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Abstract— For large aerospace structures, it is
extremely important to detect faults, and non-
destructive testing is the only practical way to do
it. Based on measurements of ultrasonic waves,
Eddy currents, magnetic resonance, etc., we recon-
struct the locations of the faults. The best (most
efficient) known statistical methods for fault re-
construction are not perfect. We show that the use
of expert knowledge-based granulation improves
the quality of fault reconstruction.

I. INTRODUCTION
A. Formulation of the Problem

For large aerospace structures, it is extremely important
to detect faults, and non-destructive testing is the only
practical way to do it. Based on measurements of ultra-
sonic waves, Eddy currents, magnetic resonance, etc., we
reconstruct the locations of the faults.

The best (most efficient) known statistical methods for
such reconstruction use our knowledge of physics and the
known statistical characteristics of noise and measurement
errors. We describe these methods in Section II. These
methods are efficient but not perfect: they miss some fault
locations and erroneously mark some non-faulty places as
potential faults.

B. What We Are Planning to Do

A natural statistical way to improve the quality of fault
detection is to use more adequate statistical techniques,
e.g., to take into consideration correlation between differ-
ent measurements (which becomes more and more impor-
tant as the number of measurements increases) and/or use
better statistical decision making techniques.

However, as we show in Section III, if we simply use
new techniques, the quality of fault detection often de-
teriorates instead of improving. The reason is that when
we apply statistical techniques, we need to either treat the
whole plate as a sample, or subdivide it into zones, and the
quality of fault detection depends on the adequacy of this
granulation. To improve the efficiency of fault detection,
we must therefore maximally use the expert knowledge
and data mining to get a better granulation. We show
that this indeed leads to an improved quality of fault de-
tection.

In Section IV, we show that there is an additional prob-
lem with simply using sophisticated statistical methods.
The problem is that when we move to sophisticated sta-
tistical models, the corresponding computations often be-
come computationally intractable (NP-hard), so we need
expert knowledge to solve these problems.

II. BEST EXISTING STATISTICAL
ALGORITHM FOR FAULT DETECTION AND
ITS DRAWBACKS

A. Main Idea

Let us first describe the existing technique [8, 9]. We start
with the results z;(A) of measuring n different quantities
at different points A. The main idea behind this method is
as follows: Based on the measured values, we estimate the
corresponding probability distribution; points for which
the corresponding measurement results z1(4),...,2,(A)
are highly improbable (i.e., for which the value of the cor-
responding probability density p is below a certain thresh-
old po) are most likely faults.

B. Main Idea in More Detail

If all the measurements are independent and normally
distributed with average a; and standard deviation o,
then the probability density p(z1(A),...,z,(A)) is pro-

n
portional to exp —% . Zz,’(A)2>, where
i=1
(A — a;
() o A
oF}
is a normalized result of i-th measurement at the point
A. 1In this case, the fault-detecting inequality p < po
n

is equivalent to the inequality Z zi(A)? > ¢y for some
i=1

constant ¢p. In engineering, it is customary to use 2o rule,

which corresponds to 5% error. In this case, we select the

value of ¢y for which, for the ideal Gaussian distribution,

exactly 5% of points are classified as faults.

C. How to Compute a; and o;?

In order to transform this idea into an algorithm, we must
first decide on how to estimate a; and o;. If there are no
faults, and all the measurements are normally distributed,
then we can estimate a; and o; by using the standard



statistical formulas:
_ 1 A): _ 1 A 2
ai—N'§$z’( ) oi= N—_l'g(mi( ) — a:)?,

where N is the total number of measurements. However,
in real-life situations, when there are outliers, these out-
liers will affect the results of computing a; and o;. To
eliminate this effect and use only non-outlier points in
computing a; and o;, the authors of [8, 9] propose to use
the following iterative techniques often used in data min-
ing:

e first, we compute the values a; and o; based on all
the measurements;

e then, we mark the points A for which |z;(4) — a;| >
20; as suspicious, and re-compute the values a; and
o; based only on un-marked points A;

e for the new values of a; and o;, we again mark all
the points for which |z;(A) — a;| > 20; (i.e., which
are outside the 20 interval [a; — 203, a; + 20;]), and
re-compute a; and o; using only the remaining un-
marked points, etc.

This procedure continues until the values a; and o; stop
changing.

