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Abstract— A natural way to test the structural
integrity of a pavement is to send signals with dif-
ferent frequencies through the pavement and com-
pare the results with the signals passing through
an ideal pavement. For this comparison, we must
determine how, for the corresponding mixture, the
elasticity £ depends on the frequency f in the
range from 0.1 to 10° Hz. It is very expensive
to perform measurements in high frequency area
(above 20 Hz). To avoid these measurements, we
can use the fact that for most of these mixtures,
when we change a temperature, the new depen-
dence changes simply by scaling. Thus, instead of
performing expensive measurements for different
frequencies, we can measure the dependence of E
on moderate frequencies f for different tempera-
tures, and then combine the resulting curves into
a single “master” curve. In this paper, we show
how fuzzy techniques can help to automate this
“combination”.

I. INTRODUCTION
A. Practical Problem

Many materials are viscoelastic, i.e., they possess both the
elastic property of a solid and the viscous behavior of the
liquid. Examples of such materials range from asphaltic
concrete mixtures used in road pavement to elastomers
used in aerospace industry.

In many applications of these materials, it is desirable
to use non-destructive techniques to test the structural in-
tegrity and the properties of the corresponding structures.
In these techniques, we send signals to the structure, we
measure the signals that passed through the structure,
and we analyze this detected signal to see if the structure
has any faults. For this analysis, we need to know how,
for the corresponding material, the elasticity £ depends
on the frequency f. To detect different types of faults,
we must know this dependence for the frequency f in the
range from 0.1 to 10° Hz. It is very expensive to perform
measurements in high frequency area above 20 Hz.

To avoid these measurements, we can use the fact that
many practically used viscoelastic materials — including
most asphaltic concrete mixes and many elastomers used
in the aerospace industry — are thermally simple, meaning

that when we change a temperature, the new dependence
changes simply by scaling, i.e.,

Enew(f) = BE(X- ). 1)

Thus, instead of performing expensive measurements
for different frequencies, we can measure the dependence
of E on moderate frequencies f for different temperatures,
and then try to apply appropriate scaling to combine the
resulting curves into a single “master” curve.

To describe frequencies ranging from 0.1 to 10° Hz, re-
searchers usually use logarithmic scale, i.e., they use the
logarithm F' = In(f) instead of f. In the logarithmic scale,
scaling is described as a shift, so the equation (1) takes an
even simpler form:

Enew(F) = E(F+ C), (2)

where ¢ = In(]) is the corresponding shift. In the logarith-
mic scale, the above idea can be reformulated as follows:
we measure the dependence of E on F' for different tem-
peratures, and then shift the resulting curves in horizontal
direction together so that they form a single curve; see,
e.g.,[1,6,7, 8, 22].

This approach has been successfully used; the problem
is that at present, the shifts are done manually by an
expert. It is desirable to automate this process.

B. Fuzzy Methods May Be Helpful

The main reason why there are no automatic shift meth-
ods is that we do not know the exact dependence of the
shift ¢ on the temperature. To determine the correspond-
ing shifts, we rely on the experts — who are unable to
represent their expertise in precise terms. To automate
this problem, it is therefore desirable to use techniques
specifically designed to formalize such expert knowledge —
namely, the techniques of fuzzy logic; see, e.g., [11, 17].

C. We Can Also Use Experience of Referencing Satellite
Images

The problem of determining a shift ¢ between two known
functions E(F) and Enew(F) occurs not only in the anal-
ysis of asphaltic concrete mixtures; a similar problem oc-
curs in the analysis of satellite images. Two satellite im-
ages of the same area often differ by an unknown shift.
There exist automatic methods of determining the cor-
responding shift, i.e., of “referencing” the corresponding



images. In this paper, we will show how these methods can
be used to combine the curves corresponding to different
temperatures.

II. FUZZY-BASED ALGORITHM

A. Fuzzy Analysis

Ideally, it would be great if we could find the value of the
shift ¢ for which, for every value F, Epew(F) is exactly
equal to E(F + ¢). However, due to inevitable noise and
measurement inaccuracies, the two curves are not exactly
the same. All we can hope for is that for every F, the
values Epneow(F) and E(F + ¢) are close to each other, i.e.,

that for every F, the difference e def Enew(F) — E(F +¢)
is small.

