Are There Easy-to-Check Necessary and
Sufficient Conditions for Straightforward Interval
Computations To Be Exact?

Vladik Kreinovich!, Luc Longpré!, and James J. Buckley?

'Department of Computer Science, U. of Texas at El Paso
El Paso, TX 79968, USA, {vladik,longpre}@cs.utep.edu
2Mathematics Department, U. of Alabama at Birmingham
Birmingham, AL 35294-1170, USA, buckley@math.uab.edu

Abstract

We prove that no “efficient” (easy-to-check) necessary and sufficient
conditions are possible for checking whether straightforward interval com-
putations lead to the exact result.

One of the main problems of interval computations. One of the main
problems of interval computations is to find a range of a given function on given

intervals. To be more precise, the problem is: given n input intervals x3,...,x,
and an algorithm f(z1,...,2,) that transforms n real numbers z1,...,z, into
a real number y = f(z1,...,z,), find the range

y=f(x1,---,%Xn) ={f(z1,..-,Zn) | T1 €X1,...,Tn € Xp}.

Usually, the endpoints of the intervals x; come from measurements, and mea-
surement usually produces rational numbers, so we can assume that the intervals
x; have rational endpoints. If we cannot compute the exact range, we can at
least try to find an enclosure Y D y for the range.

Straightforward interval computations: its advantages and draw-
backs. Historically the first method for computing the enclosure for the range is
the method which is sometimes called “straightforward” interval computations.
This method is based on the fact that inside the computer, every algorithm con-
sists of elementary operations (arithmetic operations, min, max, etc.). For each
elementary operation f(z,y), if we know the intervals x and y for = and y, we
can compute the exact range f(x,y). The corresponding formulas form the so-
called interval arithmetic. In straightforward interval computations, we repeat
the computations forming the program f step-by-step, replacing each operation

with real numbers by the corresponding operation of interval arithmetic. It is
known that, as a result, we get an enclosure for the desired range.

In some important cases, the enclosure obtained by using straightforward
interval computations is actually the exact range. There are several sufficient
conditions for straightforward interval computations to be exact: e.g., it is exact
when f(z1,...,z,) is an explicit expression in which each variable occurs only
once; another condition is given in [4].

However, there are known cases when the resulting enclosure is much wider
than the actual range. For example, for the expression f(z1,z2) = 21 + 71 - T2,
straightforward interval computations are exact when z, > 0 and not exact
when, e.g., x; = [z1,%1] is a non-degenerate interval and x, = [-1,—-1]. In-
deed, in the second case, f(z1,22) = 0, so we have a 1-point range [0, 0], but
straightforward interval computations result in [z, — T1,%1 — 24]-

More sophisticated methods and the first methodological question.
Several methods have been proposed to reduce the excess width: centered form,
bisection, monotonicity check, etc. Some methods — like Hansen’s generalized
interval arithmetic [3] — decrease the excess width by taking into account depen-
dence between interval variables; in these methods, the range of z; + z1 - (—1)
is correctly computed as [0, 0].

FEach new method improves the enclosures, often reducing the enclosure to
the exact range, but for each known method, there are cases when this method
still leads to excess width.

In such situations, when many methods have been proposed and none of
them is perfect, a natural question is: Is a perfect method — that would always
return the exact range in reasonable time — possible at all? This methodological
question is important for algorithm designers:

e If a perfect method is possible, then it is reasonable to spend some time
looking for it.

e On the other hand, if such a method is not possible at all, then looking for
a perfect method would be a waste of time — like looking for a solution-
in-radicals of a general fifth order algebraic equation or for a ruler-and-
compass angle trisection.

If no general perfect method is possible, then, instead of wasting time looking
for such a method, we should look either for classes of functions and/or domains
for which it is possible to compute the exact range, or for algorithms that still
lead to excess width, but produce better interval estimates than the existing
ones.

A (known) answer to the first methodological question. For interval
computations, this important methodological question was answered in 1981,
when Gaganov proved [1, 2] that the problem of computing the range is NP-
hard (see, e.g., [5] and references therein).

