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Abstract— Uncertainty is very important in risk
analysis. A natural way to describe this uncer-
tainty is to describe a set of possible values of
each unknown quantity (this set is usually an in-
terval), plus any additional information that we
may have about the probability of different values
within this set. Traditional statistical techniques
deal with the situations in which we have a com-
plete information about the probabilities; in real
life, however, we often have only partial informa-
tion about them. We therefore need to describe
methods of handling such partial information in
risk analysis. Several such techniques have been
presented, often on a heuristic basis. The main
goal of this paper is to provide a justification for
a general second-order formalism for handling dif-
ferent types of uncertainty.

I. INTRODUCTION: UNCERTAINTY IN RISK
ANALYSIS

Uncertainty in risk analysis: why. By definition, risk
analysis deals with situations with uncertainty, i.e., with
situations in which we do not have a complete and ac-
curate knowledge about the state of the system. It is
therefore very important that we be able to represent un-
certainty in risk analysis as adequately as possible.
First component of uncertainty description: in-
terval (set) uncertainty. In order to fully describe a
system, we must know the exact values of all the phys-
ical quantities characterizing this system. For example,
in environmental problems related to chemical pollution,
a polluted system (e.g., a lake) can be fully described if
we know the exact concentration of different pollutants in
different parts of the lake.

Thus, to describe the uncertainty of our knowledge
about a system, we must describe the uncertainty with
which we know the values of each of the quantities (pa-

rameters) describing the system. Uncertainty means that
we do not know the exact value of the quantity, several
different values may be possible. For example, we may
not know the exact value of the concentration but we may
know that this concentration is between, say, 1075 and
10~3. In this case, any value from the interval [1075,1073]
is possible; see, e.g., [7, 8, 18].

An important risk-related situation that leads to inter-
vals is when a measurement does not detect any presence
of a certain substance because its concentration z is below
the detection limit D. In this case, the only information
we have about z is that z belongs to the interval [0, D].

In general, we usually known an interval x of possible
values of the unknown quantity x — or, sometimes, a more
general set X of possible values of z (different from an
interval, e.g., the union of two intervals).

Second component of uncertainty description:
probabilistic uncertainty. The set X of possible val-
ues describes which values of the analyzed quantity are
possible and which values are not. In addition to this in-
formation, we often know which values are more probable
and which are less probable. In other words, we often have
some information about the probability of different values
z from the interval (set) x of possible values.

Probabilistic uncertainty: traditional techniques.
In some cases, we know the exact expression for this dis-
tribution. In these cases, we can use standard statistical
techniques to represent, elicit, and aggregate uncertainty.
A survey of the corresponding techniques as applied to
risk analysis is given, e.g., in [1].

The need for techniques corresponding to partial
information about probabilities. In many other real-
life situations, however, we have only partial information
about the probabilities. To handle such situations, it is
necessary to expand known statistical techniques of rep-
resenting, eliciting, and aggregating uncertainty to prob-



lems in which we only have partial information about the
probabilities.
What we are planning to do. The main objective of
this report is to introduce a new general technique deal-
ing with partial information about probabilities. Several
such techniques have been presented, often on a heuristic
basis, without a proper justification typical for traditional
statistical techniques. The main goal of this paper is to
provide a justification for a general second-order formal-
ism for handling different types of uncertainty.

For a survey with a detailed description of our approach
see [6]; see also [2, 4, 5, 10, 11, 15].

II. WHAT IS A NATURAL WAY OF
REPRESENTING PARTIAL INFORMATION
ABOUT PROBABILITIES?

Which representation of probability distribution
should we choose? In probability theory, there are
many different ways of representing a probability distribu-
tion. For example, one can use a probability density func-
tion (pdf), or a cumulative distribution function (CDF), or
a probability measure, i.e., a function which maps differ-
ent sets into a probability that the corresponding random
variable belongs to this set. The reason why there are
many different representations is that in different prob-
lems, different representations turned out to be the most
useful.