We have finitely many measurement results correspond-
ing to different frequencies. Let us denote the total num-
ber of measurement results by K, and the corresponding
differences by e1,...,ex. In these terms, the requirement
for choosing the shift ¢ is that all the differences e; are
small, i.e., that e; is small, es is small, ..., and ex is
small. A natural way to formalize this requirement is to
use fuzzy logic. Let u(x) be a membership function that
describes the natural-language term “small”. Then, our
degree of belief that e; is small is equal to u(e;), our de-
gree of belief that e, is small is equal to u(es), etc. To get
the degree of belief d that all K conditions are satisfied,
we must use a t-norm (a fuzzy analogue of “and”), i.e., use
a formula d = p(e1)& . .. &u(ex), where & is this t-norm.

In [10, 16], it is shown that within an arbitrary ac-
curacy, an arbitrary t-norm can be approximated by a
strictly Archimedean t-norm. Therefore, for all practi-
cal purposes, we can assume that the t-norm that de-
scribes the experts’ reasoning, is strictly Archimedean
and therefore, has the form a&b = ¢~(p(a) + (b))
for some strictly decreasing function ¢ [11, 17]. Thus,
d= o Y o(uler)) + ...+ o(plex))). We want to find the
values of the parameters for which our degree of belief d
(that the model is good) is the largest possible. Since the
function ¢ is strictly decreasing, d attains its maximum if
and only if the auxiliary characteristic D = ¢(d) attains
its minimum. From the formula that describe d, we can
conclude that D = p(u(e1)) + ... + ¢(u(ex)). Thus, the
condition D — min takes the form

Y(er) + ... +¥(ex) — min, 3)

with 9 (z) = ¢(p(z)).

This formula is actively used — as a heuristic formula
— in statistics [9, 20]. This formula — known as an M-
method — is one of the formulas of robust statistics, i.e.,
formulas designed for the case when we do not know the
exact probability distribution.

The above text shows that this heuristic formula can
be justified within fuzzy logic; see, e.g., [12, 14, 15]. This
justification enables us to answer the natural question:
what function ¥(z) should we choose. We should base

this choice on the opinion of the experts. From these
experts, we extract the membership function p(z) that
corresponds to “small”; and the function ¢(z) that best
describes the experts’ “and”.

In particular, if we require that the M-method be invari-
ant relative to rescaling e — X - e, then the only possible
M-methods are methods corresponding to ¢ (z) = |z|P for
some parameter p; see [13] for the exact formulation and
proof. For such function (), the criterion (3) takes the
form

ler|” + ...+ |ex|? = max. 4)

What value p should we choose? Since we are trying to
formalize fuzzy expert knowledge, the value of p is not well
defined: in addition to the original value of p, we can use
nearby values as well. We can use this freedom to select
p for which the resulting computations are the simplest
possible.

Out of all methods (4), the method corresponding to
p = 2 is the simplest, because for p = 2 (i.e., for the least
squares method) the condition that the derivative of the
objective function is equal to 0 becomes a linear equation.
Thus, from the fuzzy logic viewpoint, it is reasonable to
use the least squares method.

B. Towards an Algorithm

Let us transform the above ideas into an algorithm for
finding the shift between the two curves EMW(F) and
E®)(F). Each measurement corresponds to a narrow
range of frequencies. Usually, within a narrow range, the
dependence of E on F' is monotonic. Thus, for every F,
there exists at most one value F; for which E()(F) = E.
Similarly, there exists at most one value Fy for which
E®)(Fy) = E. In the idealized no-noise case, for every F,
the value E®) (F) is exactly equal to E®Y(F +¢). In par-
ticular, for F' = F, we have E = E?)(Fy) = EW(F, +¢).
Since F} is the only value for which E()(Fy) = E, we thus
conclude that F; = F, + ¢. So, in this idealized case, we
can determine c as Fy — Fj.

In reality, the values E®) (F) and E("(F + ¢) are only
approximately equal. Thus, the shift ¢ is only approxi-
mately equal to the difference F» — F;. We can repeat
the same argument for the values Fj(E) and F»(E) cor-
responding to different values E, and get difference esti-
mates Fy(E) — Fy (E) for the desired shift c.