Crudely speaking, NP-hard means that there are no general ways for solving
this problem (i.e., computing the exact range) in reasonable time. (As an aside,
it is possible to compute the range exactly in time that increases exponentially
with n [5].) Of course, every NP-hard problem has easier-to-solve subclasses,
and the problem of range estimation is no exception: as we have mentioned,
there are several important classes of functions for which we can compute the
exact range in reasonable time. However, the NP-hardness result means that
when we design a general range estimation algorithm, we can, in general, only
compute enclosures for the desired range.

Maybe the difficulty comes from the requirement that the range be computed
exactly? In practice, it is often sufficient to compute, in a reasonable amount
of time, usefully accurate bounds for y, i.e., bounds which are accurate within
a given accuracy € > 0. Alas, for any ¢, such computations are also NP-hard.

This NP-hardness is not so bad from a practical viewpoint as it may sound.
For example, in [5], we analyzed “in what sense” the computation is NP-hard:
with respect to the dimension n or to the number of operations?

e We showed that the problem remains NP-hard if we only consider
quadratic functions of the arbitrary number of variables — so it is, in this
sense, “NP-hard with respect to the dimension n”.

e However, if we fix the dimension, then it is already possible to have a
polynomial-time (feasible) algorithm for exact range estimation — i.e., the
problem is not “NP-hard with respect to the number of operations”.

Since in many practical problems, dimensionality n is reasonably small, we have
a lot of practical problems for which a feasible algorithm is possible.

Second methodological question. When we use an algorithm - e.g.,
straightforward interval computations — to estimate the range, we know that
the result may contain excess width. But does it? Can we efficiently check
whether straightforward interval computations are exact?

As we have mentioned, there are many important sufficient conditions un-
der which straightforward interval computations produce an exact range. New
better sufficient conditions are being discovered. However, none of the known
conditions is necessary, because for each of these conditions, there are cases not
covered by this condition in which the results are nevertheless exact.

Again, we have a natural question: are perfect (i.e., necessary, sufficient,
and easy to check) conditions possible at all? If they are possible, then it is
reasonable to spend some time looking for them. If such conditions are not
possible, then looking for such perfect conditions would be a useless waste of
time.

Our answer to this question. Let us consider algorithms f(z1,...,z,) that
consist only of the operations +, —, -, min, and max.

Theorem. The problem of checking whether for a given algorithm f(z1,...,Zy)
and given intervals X1, ..., Xy, straightforward interval computations are exact,
is NP-hard.

Proof. In the proof of Theorem 3.1 from [5], we have shown that a known
NP-hard problem — checking satisfiability of a 3-CNF propositional formula F'
— can be reduced to checking whether for an appropriate quadratic polynomial
f, the lower endpoint y of the range y is y = 0 (if F is satisfiable) or y > 0.09
(if F is not satisfiable). Let us describe this reduction in detail and show how
it can be modified to prove our result.

1°. Propositional satisfiability problem for 3—CNF formulas (also known as 3-
SAT) was historically the NP-complete problem proved to be NP-complete.

This problem consists of the following: Suppose that an integer v is fixed, and
a formula F' of the type F1& Fa& ... & F}, is given, where each of the expressions
Fj has the formaVvbor aVbVe, and a,b,c are either the variables z1, ..., 2,
or their negations —z1,..., -z, (these a,b, ¢, ... are called literals).

For example, we can take a formula (21 V —29)& (=21 V 22 V —23).

If we assign arbitrary Boolean values (“true” or “false”) to v variables 21, .. ., 2,
then, applying the standard logical rules, we get the truth value of F. A formula
F is called satisfiable if there exist truth values 2y, ..., 2, for which the truth
value of the expression F' is “true”. (In the computer, usually, “true” is repre-
sented as 1, and “false” as 0.) The 3-SAT problem is: given F, check whether
it is satisfiable.