B. The Need for Granulation

If we simply apply the above idea with thus computed a;
and o;, we do not get very good fault detection results: it
detects all points in the interior of the tested plate, but
its results on the edges are not that good. The reason
why the method does not work well on edges is that the
above method assumes that the probabilities are the same
in all the points A, while on the edges, the physical char-
acteristics are different and therefore, the corresponding
probabilities are also different.

It is therefore reasonable to granulate the tested plate,
i.e., to divide it into zones which more or less similar phys-
ical characteristics. Since the main reason for the differ-
ence between physical characteristics at different points is
due to different closeness of these points to the edge, it is
reasonable to divide the plate into zones by dividing the
interval of possible distance to the edge into sub-intervals
[0,d1], [d1,ds], etc., so that points whose distance to the
edge is smaller than d; are assigned to one zone, points
whose distance is from d; to dy are assigned to the sec-
ond zone, etc. Then, within each zone, we only declare a
point to be a fault if it is an outlier when compared to the
averages and standard deviations measured by only using
similar points, i.e., measured only by using points within
this zone.

C. Final Detail: Separating Actual Faults from Sensor
Malfunctions

The algorithm is almost ready, the only remaining detail
is that some individual outlying measurements z;(A) can

be caused not by faults, but by a malfunction of the corre-
sponding sensors. A typical difference between such points
and actual faults is that actual faults are usually continu-
ous, they contain not just a single point A, but also several
points close to A. Thus, if within a certain neighborhood
{A,B,...} of a point A, only one type of measurement
z;(A),z;(B),... indicates a fault (i.e., for only this type
of measurement, z;(B) is outside the “two sigma” interval
[a; — 20, a; + 20;]), we dismiss the outlying value z;(A) as
a possible malfunction, and only use the remaining values
in our statistical analysis.

D. Main Drawback: The Methods Should Be Further
Improved

In [8, 9], the above method was tested on the example of
an 11" x 11" plate from an actual airplane (B-52) with 16
artificially added faults: 8 squares and 8 circles. Of these
16 faults, 8 are inside the plate: four squares of sides 1/2",
3/8" 1/4" and 1/8"; and four circles of diameters 1/2",
3/8",1/4", and 1/8"; and 8 are of the exact same size but
on the edge of the plate: four squares of sides 1/2", 3/8",
1/4", and 1/8"; and four circles of diameters 1/2", 3/8",
1/4", and 1/8". For this plate, we have 7 different mea-
surements: two measurements of Pulse Echo correspond-
ing to different frequency, measurement of Eddy current,
and four measurements of magnetic resonance correspond-
ing to four different frequencies.

The conclusion is that fault detection provided by the
statistical method described in Section II is good but not
perfect.

III. THE NEW ALGORITHM: MOTIVATION,
DESCRIPTION, AND RESULTS

A. Main Idea: Using Correlation

To get a better fault detection, we can look into the as-
sumption that we made. One such assumption is the sta-
tistical independence of different measurements.

Our statistical analysis shows that although some pairs
of measurements are indeed almost independent, there is
is some correlation between some other measurement re-
sults. For example, there is a sizable correlation between
two measurements of resonance corresponding to differ-
ent frequencies: the corresponding correlation coefficient
is =~ 54%.

For correlated normally distributed random variables,

the probability is a function not of Zzi(A)z, but of

i=1
n n

a more general quadratic form ZZbU - zi(A) - z;(A),
i=1 j=1

where the matrix b;; is the inverse ‘go the covariance ma-

trix Cy; that describes the correlation between the mea-

surements. Each element Cj; of this matrix is the average

of the product z;(A) - 2;(A) over different points A. It is

therefore reasonable to do the following:



e compute the elements of the covariance matrix Cj;;

e invert this matrix getting b;;; and then
n n

e use the expression Zzb“ - 2; - 7; instead of the
=1 j=1

n
expression Z 2? to detect the faults.

i=1

B. This Idea Is Not Sufficient, Additional Ezpert
Knowledge-Based Granulation Is Needed

The idea sounds reasonable, however, when we first ap-
plied it, the quality of fault detection deteriorated instead
of improving. The most troubling deterioration was the
increase in the number of false negatives, i.e., undetected
fault points. In the original method, we had 11 false neg-
atives, but with our application, we had 20 false negatives
— almost twice as many. Why?

