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Abstract

In this paper, we start research into using intervals to bound the im-
pact of bounded measurement errors on the computation of bounds on
finite population parameters (“descriptive statistics”). Specifically, we
provide a feasible (quadratic time) algorithm for computing the lower
bound σ2 on the finite population variance function of interval data. We
prove that the problem of computing the upper bound σ2 is, in general,
NP-hard. We provide a feasible algorithm that computes σ2 under rea-
sonable easily verifiable conditions, and provide preliminary results on
computing other functions of finite populations.

1 Introduction

1.1 Formulation of the Problem

When we have n measurement results x1, . . . , xn, traditional data processing
techniques start with with computing such population parameters (“descriptive
statistics”) f(x) def= f(x1, . . . , xn) as their finite population average

µ
def=

x1 + . . . + xn

n

and their finite population variance

σ2 def=
(x1 − µ)2 + . . . + (xn − µ)2

n
(1.1)

(or, equivalently, the finite population standard deviation σ =
√

σ2); see, e.g.,
[14].
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In some practical situations, we only have intervals xi = [xi, xi] of possible
values of xi. This happens, for example, if instead of observing the actual value
xi of the random variable, we observe the value x̃i measured by an instrument
with a known upper bound ∆i on the measurement error. In other words, we
are assuming that

xi = x̃i + ∆i · [−1, 1],

where the measurement error bounds ∆i · [−1, 1] are assumed to be known.
Then, the actual (unknown) value of each measured quantity xi is within the
interval xi = [x̃i −∆i, x̃i + ∆i].

In these situations, for each population parameter y = f(x1, . . . , xn), we can
only determine the set of possible values of y:

y = {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn.}
For population parameters described by continuous functions f(x1, . . . , xn), this
set is an interval. In particular, the sets of possible values of µ and σ2 are also
intervals. The interval µ for the finite population average can be obtained by
using straightforward interval computations, i.e., by replacing each elementary
operation with numbers by the corresponding operation of interval arithmetic:

µ =
x1 + . . . + xn

n
. (1.2)

What is the interval [σ2, σ2] of possible values for finite population variance σ2?
When all the intervals xi intersect, then it is possible that all the actual

(unknown) values xi ∈ xi are the same and hence, that the finite population
variance is 0. In other words, if the intervals have a non-empty intersection,
then σ2 = 0. Conversely, if the intersection of xi is empty, then σ2 cannot be 0,
hence σ2 > 0. The question is (see, e.g., [18]): What is the total set of possible
values of σ2 when the above intersection is empty?

The practical importance of this question was emphasized, e.g., in [10, 11]
on the example of processing geophysical data.

A similar question can (and will) be asked not only about the finite popula-
tion variance, but also about other finite population parameters.

1.2 For this Problem, Traditional Interval Methods Some-
times Lead to Excess Width

Let us show that for this problem, traditional interval methods sometimes lead
to excess width.

1.2.1 Straightforward Interval Computations

Historically the first method for computing the enclosure for the range is the
method which is sometimes called “straightforward” interval computations.
This method is based on the fact that inside the computer, every algorithm
consists of elementary operations (arithmetic operations, min, max, etc.). For
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each elementary operation f(a, b), if we know the intervals a and b for a and
b, we can compute the exact range f(a,b). The corresponding formulas form
the so-called interval arithmetic. In straightforward interval computations, we
repeat the computations forming the program f step-by-step, replacing each op-
eration with real numbers by the corresponding operation of interval arithmetic.
It is known that, as a result, we get an enclosure for the desired range.

For the problem of computing the range of finite population average, as we
have mentioned, straightforward interval computations lead to exact bounds.
The reason: in the above formula for µ, each interval variable only occurs once
[6].

For the problem of computing the range of finite population variance, the sit-
uation is somewhat more difficult, because in the expression (1.1), each variable
xi occurs several times: explicitly, in (xi − µ)2, and explicitly, in the expres-
sion for µ. In this cases, often, dependence between intermediate computation
results leads to excess width of the results of straightforward interval computa-
tions. Not surprisingly, we do get excess width when applying straightforward
interval computations to the formula (1.1).

For example, for x1 = x2 = [0, 1], the actual σ2 = (x1 − x2)2/4 and hence,
the actual range σ2 = [0, 0.25]. On the other hand, µ = [0, 1], hence

(x1 − µ)2 + (x2 − µ)2

2
= [0, 1] ⊃ [0, 0.25].

It is worth mentioning that there are other formulas one can use to compute
the variance of a finite population: e.g., the formula

σ2 =
1
n

n∑

i=1

x2
i − µ2.