2°. Let us show how this 3-SAT problem can be reduced to the problem of
computing the range of a quadratic polynomial. Specifically, for each 3-CNF

formula F' = F1&...&F}, with the Boolean variables z1, ..., z,, we will build

a quadratic function fF(zy,...,z,) with n © otk (real-valued) variables

T1,...,Ty,; for clarity, we will use notations p; for x,y1, ps for z,42, ..., and
pr, for 2,4 1. The construction of f¥ is as follows:

e To each propositional variable z;, we put into correspondence a real-
number variable f* = x;.

e To each negative literal —z;, we put into correspondence a linear expression
fF=1—u2
i

o To each expression Fj; of the type a V b, we put into correspondence the
expression ffi = (f* + f® + p; — 2)2. Since f* and f° are linear in the
variables z;, the resulting expression is quadratic in z; and p;.

o To each expression Fj of the type a V bV ¢, we put into correspondence
the expression % = (f* + f° + f¢+ 2p; — 3)%. The resulting expression
is quadratic in z; and p;.

e To the formula F', we put into correspondence the quadratic function

k

v
f(mla"'amvapla"wpk) :Zml(l_xl)+ZfF]
i=1

j=1
Ezample. Let us take F' = (21 V 22 V 23)&(21&—22). For this formula, v = 2,
k = 2, so, we need v + k = 4 real-number variables z1, x2, p1, and p2. Here:

o f7*2 =1 —g,.

o fF= (21 422+ 23+ 2p1 — 3)°.

o 2= (z14+ (1 —x2) +p2 —2)2.

o fF(z1,20,p1,p2) =21 - (1 —21) + 20 - (1 —x2) + f51 + fF2.

We choose x; = p; = [0,1], and estimate the lower and the upper endpoints
y and ¥ of the range of the function fF on the corresponding box:

_q def
y= [gvy] = fF(xlv-"axvvpl:"'apk)'

3°. Before we start estimating y and 7, let us notice that f¥i is defined as
a square, and therefore, f¥i > 0. Also, if z; € [0,1], then z;(1 — z;) > 0.
Therefore, the function f¥ is a sum of non-negative numbers and is, thus, non-
negative. Hence, y > 0.

4°. Let us show that if the formula F' is satisfiable, then y = 0.

Indeed, if the formula F' is satisfiable, i.e., it is true for some propositional
vector z1,...,2,, then we take x; = z; (i.e., x; = 1 if z; =“true” and z; = 0 if
z; =“false”). The values of p; are chosen as follows:

o If F; =a Vb, and both a and b are true for z;, then we take p; = 0.

o If F; = a Vb, and only one of the literals a and b is true for a given choice
of z;, then we take p; = 1.

o If F; =aVbVc, and all three literals are true, then p; = 0.
o If F; =aVbVc, and two out of three literals are true, then p; = 0.5.

o If F; =aVbVc, and only one of the three literals is true, then p; = 1.

In all five cases, ff% = 0 for all j. Therefore, for these z; and Dj,
fE(x1, .., Zn,p1,-- ., k) = 0; hence, y = min f¥ < 0. Since we know that
y > 0, we conclude that y = 0.

5°. Let us show that if the formula F' is not satisfiable, then y > 0.09.

We will prove this statement by reduction to a contradiction: we will assume
that y < 0.09, and conclude that F' is satisfiable. The minimum of a continuous
function of a compact [0, 1]**2* is always attained; therefore, there exist values
z; and pj, for which f¥(z1,...,2y,p1,...,pr) = y < 0.09. Since f¥ is defined
as the sum of non-negative terms x; - (1 — ;) and ff, from this inequality, it
follows that each of these terms is < 0.09.