The reason is that when we apply statistical techniques,
we need to either treat the whole plate as a sample, or
subdivide it into zones, and the quality of fault detection
depends on the adequacy of this granulation. To improve
the efficiency of fault detection, we must therefore maxi-
mally use the expert knowledge and data mining to get a
better granulation.

It is reasonable to expect that expert knowledge can
help. It is well known that methods based on expert
knowledge (especially methods using data fusion) lead to
reasonably good algorithms for fault detection; see, e.g.,
[2, 5, 7, 10, 17]. It is also known that the use of expert
knowledge can improve statistical techniques of fault de-
tection; see, e.g., [1, 5, 12].

Based on the expert knowledge, we decided to divide
the plate into two zones:

e the interior of the plate, i.e., all the points which are
at least 3/4" away from the edge; and

e the remaining points — which are thus close to the
edge.

We performed our statistical analysis separately on these
two zones. The interior zone contains sufficiently many
points to lead to a statistically significant non-zero corre-
lation between some measurements. In contrast, the edge
zone contains too few points, not enough to detect any
statistically significant correlation between the measure-
ments. Therefore, for this zone, we used the covariances
computed based on the interior zone.

When we took these covariances into consideration in
the above formulas, we ended up with the decreased num-
ber of false negatives (9 instead of the original 11). We
also got a decrease in the overall number of false positives
(i-e., points erroneously marked as faults) from the original
5,986 to 5,842. In other words, the use of expert knowl-
edge in granulation indeed leads to an improved quality
of fault detection.

IV. TOWARDS FURTHER IMPROVEMENTS:
ANALYZING COMPUTATIONAL
COMPLEXITY OF COMPUTING

COVARIANCE

A. Main Idea

The new algorithm proposed in Section III produces an
improvement in the detection of outliers in comparison
with the best existing algorithm, but this improvement
is slight. In order to get better results, a natural idea is
to use an even more realistic description of the problem.
One thing that is not realistic in the current description
is that in computing the covariance we assume that the
measurement results are exact.

In real life, measurements are never 100% accurate. The
result Z of measuring a physical quantity = (e.g., temper-
ature) may differ from the actual value of that quantity.
E.g., if you have weighed yourself, and the result is 125
pounds, this does not mean that your weight equals ex-
actly 125. If the scales have an accuracy £2, then the
actual weight can be any number from 123 (= 125 —2) to
127 (= 125+ 2).

So the data that we process are not absolutely precise.
This inaccuracy leads to the inaccuracy in the result of
data processing, in our case, in the estimated values of
covariance. The problem is to estimate the resulting inac-
curacy.

In many cases, the manufacturer of a measuring instru-
ment provides us with the probabilities of different values
of a measurement error. For such cases, there exist nu-
merous methods that compute statistical characteristics
of the resulting error (see, e.g., [3, 13]).

In many other cases, however, the values of the proba-
bilities are not known. Instead, the manufacturer provides
us with the guaranteed accuracy A, i.e., with a guaranteed
upper bound of the error Ax =Z — z (e.g., “error cannot
exceed 0.17). If our measurement results is Z, then the
possible values of z = T — Az form an interval [z, z7],
where 27 =T — A and 2+ =7 + A.

Taking interval uncertainty into consideration does lead
to improved fault detection results in non-destructive test-
ing; see, e.g., [14, 15, 16]. It is therefore reasonable to take
interval uncertainty into consideration in our correlation
technique as well.

In the standard computation of covariance, we start
with the values x1,...,%Zn,¥1,---,Yn, and we compute the
covariance as

where

T =

S|+

i g= %Zyz
i=1 =1

If we take interval uncertainty into consideration, then,
after each measurement, we do not get the exact values



of 1,...,%n, Y1,---,Yn; instead, we only have intervals
[z, 2], [z, 2t], [vi,v'],---,[vn,v]. Depending
on what are the actual values of z1,...,%n, Y1,...,¥Un

within these intervals, we get different values of covari-
ance. To take the interval uncertainty into consideration
in our covariance techniques, we need to be able to de-
scribe the interval [C~, Ct] of possible values of covari-
ance C.

So, we arrive at the following problems: given the in-
tervals [z; ,z]], [y;,y;], compute the lower and upper
bounds C~ and CT for the interval of possible values of
covariance.

