̃−(x) =
n∑

i=1

∫
ρ−i (x) ·

∏

j 6=i

(F+
j (x)− F−j (x)) dx;

F̃+(x) =
n∑

i=1

∫
ρ+

i (x) ·
∏

j 6=i

(F+
j (x)− F−j (x)) dx.

Alternatively:

F̃−(x) =
n∑

i=1

∫ ∏

j 6=i

(F+
j (x)− F−j (x)) dF−i (x);

F̃+(x) =
n∑

i=1

∫ ∏

j 6=i

(F+
j (x)− F−j (x)) dF+

i (x).

This aggregation operation sounds somewhat complex, but it leads to a simple
formula for the interval width w(x) = F+(x)−F−(x) of the resulting p-bound:

w(x) = k · w1(x) · . . . · wn(x),

where k is a normalizing constant, and wi(x) = F+
i (x)− F−i (x) are the widths

of the p-bounds to be aggregated.

10.7.2 Properties and examples

Let us start with checking idempotence. When we combine a p-bound F1(x)
with itself, we get a new p-bound with the width w(x) = k · w1(x)2. The only
way for the p-bound to stay the same is when w(x) = k · w2

1(x) = w1(x), i.e.,
when w1(x) ≡ const. For CDFs, a similar operation was idempotent, because
a CDF can be viewed as a CDF with a contact (0) width. However, as soon as
the width stops being constant, we lose the idempotence property.

Let us give a simple example of why Dempster’s combination rule is not
idempotent. Let us take, as the aggregated p-bound, a DS knowledge base with
three focal elements x1 = [0, 2], x2 = [1, 3], and x3 = [3, 4], to each of which we
assign the same mass p1 = p2 = p3 = 1/3. This DS knowledge base corresponds
to the following CDF:

F−1 (x) =





0 if x < 2,
1/3 if 2 ≤ x < 3,
2/3 if 3 ≤ x < 4,
1 if x ≥ 4
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F+
1 (x) =





0 if x < 0,
1/3 if 0 ≤ x < 1,
2/3 if 1 ≤ x < 3,
1 if x ≥ 3

-

6

x

F±1 (x)

0 1 2 3 4

1
3

2
3

1

In accordance with the Dempster-Shafer combination rule, we take all inter-
vals xi from the first knowledge case, all intervals yj from the second knowledge
base (which in this case is the same, i.e., yj = xj), and assign the mass pi · qj

(in this case, 1/9) to all non-empty intersections. Because these masses do not
add up to 1, we normalize them so that they will.

In this case, the following intersections are non-empty: x1 ∩ y1 = [0, 2];
x1 ∩ y2 = [1, 2]; x2 ∩ y1 = [1, 2]; x2 ∩ y2 = [1, 3]; x3 ∩ y3 = [3, 4]. These five
intervals get the same mass, so after normalization, they are each assigned the
same mass 1/5. The resulting p-bounds are as follows:

F−(x) =





0 if x < 2,
3/5 if 2 ≤ x < 3,
4/5 if 3 ≤ x < 4,
1 if x ≥ 4

F+(x) =





0 if x < 0,
1/5 if 0 ≤ x < 1,
4/5 if 1 ≤ x < 3,
1 if x ≥ 3

-

6

x

F±(x)

0 1 2 3 4

2
5

4
5

1
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On this example, we see that the width of the aggregated p-bound is indeed
proportional to the square of the original one:

• In the original p-bound, the width was 2/3 on [1, 2] and twice smaller
(1/3) elsewhere on [0, 4].

• In the aggregated p-bound, the weight is 4/5 on [1, 2], and four times
smaller elsewhere on [0, 4].

Comparing the original p-bound with the aggregated one, we can see that not
only the aggregated p-bound is different: it is neither enclosed in the original
one, not enclosing the original one. Indeed:

• for x ∈ (0, 1), we have:

[F−(x), F+(x)] =
[
0,

1
5

]
⊂ [F−1 (x), F+

1 (x)] =
[
0,

1
3

]
.

• On the other hand, for x ∈ (1, 2), we have:

[F−(x), F+(x)] =
[
0,

4
5

]
⊃ [F−1 (x), F+

1 (x)] =
[
0,

2
3

]
.

-

6

x

F±(x)

0 1 2 3 4

2
5

4
5

1

Summarizing: this operation is not idempotent. It is commutative, continuous,
rather easy to compute, but (as in the case of CDFs) not associative.

10.8 Section’s conclusions

When each of the p-bounds

F1(x) = [F−1 (x), F+
1 (x)], . . . ,Fn(x) = [F−n (x), F+(x)]

to be aggregated is an enclosure, i.e., if we are sure that the actual CDF (CDFs)
are within each of these n p-bounds, then a natural aggregation operation is the
intersection

F(x) = [max(F−1 (x), . . . , F−n (x)), min(F+
1 (x), . . . , F+

n (x))].
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When p-bounds are not enclosures but estimates which do not necessarily en-
close the actual CDF (CDFs), then we can use either averaging or enveloping
operations.

When the p-bounds F1(x), . . . , Fn(x) to be aggregated represent incertitude,
averaging depends on whether these CDFs come from expert estimates or from
measurements. In this first case, we get aggregation corresponds to averaging
probability intervals [F−i (x), F+

i (x)] (p-averaging), in the second case, it corre-
sponds to averaging the corresponding intervals of x (x-averaging).

Averaging operations “erase” the incertitude, so we recommend using en-
veloping operations that preserve and propagate the incertitude. Enveloping
leads to the envelope p-bound

F(x) = [min(F−1 (x), . . . , F−n (x)), max(F+
1 (x), . . . , F+

n (x))].

When the estimates F1(x), . . . ,Fn(x) to be aggregated represent variability,
enveloping techniques are the only choice.
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