We would like to select a representation which is the
most useful for problems related to risk analysis. To make
this selection, we must recall where the information about
probabilities provided by risk analysis is normally used.

How is the partial information about probabilities
used in risk analysis? The main objective of risk anal-
ysis is to make decisions. A standard way of making a
decision is to select the action a for which the expected
utility (gain) is the largest possible. This is where proba-
bilities are used: in computing, for every possible action a,
the corresponding expected utility. To be more precise, we
usually know, for each action a and for each actual value
of the (unknown) quantity z, the corresponding value of
the utility u,(z). We must use the probability distribu-
tion for z to compute the expected value E[uy(z)] of this
utility.

In view of this application, the most useful characteris-
tics of a probability distribution would be the ones which
would enable us to compute the expected value Efu,(x)]
of different functions u, ().

Which representations are the most useful for this
intended usage? General idea. Which characteristics
of a probability distribution are the most useful for com-
puting mathematical expectations of different functions
uq(z)? The answer to this question depends on the type
of the function, i.e., on how the utility value v depends on
the value x of the analyzed parameter.

Smooth utility functions naturally lead to mo-
ments. One natural case is when the utility function
uq () is smooth. We have already mentioned, in Section I,
that we usually know a (reasonably narrow) interval of
possible values of z. So, to compute the expected value
of uy(x), all we need to know is how the function u,(x)
behaves on this narrow interval. Because the function is
smooth, we can expand it into Taylor series. Because the
interval is narrow, we can safely consider only linear and
quadratic terms in this expansion and ignore higher-order
terms:

uo(z) R cg+c1 - (T —x0) + ¢+ (T — m0)?,

where zy is a point inside the interval. Thus, we can
approximate the expectation of this function by the ex-
pectation of the corresponding quadratic expression:

Elua(z)] = E[co + ¢1 - (x — m0) + ¢2 - (x — 30)?],
i.e., by the following expression:
Elug(z)] = co +¢1 - Elx — x0] +c2 - E[(z — m0)2].

So, to compute the expectations of such utility functions,
it is sufficient to know the first and second moments of
the probability distribution.

In particular, if we use, as the point xg, the average
E[z], the second moment turns into the variance of the
original probability distribution. So, instead of the first
and the second moments, we can use the mean E and the
variance V.

From numerical moments to interval-valued mo-
ments. When we know the exact probability distribution,
we must use the exact values of the first and the second
moment (or mean and variance).

If we only have a partial information about the probabil-
ity distribution, then we cannot compute the exact value
of these moments; instead, we have intervals of possible
values of these moments. So, from this viewpoint, a nat-
ural representation of the partial information about the
probability distribution is given by intervals E and V of
possible values of mean E and variance V.

In risk analysis, non-smooth utility functions are
common. In engineering applications, most functions are
smooth, so usually the Taylor expansion works pretty well.
In risk analysis, however, not all dependencies are smooth.
There is often a threshold xo after which, say, a concen-
tration of a certain chemical becomes dangerous.

This threshold sometimes comes from the detailed
chemical and/or physical analysis. In this case, when we
increase the value of this parameter, we see the drastic
increase in effect and hence, the drastic change in utility
value. Sometimes, this threshold simply comes from reg-
ulations. In this case, when we increase the value of this
parameter past the threshold, there is no drastic increase



in effects, but there is a drastic decrease of utility due
to the necessity to pay fines, change technology, etc. In
both cases, we have a utility function which experiences
an abrupt decrease at a certain threshold value zy.

Non-smooth utility functions naturally lead to
CDFs. We want to be able to compute the expected
value Efu,(z)] of a function u, () which changes smoothly
until a certain value zg, then drops it value and contin-
ues smoothly for z > zo. We usually know the (reason-
ably narrow) interval which contains all possible values
of z. Because the interval is narrow and the dependence
before and after the threshold is smooth, the resulting
change in u,(z) before xg and after x¢ is much smaller
than the change at xg. Thus, with a reasonable accuracy,
we can ignore the small changes before and after xg, and
assume that the function u,(z) is equal to a constant u*
for x < z0, and to some other constant v~ < ut for
x> Xg.

