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ABSTRACT

A natural way to distribute tasks between autonomous agents is to
use swarm intelligencetechniques, which simulate the way social insects
(such as wasps) distribute tasks between themselves. In this paper,
we theoretically prove that the corresponding successful biologically
inspired formulas are indeed statistically optimal (in some
reasonable sense).
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INTRODUCTION
What is swarm intelligence

In many real-life situations, we have a large number of tasks, and a large number
of autonomous agents which can solve these tasks. The problem is how to best match
agents and tasks. This problem is typical:

e in manufacturing, where we have several machines capable of performing mul-
tiple tasks;

e in robotics, when we need to coordinate the actions of several autonomous
robots;

e in computing, when several parallel computers are available, etc.



In general, if we want an optimal matching, then this problem is difficult to solve.
For example, it is known that the problem of optimal manufacturing scheduling is
NP-hard; see, e.g., [7]. Since we cannot have an optimal solution, we must look for
heuristic solutions to such problems.

One of the natural sources of such heuristics is biology, specifically, the biology of
insects. Insects are usually small, so it is difficult for an individual insect to perform
complex tasks. Instead, they swarm together and perform tasks in collaboration.
Since the existing social insects are the result of billions of years of survival-of-the-
fittest evolution, we expect that all the features of their collaboration have been
perfected to being almost optimal. Thus, it is reasonable to copy the way social
insects interact. The resulting multi-agent systems are called swarm intelligence [2,8].

What formulas are used in the existing swarm intelligence systems

The biological observations led researchers to the following model for the insect
collaboration: We have several classes of tasks. Each task T of type t is characterized
by its degree of relevance R;(T'); in biology, this degree of relevance is called a stimulus.

In principle, each agent can perform each task; in this sense, the agents are univer-
sal. However, different agents have different abilities with respect to different tasks.
If an agent is not very skilled in a certain type of tasks, then this agent picks tasks
of this type only when they are extremely important, i.e., when the stimulus is very
high. If an agent is reasonable skilled in tasks of certain type, then this agent will
also pick such tasks when the corresponding stimulus is much lower. This behavior
can be characterized by assigning, to each agent A and to each type of tasks ¢, a

threshold 6,(A):

e if the stimulus R;(7") corresponding to a task 7" is much smaller than the thresh-
old, then the agent will not take this task;

e if the stimulus is much larger than the threshold (R;(T) > 6;(A)), then the
agent will take this task.

In other words, whether the agent takes the task or not depends on the ratio r e
Ri(T)/0:(A): if r < 1, the agent does not take the task; if 7 > 1, the agent takes the
task.

When the ratio is close to 1 (i.e., when the stimulus is of the same order of magni-
tude as the threshold), then the same insect sometimes takes the task, sometimes does
not. The frequency (probability) P with which an insect picks the task increases with
the ratio r. From the biological observations, it was determined that the dependence
of the probability P on the ratio r has the following form:
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In other words, the probability P of an agent A to pick the task T of type t is equal
to:

Ry(T)?
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This formula is used in the existing swarm intelligence systems, and it has led to
reasonable results [2-6,8].

Formulation of the problem

The idea that a probability P should depend on the ratio r is very convincing.
However, the specific dependence of P on r (as described by the formula (1)) is rather
ad hoc. Since this formula is successful, it is reasonable to try to find a justification
for its use.

In this paper, we provide such a justification.

MAIN IDEA

Since we want to design an intelligent system, we should allow agents to learn, i.e.,
to use their experience to correct their behavior. In the swarm intelligence model, at
any given moment of time, the behavior of an agent A towards tasks of all possible
types t is characterized by its thresholds 6;(A). Thus, learning means changing the
agent’s thresholds, from the original values 6;(A) to new values #;(A). As a result,

the probability P
P=P(r)=P ( 9:(( A))) (3)

of an agent A taking the task 7" changes to a new value

P =P@F)=P (Zﬁ;) : (4)

The formula describing the transition from the original probabilities (3) to the new
probabilities (4) can be further simplified if we denote the ratio of the old and the
new thresholds by

_ 0,(4)

- O(A)

In terms of A\, we have ' = X - r, hence the new probability is equal to

P '=P(\-r). (5)

From the statistical viewpoint (see, e.g., [10]), the optimal way of updating proba-
bilities is by using the Bayes formula. Specifically, if we have n incompatible hypothe-
ses Hy, ..., H, with initial probabilities Py(H1), ..., Po(Hy,), then, after observations
E. we update the initial probabilities to the new values:

P(E| H;) - Py(H;)

(B[ Hy) - Po(Hy) + -+ P(E| Hy) - Po(Hy)" (6)

P(H;|E) = 5

Thus, an optimal function P(r) can be determined as the one for which the transition
from the old probabilities (3) to the new probabilities (4), (5) can be described by
the (fractionally linear) Bayes formula (6).



FROM THE MAIN IDEA TO THE EXACT FORMULAS

Let us formalize the above condition. In our case, we have two hypotheses: the
hypothesis H; that it is reasonable for an agent A to take a task of given type ¢, and
the opposite hypothesis H, that it is not reasonable for the agent A to take such a
task. Initially, the probability of the hypothesis H; is equal to P, and the probability
of the opposite hypothesis H, is equal to 1 — P. According to Bayes formula, after
some experience E, the probability P should be updated to the following new value
P'=P(H{|E):
P(E[H,)- P+ P(ETH;) (1-P)

If we if we denote P(E|H,) by a, P(E | Hy) by b, and explicitly mention that the
probability P depends on the ratio r, then the formula (7) takes the following form:

o a-P(r)
P = PO - Pe) (®)

We want the expression (5) to be representable in this form (8). So, we arrive at the
following definition:

MAIN RESULT

Definition. A monotonic function P(r) : [0,00) — [0, 1] is called optimal if, for every
A > 0, there exist values a(\) and b(\) for which

PO =50 Py + 600 - (1 P’ Y

Theorem. FEvery optimal function P(r) has the form

a

P = (10)

for some real numbers a and c.

In other words, for the optimal function P(r), we have

R,(T)"

P = R+ e 6,0

(11)

If we re-scale the threshold by calling # = ¢'/®-# the new threshold, then the formula
(11) simplifies into
_ Ry(1)°
Ry(T)> + 0,(A)>
Thus, we show that formula (12) — which is a minor generalization of the original
formula (2) — is indeed optimal.

(12)



PROOF

It is known that many formulas in probability theory can be simplified if instead of
the probability P, we consider the corresponding odds O = P/(1 — P). (If we know
the odds O, then we can reconstruct the probability P as P = O/(1 + O).) The
right-hand side of the formula (9) can be represented in terms of odds O(r), if we
divide both the numerator and the denominators by 1 — P(r). As a result, we get the
following formula:
a(A) - O(r)

a(A) - O(r) +b(\)’

Based on this formula, we can compute the corresponding odds O(A - r): first, we
compute the value

P(A-1) = (13)

_ b(M)
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and then divide (13) by (14), resulting in:
O\-1)=1¢c(A)-O(r), (15)

where we denoted ¢(\) = a(A)/b(A). It is known (see, e.g., [1,9]) that all monotonic
solutions of the functional equation (15) are of the form O(r) = C - r®*. Therefore, we
can reconstruct the probability P(r) as

_O(r) _ C-r®
PO = om+1i= st

Dividing both the numerator and the denominator of the right-hand side by C' and
denoting ¢ = 1/C, we get the desired formula (10). Q.E.D.
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