B. To Implement the Main Idea, We Need Ezxpert
Knowledge: Theorems

It turns out that these problems are computationally dif-
ficult, or, in precise terms, NP-hard (for exact definitions
of NP-hardness, see, e.g., [4, 6, 11]).

Theorem 1. The problem of computing CT from the
interval inputs [z; ,z}], [y; ,y;"] is NP-hard.

Theorem 2. The problem of computing C~ from the
interval inputs [z, ,z]], [y;,y;] is NP-hard.

These results are not unexpected: many easy computa-
tional problems (e.g., solving systems of linear equations)
become NP-hard if we take interval uncertainty into con-
sideration; see, e.g., [6].

What does this computational hardness means in prac-
tical terms? It means that if we only use the measurement
results — and do not use any knowledge of experts, then
the corresponding computations are difficult. Thus, to
solve the corresponding practical problems, we must use
expert knowledge in addition to measurement results.

C. Proof of Theorem 1

By definition, a problem is NP-hard if any problem from
the class NP can be reduced to it. Therefore, to prove
that a problem P is NP-hard, it is sufficient to reduce one
of the known NP-hard problems Py to P. In this case,
since Pg is known to be NP-hard, this means that every
problem from the class NP can be reduced to Py, and since
Po can be reduced to P, thus, the original problem from
the class NP is reducible to P.

For our proof, as the known NP-hard problem Py, we
take a subset problem: given n positive integers sy, ..., Sp,
to check whether there exist signs ¢; € {—1, 41} for which

the signed sum ZE" - s; equals 0.

i=1

We will show zthat this problem can be reduced to the
problem of computing C¥, i.e., that to every instance
(s1,..-,8n) of the problem Py, we can put into correspon-
dence such an instance of the Ct-computing problem that
based on its solution, we can easily check whether the de-
sired signs exist.

As this instance, we take the instance corresponding to

the intervals [z; ,z}] = [y;,y] = [—si,5:]. We want to
to show that for the corresponding problem, C*+ = Cy,
where we denoted

if and only if there exist signs ¢; for which ) e;-s; = 0.

To prove this, let us first show that in all cases, CT <
Co. Indeed, it is known that the covariance C' is bounded
by the product o, - o of standard deviations of z and y.
By definition of a standard deviation,

7; since

Since z; € [—s;,s;], we can conclude that 22 < s
(Z)? > 0, we thus conclude that

1
GiSEZSzZZCO
So, o, < v/Co; similarly, o, < 1/Cy, hence C < 0, - 7, <
VCo - /Cy = Cy. In other words, every possible value C
of the covariance is smaller than or equal to Cy. Thus,
the largest of these possible values, i.e., CT, also cannot
exceed Cy, i.e., CT < (.

Let us now show that if Ct = Cy, then the desired
signs exist. Indeed, if C* = C, this means that for the
corresponding values of z; and y;, the covariance C is
equal to Cp, i.e.,

On the other hand, we have shown that in all cases (and
in this case in particular), C < 0, -0, < v/Co-v/Co = Co.
If o, < v/Cp, then we would have C < Cy. So, if C = Cy,
we have o, = 0, = V/Cq, ie., 0} = 07 = Co. We know
that z? < s?; since (Z)? > 0 hence o2 < Cy. If |z;|* < s?
or ()2 > 0, then we would have 02 < Cy. Thus, the only
way to have 02 = Cp is to have 22 = s? and Z = 0. The
first equality leads to x; = +s;, i.e., to x; = ¢; - s; for
some ¢; € {—1,+1}. The second equality then leads to
n

Z g; -8; = 0. So, if CT = Cj, then the desired signs do
i=1
exist.

To complete the proof of Theorem 1, we must show that,
vice versa, if the desired signs ¢; exist, then CT = (.
Indeed, in this case, for ; = y; = &;-5;, wehaveZ =7 =0
and z; - y; = s7, hence

Z(mi—f)-(yi—g)=%-28f=00-

i=1

c=1.
n

The theorem is proven.



D. Proof of Theorem 2

This proof is similar, with the only difference that in this
case, we use the other part of the inequality |C| < o, - gy,
namely, that C > —o; - 0y, and in the last part of the
proof, we take y; = —x;.

CONCLUSION

In this paper, we have shown that granularity based on
expert knowledge can drastically improve the quality of
fault detection in aerospace structures.
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