The simplest case is when 4t = 1 and u= = 0.
In this case, the desired expected value E[ul” ()] coin-
cides with the probability that x < ®¢, i.e., with the
corresponding value F(zg) of the cumulative distribu-
tion function (CDF). A generic function u,(z) of this
type, with arbitrary values v~ and u', can be easily
reduced to this simplest case, because, as one can eas-
ily check, uq(x) = u~ + (vt — u™) - u®(z) and hence,
Elug(z)] =u™ + (ut —u™) - F(zo).

Thus, to be able to easily compute the expected values
of all possible non-smooth utility functions, it is sufficient
to know the values of the CDF F(x¢) for all possible zg.

From CDF to interval-valued CDF': the notion of
a p-bound. When we know the exact probability distri-
bution, we must use the exact values F(z) of the CDF.
If we only have a partial information about the probabil-
ity distribution, then we cannot compute the exact values
F(z) of the CDF. Instead, for every x, we have an interval
[F~(x), F*(z)] of possible values of the probability F(z).
Such a pair of two CDFs F~ (z) and F*(z) which bounds
the (unknown) actual CDF is called a probability bound,
or a p-bound, for short.

So, in risk analysis, a natural representation of the par-
tial information about the probability distribution is given
by a p-bound.

p-bounds or moments? We have shown that for de-
cision problems with smooth utility functions, the best
representation is by interval mean and interval variance,
and for decision problems with discontinuous utility func-
tions, the best representation of partial information is a
p-bound.

Of the two corresponding representations of a proba-
bility distribution, CDF is much more informative: if we
know CDF, we can compute the moments, but if we only
know the moments, we can have many different CDFs.
Thus, because we want to make our representation as in-

formative as possible, it makes sense to use CDFs and
their interval analogues — p-bounds.

Real numbers, intervals, and probability distribu-
tions are particular cases of p-bounds It is worth
mentioning that several other types of uncertainty can be
viewed as particular cases of p-bounds.

For example, the case of complete certainty, when we
know the exact value zy of the desired quantity, can be
represented as a p-bound in which

0 fz<z

— o+ _ > L0y
Fo(@)=F"(z) = { 1 otherwise

The case when our only information about z is that x
belongs to the interval [z, 2] can be represented by the
following p-bound:

_ 0 ifz<at,
F(z) = { 1 otherwise

oy _J O ifz<laT,
F(w) = { 1 otherwise
Finally, a probability distribution with a CDF F'(x) can be
represented as a p-bound with F~(z) = F*(z) = F(z).
Information about moments can also be represented in
terms of p-bounds; see, e.g., [4, 15]. For example, if we
know the interval [z~,z%] on which the distribution is
located, and if we know its mean E, then we can conclude
that F(z) € [F~(z), F*(z)], where, e.g.,

t—FE
Ft(z) =min (1,2——= ).
(z) m1n<,$+_m)

p-bounds have been successfully used in practice.
We have shown that in risk analysis, a natural way to
represent risk-related partial information about probabil-
ities is by using a second-order probability distribution,
namely, a p-bound — a pair of CDFs F~ (z) and F*(z) for
which F~(z) < F*(z). In particular, a real number, an
interval, and a probability distribution are all particular
cases of p-bounds.

p-bounds have been successfully used in different risk
analysis problems ranging from problems related to pol-
lution and environment to risk analysis for nuclear engi-
neering; see, e.g., [4, 15].

III. P-BOUNDS FROM EXPERT ESTIMATES
AND THEIR RELATION WITH FUZZY SETS

Fuzzy properties: a general reminder. Words from
natural language are not precise (“fuzzy”). Let us take
the word “small” as an example. When the value of, say,
concentration, is really small, everyone would 100% agree
that this value is small indeed. When the value is really
large, everyone would agree that this value is not small.