In this formula too, each variable xi occurs several times, as a result of which
we get excess width: for x1 = x2 = [0, 1], we get µ = [0, 1] and

x2
1 + x2

2

2
− µ2 = [−1, 1] ⊃ [0, 0.25].

Unless there is a general formula for computing the variance of a finite pop-
ulation in which each interval variable only occurs once, then without using a
numerical algorithm (as contrasted with am analytical expression), it is proba-
bly not possible to avoid excess interval width caused by dependence. The fact
that we prove that the problem of computing of computing the exact bound
for the finite population variance is computationally difficult (in precise terms,
NP-hard) makes us believe that no such formula for finite population variance
is possible.
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1.2.2 Centered Form

A better range is often provided by a centered form, in which a range
f(x1, . . . ,xn) of a smooth function on a box x1 × . . .× xn is estimated as

f(x1, . . . ,xn) ⊆ f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi
(x1, . . . ,xn) · [−∆i,∆i],

where x̃i = (xi + xi)/2 is the interval’s midpoint and ∆i = (xi − xi)/2 is its
half-width.

When all the intervals are the same, e.g., when xi = [0, 1], the centered form
does not lead to the desired range. Indeed, the centered form always produced
an interval centered in the point f(x̃1, . . . , x̃n). In this case, all midpoints x̃i are
the same (e.g., equal to 0.5), hence the finite population variance f(x̃1, . . . , x̃n)
is equal to 0 on these midpoints. Thus, as a result of applying the centered
form, we get an interval centered at 0, i.e., the interval whose lower endpoint
is negative. In reality, σ2 is always non-negative, so negative values of σ2 are
impossible.

The upper endpoint produced by the centered form is also different from
the upper endpoint of the actual range: e.g., for x1 = x2 = [0, 1], we have
∂f
∂x1

(x1, x2) = (x1 − x2)/2, hence

∂f

∂x1
(x1,x2) =

x1 − x2

2
= [−0.5, 0.5].

A similar formula holds for the derivative with respect to x2. Since ∆i = 0, 5,
the centered form leads to:

f(x1, . . . ,xn) ⊆ 0 + [−0.5, 0.5] · [−0.5, 0.5] + [−0.5, 0.5] · [−0.5, 0.5] = [−0.5, 0.5]

– an excess width in comparison with the actual range [0, 0.25].

1.3 For this Problem, Traditional Optimization Methods
Sometimes Require Unreasonably Long Time

A natural way to solve the problem of computing the exact range [σ2, σ2] of the
finite population variance is to solve it as a constrained optimization problem.
Specifically, to find σ2, we must find the minimum of the function (1.1) under
the conditions x1 ≤ x1 ≤ x1, . . . , xn ≤ xn ≤ xn. Similarly, to find σ2, we must
find the maximum of the function (1.1) under the same conditions.

There exist optimization techniques that lead to computing “sharp” (exact)
values of min(f(x)) and max(f(x)). For example, there is a method described
in [7] (and effectively implemented). However, the behavior of such general con-
strained optimization algorithms is not easily predictable, and can, in general,
be exponential in n.

For small n, this is quite doable, but for large n, the exponential computation
time grows so fast that for reasonable n, it becomes unrealistically large: e.g.,
for n ≈ 300, it becomes larger than the lifetime of the Universe.
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1.4 We Need New Methods

Summarizing: the existing methods are either not always efficient, or do not
always provide us with sharp estimates for σ2 and σ2. So, we need new methods.

In this paper, we describe several new methods for computing the variance
of the finite population, and start analyzing the problem of computing other
population parameters over interval data.

2 First Result: Computing σ2

First, we design a feasible algorithm for computing the exact lower bound σ2 of
the finite population variance. Specifically, our algorithm is quadratic-time, i.e.,
it requires O(n2) computational steps (arithmetic operations or comparisons)
for n interval data points xi = [xi, xi].

The algorithm A is as follows:

• First, we sort all 2n values xi, xi into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n).

• Second, we compute µ and µ and select all “small intervals” [x(k), x(k+1)]
that intersect with [µ, µ].

• For each of the selected small intervals [x(k), x(k+1)], we compute the ratio
rk = Sk/Nk, where

Sk
def=

∑

i:xi≥x(k+1)

xi +
∑

j:xj≤x(k)

xj ,

and Nk is the total number of such i’s and j’s. If rk ∈ [x(k), x(k+1)], then
we compute

σ′2k
def=

1
n
·

 ∑

i:xi≥x(k+1)

(xi − rk)2 +
∑

j:xj≤x(k)

(xj − rk)2


 .