In particular, it follows that z; - (1 — z;) < 0.09. The function z - (1 — z) is
increasing for z < 0.5 and decreasing afterwards. So, from z; - (1 — z;) < 0.09
and from the fact that 0.1-(1 —0.1) = 0.9- (1 — 0.9) = 0.09, it follows that
z; < 0.1 or z; > 0.9 for all 4. Let us take z; =“true” if x; > 0.9, and z; =“false”
if ; < 0.1, and let us show that these propositional values make the formula F'
true (i.e., they make all the expressions Fj true). Indeed:

e If F; = aV b, then from fFi = (f*+ f° + p; — 2)? < 0.09, it follows that
f“+fb+p]- —2>—0.3,and fo+ f* > 1.7 —p;. Since p; < 1, we conclude
that f2+ f* > 0.7. Therefore, the values f® and f° cannot be both < 0.1.
Therefore, one of these two values is > 0.9. The corresponding literal is
equal to “true”, and hence, Fj is true.

o If F; =aVbVec, then from ff = (f*+ fo + f¢+ 2p; — 3)? < 0.09, it
follows that f*+ f*+ f¢+2p; —3 > —0.3, and f°+ f* + f¢ > 2.7 - 2p,.
Since p; < 1, we conclude that f* + f° + f¢ > 0.7. Therefore, the values
f®, f°, and f¢ cannot be all < 0.1. Therefore, one of these three values is
> 0.9. The corresponding literal is equal to “true”, and hence, Fj is true.

So, F is satisfiable. The contradiction with our assumption that F' is not satis-
fiable proves that, under this assumption, the inequality y < 0.09 is not possible
and thus, under this assumption, we have y > 0.09.

6°. Let us now show that the upper endpoint 7 of the range y of the function
fF is always > 0.25.

Indeed, forzy =... =z, =p1 = ... = pr = 0.5, we have z1 - (1—z1) = 0.25.
Since the function f¥ is the sum of non-negative terms including z; - (1 —x1), we
can conclude that f¥(z1,...,%y,p1,-..,pk) > 0.25 and therefore, that 7 > 0.25.

7°. Let us now consider, for every 3-CNF formula F', a new function

(@1, .. 20) % max(0.04, min(fF (a1, .., 2n),0.25)).

This is the function whose range yo = [y, %] on the box [0,1] x ... x [0,1] we
will be estimating. Let us show that:

e if the original formula F is satisfiable, then the actual range yo of the
function f{ is equal to [0.04,0.25]; and

o if the original formula F' is not satisfiable, then the actual range yg of the

function ff is equal to [z,0.25] for some value z > 0.09.

7.1°. Let us first show that for every formula F', we have y, < 0.25.

Indeed, by definition of min, we have min(f% (z1,...,2x),0.25) < 0.25. Since
the function max is non-decreasing in both arguments, we can conclude that

&y, .., 2n) = max(0.04, min(f¥ (21,...,2,),0.25)) <

max(0.04,0.25) = 0.25.

Since all the values of the function fI' are < 0.25, its maximum also cannot
exceed 0.25, i.e., gy < 0.25.

7.2°. Let us now show that for every formula F', we have g, = 0.25.

In view of Part 7.1 of this proof, it is sufficient to prove that there exist
values 1, . .., x, for which ff'(z1,...,7,) = 0.25. Indeed, as we have shown in
Part 6 of the proof, for z; = ... = z,, = 0.5, we have f¥(zy,...,2,) > 0.25.
For these values, min(f¥ (zy,...,z,),0.25) = 0.25, and therefore,

S (x1,...,2n) = max(0.04, min(f¥ (z1,...,2,),0.25)) =

max(0.04, 0.25) = 0.25.

7.3°. Let us show that for every formula F', we have y > min(y, 0.25).

Indeed, by definition of y, for all z;, we have (1, ., z0) > y. Since the
function min is non-decreasing in each variable, we conclude that

min(f* (21, ...,2,),0.25) > min(y, 0.25).
Since max(a,b) > b, we can conclude that

fo (@1,...,2,) = max(0.04, min(f* (21, ..., 2n),0.25)) > min(y, 0.25).

7.4°. As a corollary of Part 7.3, we conclude that for non-satisfiable formulas,
for which y > 0.09, we get z % y_ > min(y,0.25) > min(0.09, 0.25) = 0.09.