For intermediate values, however, we bound to have a dis-
agreement.

The need to translate expert knowledge from natural
language to a computer-understandable language of num-
bers was recognized as early as the 1960s, when the first
expert systems started to be designed. A special formal-
ism called fuzzy logic was designed to help us capture the
meaning of words. In this formalism, to represent a mean-
ing of a word like “small”, we assign, to every possible
value x, a degree psman () to which z is small. The depen-
dence of this degree of z is called a membership function,
or a fuzzy set.

Where do the values u(x) come from? There are sev-
eral dozen different techniques for eliciting these values;
see, e.g., [9, 14]. Sometimes, the experts can present these
numbers (“subjective probabilities”) directly. If they can-
not, then for every z, we can poll several (V) experts on
whether they believe that this particular values x is, say,
small, and if M out of N experts answer “yes”, we take
u(z) = M/N. What is a natural way to translate these
“subjective probabilities” into p-bounds? We will answer
this question on the example of membership functions of
three most frequent types.

Fuzzy properties like “large”. The first type is a func-
tion which describes words like “large”, for which u(z) is
increasing from 0 at = 0 to 1 for x — oco. Let us give a
simple example of such function:

0 ifx <1,
:u’large(x): z-1 1f1§»’US2;
1 if z>2

Suppose that the expert tells us that the actual value of
some quantity X is large. What does it say about the
possible values of the probability F(z) (that X < z) for
different x?

Let us start with a value x < 1. For this value,
Marge() = 0. This means that the values below z cannot
be large, so it is reasonable to take F'(z) = 0.

Let us now take a value x > 2. For this value,
Marge(z) = 1, which means that the value z is definitely
large. Based on the expert opinion, we only know that
the actual value X is large. It may be below z with prob-
ability 1 — in which case F(x) = 1; it may be above X
with probability 1 —in which case F/(z) = 0. So, here, the
corresponding value of the p-bound — i.e., the interval of
possible values of F(z) —is F(z) = [0,1].

What if z is in between 1 and 2, e.g., x = 1.67 In
this case, the probability u(z) that x is large is equal to
0.6. Since the function u(x) is increasing, the probability
u(X) that X is large even smaller for X < z. Thus, out
of all large values, values < 0.6 should have a frequency
< 0.6. So, since we know that actual value X is large, we
conclude that the probability F'(z) cannot exceed 0.6.

In general, the value F(z) cannot exceed the probability
u(z), ie., p(z) serves as the upper part F+(z) of the p-

bound. The lower part F~(z) should be 0, because we
may have X so large than it is much larger than 2.
Combining these three cases, we conclude that for in-
creasing membership functions u(z) like “large”, a natu-
ral translation of the membership function is a p-bound
[0, u()]-
Fuzzy properties like “small”. The second type of
membership functions that we will consider is a function
which describes words like “small”, for which p(z) is de-
creasing from 1 at z = 0 to 0 for x — oco. Let us give a
simple example of such function:

fo<z<1,
otherwise

1—2

Hsman (T) = { 0

Suppose that the expert tells us that the actual value of
some quantity X is small. What does it say about the
possible values of the probability F(z) (that X < z) for
different x?

Let us start with a value x > 1. For this value,
tsman () = 0, which means that the value z is definitely
not small. Based on the expert opinion, we only know
that the actual value X is small. All values X which can
be small (i.e., for which u(X) > 0) are below 1, so they
are all below x. Thus, all values of X are below z with
probability 1, and F(z) = 1.