If Nk = 0, we take σ′2k
def= 0.

• Finally, we return the smallest of the values σ′2k as σ2.

Theorem 2.1. The algorithm A always compute σ2 is quadratic time.

(For readers’ convenience, all the proofs are placed in the special Proofs section).

We have implemented this algorithm in C++, it works really fast.
Example. We start with 5 intervals: x1 = [2.1, 2.6], x2 = [2.0, 2.1],
x3 = [2.2, 2.9], x4 = [2.5, 2.7], and x5 = [2.4, 2.8]. After sorting the bounds,
we get the following “small intervals”: [x(1), x(2)] = [2.0, 2.1], [x(2), x(3)] =
[2.1, 2.1], [x(3), x(4)] = [2.1, 2.2], [x(4), x(5)] = [2.2, 2.4], [x(5), x(6)] = [2.4, 2.5],
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[x(6), x(7)] = [2.5, 2.6], [x(7), x(8)] = [2.6, 2.7], [x(8), x(9)] = [2.7, 2.8], and
[x(9), x(10)] = [2.8, 2.9].

The interval for finite population average is µ = [2.24, 2.62], so we only
keep the following four small intervals that have non-empty intersection with
E: [x(4), x(5)] = [2.2, 2.4], [x(5), x(6)] = [2.4, 2.5], [x(6), x(7)] = [2.5, 2.6], and
[x(7), x(8)] = [2.6, 2.7]. For these intervals:

• S4 = 7.0, N4 = 3, so r4 = 2.333 . . .;

• S5 = 4.6, N5 = 2, so r5 = 2.3;

• S6 = 2.1, N6 = 1, so r6 = 2.1;

• S7 = 4.7, N7 = 2, so r7 = 2.35.

Of the four values rk, only r4 lies within the corresponding small interval. For
this small interval, σ′24 = 0.017333 . . ., so σ2 = 0.017333 . . .

3 Second Result: Computing σ2 is NP-Hard

Our second result is that the general problem of computing σ2 from given in-
tervals xi is computationally difficult, or, in precise terms, NP-hard (for exact
definitions of NP-hardness, see, e.g., [5, 8, 13]).

Theorem 3.1. Computing σ2 is NP-hard.

Comment. This result was first announced in [3].

The very fact that computing the range of a quadratic function is NP-hard
was first proven by Vavasis [15] (see also [8]). We have shown that this difficulty
happens even for the very simple quadratic functions (1.1) frequently used in
data processing.

A natural question is: maybe the difficulty comes from the requirement that
the range be computed exactly? In practice, it is often sufficient to compute,

in a reasonable amount of time, a usefully accurate estimate σ̃2 for σ2, i.e., an

estimate σ̃2 which is accurate with a given accuracy ε > 0:
∣∣∣∣σ̃2 − σ2

∣∣∣∣ ≤ ε. Alas,

for any ε, such computations are also NP-hard:

Theorem 3.2. For every ε > 0, the problem of computing σ2 with accuracy ε
is NP-hard.

It is worth mentioning that σ2 can be computed exactly in exponential time
O(2n):

Theorem 3.3. There exists an algorithm that computes σ2 in exponential time.
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4 Third Result: A Feasible Algorithm That
Computes σ2 in Many Practical situations

NP-hard means, crudely speaking, that there are no general ways for solving all
particular cases of this problem (i.e., computing σ2) in reasonable time.

However, we show that there are algorithms for computing σ2 for many
reasonable situations. Namely, we propose an efficient algorithm A that com-
putes σ2 for the case when all the interval midpoints (“measured values”)
x̃i = (xi + xi)/2 are definitely different from each other, in the sense that
the “narrowed” intervals [x̃i−∆i/n, x̃i + ∆i/n] – where ∆i = (xi− xi)/2 is the
interval’s half-width – do not intersect with each other.

This algorithm A is as follows:

• First, we sort all 2n endpoints of the narrowed intervals x̃i − ∆i/n and
x̃i + ∆i/n into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n). This enables us to
divide the real line into 2n + 2 segments (“small intervals”) [x(k), x(k+1)],

where we denoted x(0)
def= −∞ and x(2n+1)

def= +∞.

• Second, we compute µ and µ and pick all “small intervals” [x(k), x(k+1)]
that intersect with [µ, µ].

• For each of remaining small intervals [x(k), x(k+1)], for each i from 1 to n,
we pick the following value of xi:

• if x(k+1) < x̃i −∆i/n, then we pick xi = xi;

• if x(k) > x̃i + ∆i/n, then we pick xi = xi;

• for all other i, we consider both possible values xi = xi and xi = xi.