7.5°. To complete the proof of Part 7, we must show that for satisfiable formulas
F', we have Yy = 0.04.

Let us first prove that Yy 2 0.04. Indeed, by definition of the function f{,
we have f&(z1,...,2,) = max(0.04,...) > 0.04. Since all the values of the
function f§ are > 0.04, its minimum also cannot be smaller than 0.04, i.e.,
Yy, = 0.04.

To complete the proof, we must show that the function f& actually attains
the value 0.04. Indeed, in Part 4 of this proof, we have shown that if a formula
F is satisfiable, then there exist values z1,...,x, for which f¥(z1,...,z,) = 0.
For these values,

& (x1,...,2n) = max(0.04, min(f¥ (z1,...,2,),0.25)) =

max(0.04, min(0, 0.25)) = max(0.04,0) = 0.04.
The statement is proven.

8°. Let us now analyze the result of applying straightforward interval compu-
tations to the function f§. We will denote this result by Yo = [V, Yo].

The interval Yy is an enclosure for the actual range yg, i-e., yo C Yg. This
means that Y, <y and g, < Y.

We have shown, in Part 7 of this proof, that 7, = 0.25, therefore, we have
0.25<Y,.

9°. Let us show that for every formula F', for the corresponding function fE,
we have Y; > 0.04 and Y = 0.25.

9.1°. Let us first show that Y, > 0.04.

Indeed, we have defined ff' as max(0.04,g(1,...,2,)), where

g(x1, -, Tn) def min(0.25, f¥ (zy,...,z,)).

If we represent the algorithm for computing f&" as a sequence of elementary op-
erations, then the last operation will be min applied to 0.04 and g(z1,...,2,).
In straightforward interval computations, we replace each elementary opera-
tion with real number by the corresponding operation of interval arithmetic.
Therefore, the range Y is obtained as follows:

o first, we make this replacement for all the elementary operations involved
in computing the function g(z1,...,%,); as a result, we get an enclosure
G =[G, G] for the range g of the function g(z1,...,z,);

e then, we apply the interval analogue of max to the degenerate interval
[0.04,0.04] and the interval G: Yo = max([0.04,0.04], G).

The interval analogue of max is well-known:

max([a,], [b, B]) = [max(a, b), max(@, b)].

Thus, we have Y, = max(0.04,G) hence Y, > 0.04.
9.2°. Let us now show that Yy = 0.25.

Indeed, we have defined f& as max(0.04, min(0.25, f¥(z1,...,z,))). If we
represent the algorithm for computing f&" as a sequence of elementary opera-
tions, then the last two operations will be:

e min applied to 0.25 and f¥(z1,...,2,); and

e max applied to 0.04 and g(z1,...,T,) ef min(0.25, f¥(z1,...,2,)).

In straightforward interval computations, we replace each elementary opera-
tion with real numbers by the corresponding operation of interval arithmetic.
Therefore, the range Yy is obtained as follows:

o first, we make this replacement for all the elementary operations involved
in computing the function fF(x1,...,z,); as a result, we get an enclosure
Y = [V, Y] for the range y of the function f¥(z1,...,2,);

e then, we apply the interval analogue of min to the degenerate interval
[0.25,0.25] and the interval Y: G = min([0.25,0.25],Y).

e finally, we apply the interval analogue of max to the degenerate interval
[0.04,0.04] and the interval G: Yy = max([0.04,0.04], G).

We have already used the interval analogue of max; the interval analogue of min
is similar: ~ ~
min([a, @], [b, b]) = [min(g, b), min(a, b)]-

Thus, we have G = min(0.25,Y) — hence G < 0.25 — and then Y, =
max(0.04, G).
Since 0.04 < 0.25 and G < 0.25, we conclude that Yy = max(0.04,G) < 0.25.
We have shown, in Part 8 of this proof, that Y > 0.25, so we can conclude
that Yo = 0.25.