Let Ei,. .., Ex be the values for which we perform these
computations. We want to find a single estimate for the
shift which is close to all these estimates, i.e., for which all
K values e; & ¢ — (F2(E;) — Fi(E;)) are close to 0. The
above argument shows that we must use the least squares
method to determine this value ¢, i.e., that we must find
¢ for which

(c— (F(B1) — Fi(Ev) +...+

(c— (F2(Ek) — F1(Ek)))* = mcin.



Differentiating by ¢ and equating the derivative to 0, we
conclude that

(Fo(Br) — Fi(Ey) + ...+ (F2(Ek) — Fi1(EK))
K )

i.e., that the shift can be estimate as the average horizon-
tal shift between the two curves. Thus, we arrive at the
following algorithm for finding the shift ¢ between the two
curves EM(F) and E?)(F):

¢ We pick several values Ey,...,Ex.

e For each of these values E;, we find the values F; (E;)
and Fy(FE;) for which EN(Fy(E;)) = E® (Fy(E;)) =
E;, and compute the difference ¢; = F5(E;) — F1 (E;).

e Finally, as an estimate ¢ for the shift, we take the

arithmetic average of K values cy,...,cxk.

This methods indeed leads to a reasonable combination of
curves corresponding to different temperatures.

ITII. THE FFT-BASED REFERENCING
ALGORITHM

Many existing referencing methods use Fast Fourier
Transform (FFT). The best of known FFT-based refer-
encing algorithms is presented in [18]; see also [2, 3, 4, 5,
18, 19, 21]. The main ideas behind FFT-based referencing
in general and this algorithm in particular are as follows.

A. The Simplest Case: Shift Detection in the Absence of
Noise

Let us first consider the case when two images differ only
by shift. It is known that if two images I(¥) and I'(%)
differ only by shift, i.e., if I'(Z) = I(Z + @) for some (un-
known) shift @, then their Fourier transforms

) = % : / / I() - e~ 27+ (@9) dzdy,

F'(@) = QL //I'(if) e 2mHED) qpdy,
Y

are related by the following formula:

&4

l

F(&) = > (@D . (). (5)

Therefore, if the images are indeed obtained from each
other by shift, then we have

M'(@) = M(3), (6)
where we denoted
M'(@) = |F'(@)- (M)

The actual value of the shift @ can be obtained if we
use the formula (5) to compute the value of the following
ratio:

F' (@)

R(@) == &R (8)

Substituting (5) into (8), we get
R(u—j) — 627r-i~(u'.5-5f)‘

Therefore, the inverse Fourier transform P(Z) of this ratio
is equal to the delta-function §(Z — @).

In other words, in the ideal no-noise situation, this in-
verse Fourier transform P(Z) is equal to 0 everywhere ex-
cept for the point £ = @; so, from P(ZF), we can easily
determine the desired shift by using the following algo-
rithm:

e first, we apply FFT to the original images I(Z¥) and
I'(#) and compute their Fourier transforms F(w) and
F(w);

e on the second step, we compute the ratio (8);

e on the third step, we apply the inverse FF'T to the
ratio R(J) and compute its inverse Fourier transform
P(Z);

e finally, on the fourth step, we determine the desired
shift @ as the only value @ for which P(a) # 0.

B. Shift Detection in the Presence of Noise

In the ideal case, the absolute value of the ratio (8) is
equal to 1. In real life, the measured intensity values have
some noise in them. For example, the conditions may
slightly change from one overflight to another, which can
be represented as the fact that a “noise” was added to the
actual image.

In the presence of noise, the observed values of the in-
tensities may differ from the actual values; as a result,
their Fourier transforms also differ from the values and
hence, the absolute value of the ratio (8) may be different
from 1.

We can somewhat improve the accuracy of this method
if, instead of simply processing the measurement results,
we take into consideration the additional knowledge that
the absolute value of the actual ratio (8) is exactly equal
to 1. Let us see how this can be done.