What if z is in between 0 and 1, e.g., z = 0.27 In
this case, the probability u(z) that z is small is equal to
0.8. Hence, the probability that any larger value X > z is
“small” also does not exceed 0.8. This means that if F'(x)
is smaller than 1-0.8 = 0.2 —e.g., equal to 0.1 — then there
will be more than > 0.8 of values which are > z —and thus,
some values X > x cannot be reasonably called small, in
contradiction to the expert’s opinion. So, if the actual
value X is small, the probability F'(z) cannot exceed 0.2.
In general, the value F'(x) cannot be smaller than 1—pu(x),
i.e.,, 1 — p(x) serves as the upper part F~(z) of the p-
bound. The upper part F*(z) should be 1, because we
may have X = 0 with probability 1.

Combining these two cases, we conclude that for in-

creasing membership functions p(x) like “small”, a natu-
ral translation of the membership function is a p-bound
[1 - /L(.'E), 1]'
Fuzzy properties like “around 1”. Finally, we
can consider membership functions describing terms like
“around z¢”, which increase from 0 to 1 until they reach
a certain value zg, and then decrease from 1 to 0. For
such membership functions, possible values (i.e., values for
which the degree u(z) is large enough) are concentrated
around the number zg, that is why such membership func-
tions are called fuzzy numbers.

As an example, we will consider the following function
corresponding to “around 17:

T if0<z<1,
P () = 2—z if1<z<2,
0 otherwise



For a membership function of this type, with a maximum
at some value g, similar arguments lead to the following
p-bound [F~(z), F*(x)]:

— _ 0 ifIL'S.'L'(),

F(x)_{l—,u(a:) if x>z
+ — ,U/(IE) ifﬂ?ﬁ%;
F(@—{l if &> o

In particular, for the above membership function “around
1”7, the corresponding p-bound has the following form:

0 if £ <1,

F(z)=¢ z—1 if1<z<2,
1 if x>2
N oz o ifx <1,
F(@_{l if z>1

These three cases can be described in a way which is simi-
lar to our transformation of measurements into p-bounds.
Indeed, how can we describe a fuzzy set that corresponds
to a certain property like “around 1”7 A natural way to
characterize a fuzzy set is to describe, for every level «,
the set X, = {z|pu(z) > a} of all the values which have
this property with degree at least a. Such sets are called
a-cuts — because on the graph, they really correspond to
horizontal cuts. For example, for the above membership
function “around 1”7, the a-cuts are X, = [, 2 — a.

If we, e.g., have a-cuts Xg.1, Xo.2, etc., corresponding
to a = 0.1, a = 0.2, etc., this means, crudely speaking,
that all experts agree that € Xg, that 90% of them agree
that z € Xo.1, that 80% of experts agree that z € Xg.2,
etc., until we reach we level X¢ g9 in which only 10% of
the experts agree; see, e.g., [13]. So, we have a natural
subdivision of experts into 10 groups: 10% believe that
z is somewhere on the interval X3 1 — and no narrower
bounds are possible; 10% believe that x is somewhere on
the interval Xy 2 — and no narrower bounds are possible,
etc. One can easily see that if we use the above algorithm
to transform this knowledge base into a p-bound, we get
exactly the p-bound that we came up with.

IV. P-BOUNDS AND SECOND-ORDER
FUZZY SETS

In the above text, we assumed that, when we are given
an interval x of possible values of z, we are thus 100%
guaranteed that the actual value x belongs to this given
interval. In reality, often, there is a possibility that z
is outside this interval. For example, the interval x may
come from statistical analysis, when it arises as confidence
interval corresponding to a certain confidence level.

In this case, we know, e.g., that = belongs to x with
confidence 99%. In statistics, the probability of an error
is usually used as a numerical characteristic of confidence;
S0, e.g., the case when 2 € x in 99% of the cases is de-
scribed by confidence level a = 0.01.

In principle, most statistical methods enable us to make
conclusions of different levels of confidence. Therefore,
in addition to the original confidence interval that corre-
sponds to a confidence level a, we can get another con-
fidence level corresponding to a smaller confidence level
o' < a. However, to decrease the confidence level, i.e.,
to increase our belief that the actual (unknown) value x
belongs to the interval x, we must widen the interval. So,
the interval x, correspond to the new confidence level
o/ < a must contain the interval x, corresponding to the
original confidence level a.