10°. Let us now summarize what we have proven. We have shown that the
actual range yo = [y), o] of the function f{" has the following properties:

o if the formula F is satisfiable, then yo = [0.04,0.25];
o if the formula F is not satisfiable, then yo = [2,0.25] for some z > 0.09.

We have also shown that the result Yo = [V, Y] of applying straightforward
interval computations to the function f&' has the following properties:

° ?0 = 025,
¢ 0.04<Y, <y,

From these properties, we can conclude that for every formula F, for the corre-
sponding function f', both the upper endpoint ¥, for the actual range and the
upper endpoint Y for the enclosure are equal to 0.25 — and thus, equal to each
other.

Thus, if we could check whether straightforward interval computations are
exact, i.e., whether Yog = yg, we could thus check whether F is satisfiable:

e If Yo > 0.04, this means (due to y, > Y,) that y) > 0.04, hence the
formula F is not satisfiable.

o If Y, = 0.04 and the result of straightforward interval computations is
exact, then Yy = 0.04 hence F is satisfiable.

o If Y, = 0.04 and the result of straightforward interval computations is not
exact, then, since the upper endpoints are equal, the only possibility of
not exactness is y, # Y,. Since we always have Yy = Y, this inequality
means that Yy > Y, = 0.04, and so the propositional formula F' is not
satisfiable.

This reduction to a known NP-hard problem proves that our problem is NP-hard
as well. The theorem is proven.

Comment. A similar result holds if we allow division as well.

Practical conclusions. In other words, no feasible necessary and sufficient
conditions are possible for checking whether the estimate obtained by using
straightforward computations is exact. As a result, instead of trying to find
such conditions, we should fully concentrate on identifying classes of functions
(or functions and box values) for which straightforward computations lead to the
exact range. For example, it is known that for the Gauss elimination algorithm,
under certain conditions, we get the exact intervals for the solution; it is also
known that completing the square of any quadratic function of one variable can
be used to compute its exact range. Finding more cases like that is worth the
effort.

Mathematical comment. This result easily implies that the exact computation
of the range is NP-hard, but we know of no easy way to deduce our new result
from the NP-hardness of interval computations. In this sense, our new result is
stronger than the known result that computing the range is NP-hard.

Related open problems. As we have mentioned, in practice, it is usually
sufficient to compute the range within a given accuracy €. How difficult is it to
check whether for a given algorithm f(zy,...,z,) and given intervals x1, . .., Xy,
straightforward interval computations are accurate within the given accuracy?
We think that this problem is NP-hard, but we could not prove it.

What if we consider other methods — such as centered form? Again, we
could not prove it either way.

10

Acknowledgments. This work was supported in part by NASA grants NCC5-
209 and NCC 2-1232, by NSF grants CDA-9522207, EAR-0112968, EAR-
0225670, and 9710940 Mexico/Conacyt, by AFOSR grant F49620-00-1-0365,
and by IEEE/ACM SC2001 and SC2002 Minority Serving Institutions Partici-
pation Grants.

The authors are thankful to Eldon Hansen, Weldon A. Lodwick, Bill Walster,
and to the anonymous referees for fruitful discussions.

References

[1] A. A. Gaganov, Computational complexity of the range of the polynomial
in several variables, Leningrad University, Math. Department, M.S. Thesis,
1981 (in Russian).

[2] A. A. Gaganov, “Computational complexity of the range of the polynomial
in several variables”, Cybernetics, 1985, pp. 418-421.

[3] E. R. Hansen, “A generalized interval arithmetic”, In: K. Nickel (ed.), Inter-
val mathematics, Springer Lecture Notes in Computer Science, 1975, Vol. 29,
pp. 7-18.

[4] E. Hansen, “Sharpness in interval computations”, Reliable Computing, 1997,
Vol. 3, pp. 7-29.

[5] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational complezity
and feasibility of data processing and interval computations, Kluwer, Dor-
drecht, 1997.

11