As a result, we get one or several sequences of xi. For each of these se-
quences, we check whether the average µ of the selected values x1, . . . , xn

is indeed within this small interval, and if it is, compute the finite popu-
lation variance by using the formula (1.1).

• Finally, we return the largest of the computed finite population variances
as σ2.

Theorem 4.1. The algorithm A computes σ2 in quadratic time for all the cases
in which the “narrowed” intervals do not intersect with each other.

This algorithm also works when, for some fixed k, no more than k “narrowed”
intervals can have a common point:

Theorem 4.2. For every positive integer k, the algorithm A computes σ2 in
quadratic time for all the cases in which no more than k “narrowed” intervals
can have a common point.

This computation time is quadratic in n but it grows exponentially with k.
So, when k grows, this algorithm requires more and more computation time;
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as we will see from the proof, it requires O(2k · n2) steps. In the worst case,
when our conditions are not satisfied and k = O(n) narrowed intervals have a
common point, this algorithm requires O(2n · n2) computational steps.

It is worth mentioning that the examples on which we prove NP-hardness
(see proof of Theorem 3.1) correspond to the case when all n narrowed intervals
have a common point.

5 Finite Population Mean, Finite Population
Variance: What Next?

In the previous sections, we described conditions under which efficient (O(n2))
algorithms exist for computing min(f(x)) and max(f(x)) for the finite popula-
tion variance f = σ2.

Average and variance are not the only population parameters used in data
processing. A natural question is: when are efficient algorithms possible for
other population parameters used in data processing?

5.1 Finite Population Covariance

When we have two sets of data x1, . . . , xn and y1, . . . , yn, we normally compute
finite population covariance

C =
1
n

n∑

i=1

(xi − µx) · (yi − µy),

where

µx =
1
n

n∑

i=1

xi; µy =
1
n

n∑

i=1

yi.

Finite population covariance is used to describe the correlation between xi and
yi. If we take interval uncertainty into consideration, then, after each measure-
ment, we do not get the exact values of x1, . . . , xn, y1, . . . , yn; instead, we only
have intervals [x1, x1], . . . , [xn, xn], [y

1
, y1], . . . , [yn

, yn]. Depending on what are
the actual values of x1, . . . , xn, y1, . . . , yn within these intervals, we get different
values of finite population covariance. To take the interval uncertainty into con-
sideration, we need to be able to describe the interval [C, C] of possible values
of the finite population covariance C.

So, we arrive at the following problems: given the intervals [xi, xi], [y
i
, yi],

compute the lower and upper bounds C and C for the interval of possible values
of finite population covariance.

It turns out that these problems are also NP-hard:

Theorem 5.1. The problem of computing C from the interval inputs [xi, xi],
[y

i
, yi] is NP-hard.

Theorem 5.2. The problem of computing C from the interval inputs [xi, xi],
[y

i
, yi] is NP-hard.
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Comment. These results were first announced in [12].

5.2 Finite Population Correlation

As we have mentioned, finite population covariance C between the data sets
x1, . . . , xn and y1, . . . , yn is often used to compute finite population correlation

ρ =
C

σx · σy
, (5.1)

where σx =
√

σ2
x is the finite population standard deviation of the values

x1, . . . , xn, and σy =
√

σ2
y is the finite population standard deviation of the

values y1, . . . , yn.
When we only have intervals [x1, x1], . . . , [xn, xn], [y

1
, y1], . . . , [yn

, yn], we
have an interval [ρ, ρ] of possible value of correlation. It turns out that, similar
to finite population covariance, computation of the endpoints of this interval
problems is also an NP-hard problem:

Theorem 5.3. The problem of computing ρ from the interval inputs [xi, xi],
[y

i
, yi] is NP-hard.

Theorem 5.4. The problem of computing ρ from the interval inputs [xi, xi],
[y

i
, yi] is NP-hard.

Comment. The fact that the problems of computing finite population covariance
and finite population correlation are NP-hard means that, crudely speaking,
that there is no feasible algorithm that would always compute the desired bounds
for C and ρ. A similar NP-hardness result holds for finite population variance,
but in that case, we were also able to produce a feasible algorithm that works
in many practical cases. It is desirable to design similar algorithms for finite
population covariance and finite population correlation.

5.3 Finite Population Median

Not all finite population parameters used in data processing are difficult to
compute for interval data, some are easy. In addition to finite population mean,
we can mention finite population median. Since the median is increasing in
x1, . . . , xn, its smallest possible value is attained for x1, . . . , xn, and its largest
possible value is attained for x1, . . . , xn.