To describe uncertainty, it therefore makes sense to keep
not just a single interval corresponding to a single confi-
dence level, but to keep several intervals corresponding to
different confidence levels. In more precise terms, we have
several confidence values 0 < a3 < ... < a, < 1, and
for each of these values, we have intervals x,, which are
nested (i.e., when o; < oy, then x4, D Xq;).

In particular, this conclusion can be applied to intervals
[F~(z), Ft ()] of possible values of CDF F'(z). So, in-
stead of a single p-bound, we get several nested p-bounds
corresponding to different confidence levels. This con-
struction is called a hybrid number; see, e.g., [2]. For every
z, F(z) is a fuzzy set, so a hybrid number is, in effect, a
second-order fuzzy set in the sense of [12].

It is worth reminding here that p-bounds themselves
can be viewed as second-order probability distributions.

V. RESULTS: A BRIEF OVERVIEW

Aggregation problem. In many risk-related situations,
we have several estimates for the same quantity: e.g.,
several measurements and/or several different expert esti-
mates. As aresult of each measurement, we get a p-bound.
It is desirable to aggregate these p-bounds, i.e., to combine
them into a single p-bound.

There are several ways to do that. In many applications
(such as nuclear engineering) in which the error can be
disastrous, it is desirable to be as cautious as possible.
The most cautious way to combine the p-bounds F(z) =
[F~(z), Ft(z)] and G(z) =[G (z),G* (z)] is to consider
CDFs from both p-bounds as possible, and thus, to take
the union F(z) U G(z) of these p-bounds, i.e., a p-bound
[min(F~(z), G~ (z)), max(F* (z), Gt (x))].

In other applications, we may use some averaging tech-
niques instead; see [6] for an overview.

Indirect measurements. In many risk-related applica-
tions, it is difficult (or even impossible) to directly mea-
sure the desired quantity y. Instead, we measure y in-
directly, i.e., we measure some directly measurable quan-
tities z1,...,z, which are related to y in a known way
y = f(x1,...,%,), and then reconstruct y from the re-
sults of measuring z;. So, we know p-bounds for each z;,
and we have some information (maybe none) about the
dependence between z; (e.g., that they are independent,
or that they correlated in a known way, etc.), and we must



estimate a p-bound for y.

When p-bounds are intervals, the resulting p-bound is
also an interval. The problem of computing this interval
is called the problem of interval computations [7, 8]. The
original straightforward approach to solving interval com-
putation problems takes into consideration the fact that
inside a computer, each computation consists of elemen-
tary steps @ like +, —, -, etc.

Therefore, first, for each elementary operation a ®b, we
find out how to perform the corresponding interval oper-
ation, i.e., how to transform intervals a and b of possible
values of operands a and b into an (enclosure for) the in-
terval of possible values of a ® b. Then, we replace each
elementary operation with numbers by the corresponding
interval operation with intervals and thus, get, at the end,
the enclosure for the desired interval y of possible values
of y = f(z1,...,2n,).

A similar approach can be applied to p-bounds. For
p-bounds, the corresponding elementary operations are
summarized in [4, 15].

Future work. In Section II, we have argued that for
decision problems with smooth utility functions, the best
representation is by interval mean and interval variance,
and for decision problems with discontinuous utility func-
tions, the best representation of partial information is a
p-bound. Therefore, ideally, if we want to be able to use
our partial information about the probabilities in all pos-
sible decision problems, we should represent this partial
information by keeping both p-bounds and interval mo-
ments.

One of the ultimate objectives of our research is to be
able to handle such combined data. We are working on it,
but as of now, we only have preliminary results. We also
have only preliminary results for aggregation and indirect
measurement with hybrid numbers,
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