Let us denote the actual (unknown) value of the value
¢2™1(@@) by . Then, in the absence of noise, the equation
(5) takes the form

F (@) =r - F(). 9)

In the presence of noise, the computed values F (&) and
F'(&) of the Fourier transforms can be slightly different
from the actual values, and therefore, the equality (9) is
only approximately true:

F (@) =r FD). (10)

In addition to the equation (10), we know that the abso-
lute value of r is equal to 1, i.e., that

(11)

Ir> =r-r* =1,

where r* denotes a complex conjugate to r.
As a result, we know two things about the unknown
value r:



o that r satisfies the approximate equation (10), and
o that r satisfies the additional constraint (11).

We would like to get the best estimate for r among all es-
timates which satisfy the condition (11). We have already
argued that to get the optimal estimate, we can use the
Least Squares Method (LSM). According to this method,
for each estimate r, we define the error
E=F@) -r -F&) (12)
with which the condition (10) is satisfied. Then, we find
among all estimates which satisfy the additional condition
(11), a value r for which the square |E|? = E - E* of this
error is the smallest possible.
The square |E|? of the error E can be reformulated as
follows:

(F(&) -7 F (@)
(F* @) —r - FH@)) =
FU(@) - F* (@) —r* - F* (@) - F'(&)—
roF@) - FU@) +ror - F(@) - FH@). (13)
We need to minimize this expression under the condition

(11).

For conditional minimization, there is a known tech-
nique of Lagrange multipliers, according to which the min-
imum of a function f(z) under the condition g(z) = 0 is
attained when for some real number A, the auxiliary func-
tion f(z) + A - g(z) attains its unconditional minimum;
this value A is called a Lagrange multiplier.

For our problem, the Lagrange multiplier technique
leads to the following unconditional minimization prob-
lem:

FI(@) - F* (@) —r* - F*XD) - FI(D)—
r-F(&) - FH@) +r-r* - F@) FH(&)+

A-(r-r*=1) > min. (14)

We want to find the value of the complex variable r for
which this expression takes the smallest possible value. A
complex variable is, in effect, a pair of two real variables,
so the minimum can be found as a point at which the
partial derivatives with respect to each of these variables
are both equal to 0. Alternatively, we can represent this
equality by computing the partial derivative of the ex-
pression (14) relative to r and r*. If we differentiate (14)
relative to r*, we get the following linear equation:

_F@) - F@) + 1 F@) - F@)+

A-r=0. (15)
From this equation, we conclude that
F (@) - 7' (@)
= 16
"TF@-F@) (16)

The coefficient A can be now determined from the condi-
tion that the resulting value r should satisfy the equation
(11). The denominator F (&) - F*(&) + A of the equation
(16) is a real number, so instead of finding A, it is sufficient
to find a value of this denominator for which |r|? = 1. One
can eagsily see that to achieve this goal, we should take, as
this denominator, the absolute value of the numerator,
i.e., the value

|7*(@) - F'(@)] = |7 @)] - |F'(@)]. (17)
For this choice of a denominator, the formula (15) takes
the following final form:

@) F@)
|7*(@)] - [F(@)]
So, in the presence of noise, instead of using the exact

ratio (8), we should compute, for every &, the optimal
approximation

(18)

* (7 (%
R@) = DT
|F*(@)] - |F(@)]
In the ideal non-noise case, the inverse Fourier trans-
form P(Z) of this ratio is equal to the delta-function
0(% — @), i.e., equal to 0 everywhere except for the point
Z = d. In the presence of noise, we expect the values of
P(Z) to be slightly different from the delta-function, but
still, the value |P(@)| should be much larger than all the
other values of this function. So, we arrive at the following
algorithm for determining the shift a:

(19)

e first, we apply FFT to the original images I(Z¥) and
I'(%) and compute their Fourier transforms F(w) and
Fl(w);

e on the second step, we compute the ratio (19);

e on the third step, we apply the inverse FF'T to the
ratio R(&J) and compute its inverse Fourier transform
P(Z);

e finally, on the fourth step, we determine the desired
shift @ as the point for which |P(Z)| takes the largest
possible value.

C. Application to Pavement Analysis

We have applied the above referencing algorithm to pave-
ment analysis, and it indeed leads to a automatic gen-
eration of high-quality combined master curve, a master
curve which is comparable with the good manual combi-
nation by a skilled expert.
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