So, to compute the exact bounds for the median, it is sufficient to apply the
algorithm for computing the finite population median of n numbers twice:

• first, to the values x1, . . . , xn, to compute the lower endpoint for the finite
population median;

• second, to the values x1, . . . , xn, to compute the upper endpoint for the
finite population median.
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To compute each median, we can sort the corresponding n values. It is known
that one can sort n numbers in O(n · log(n)) steps; see, e.g., [1]. So, the above
algorithm requires O(n · log(n)) steps – and is, therefore, quite feasible.

5.4 Other Population Parameters: Open Problem

In the previous sections, we described conditions under which efficient (O(n2))
algorithms exist for computing min(f(x)) and max(f(x)) for the finite popu-
lation variance f = σ2. In this section, we analyzed the possibility of exactly
computing a few more finite population characteristics under interval uncer-
tainty.

The results from this section are mostly negative: that for the population
parameters that we analyzed, in general, efficient algorithms for exactly com-
puting the bounds are not possible. Since we cannot have efficient algorithms
that work for all possible cases, it is desirable to find out under what conditions
such efficient algorithms are possible.

It is desirable to analyze other finite population parameters from this view-
point.

6 Proofs

Proof of Theorem 2.1

1◦. Let us first show that the algorithm described in Section 2 is indeed correct.

1.1◦. Indeed, let x
(0)
1 ∈ x1, . . . , x

(0)
n ∈ xn be the values for which the finite

population variance σ2 attains minimum on the box x1 × . . .× xn.
Let us pick one of the n variables xi, and let fix the values of all the other

variables xj (j 6= i) at xj = x
(0)
j . When we substitute xj = x

(0)
j for all j 6= i into

the expression for finite population variance, σ2 becomes a quadratic function
of xi.

This function of one variable should attain its minimum on the interval xi

at the value x
(0)
i .

1.2◦. Let us start with the analysis of the quadratic function of one variable we
described in Part 1.1 of this proof.

By definition, the finite population variance σ2 is a sum of non-negative
terms; thus, its value is always non-negative. Therefore, the corresponding
quadratic function of one variable always has a global minimum. This function
is decreasing before this global minimum, and increasing after it.
1.3◦. Where is the global minimum of the quadratic function of one variable
described in Part 1.1?

It is attained when ∂(σ2)/∂xi = 0. Differentiating the formula (1.1) with
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respect to xi, we conclude that

∂(σ2)
∂xi

=
1
n
·

2(xi − µ) +

n∑

j=1

2(µ− xj) · ∂µ

∂xj


 . (6.1)

Since ∂µ/∂xi = 1/n, we conclude that

∂(σ2)
∂xi

=
2
n
·

(xi − µ) +

n∑

j=1

(µ− xj) · 1
n


 . (6.2)

Here,
n∑

j=1

(µ− xj) = n · µ−
n∑

j=1

xj . (6.3)

By definition of the average µ, this difference is 0, hence the formula (6.2) takes
the form

∂(σ2)
∂xi

=
2
n
· (xi − µ).

So, this function attains the minimum when xi − µ = 0, i.e., when xi = µ.
Since

µ =
xi

n
+

∑′
i xj

n
,

where
∑′

i means the sum over all j 6= i, the equality xi = µ means that

xi =
xi

n
+

∑′
i x

(0)
j

n
.

Moving terms containing xi into the left-hand side and dividing by the coefficient
at xi, we conclude that the minimum is attained when

xi = µ′i
def=

∑′
i x

(0)
j

n− 1
,

i.e., when xi is equal to the arithmetic average µ′i of all other elements.
1.4◦. Let us now use the knowledge of a global minimum to describe where the
desired function attains its minimum on the interval xi.

In our general description of non-negative quadratic functions of one variable,
we mentioned that each such function is decreasing before the global minimum
and increasing after it. Thus, for xi < µ′i, the function σ2 is decreasing, for
xi > µ′i, this function in increasing. Therefore:

• If µ′i ∈ xi, the global minimum of the function σ2 of one variable is attained
within the interval xi, hence the minimum on the interval xi is attained
for xi = µ′i.
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• If µ′i < xi, the function σ2 is increasing on the interval xi and therefore,
its minimum on this interval is attained when xi = xi.

• Finally, if µ′i > xi, the function σ2 is decreasing on the interval xi and
therefore, its minimum on this interval is attained when xi = xi.

1.5◦. Let us reformulate the above conditions in terms of the average

µ =
1
n
· xi +

n− 1
n

· µ′i.

• In the first case, when xi = µ′i, we have xi = µ = µ′i, so µ ∈ xi.

• In the second case, we have µ′i < xi and xi = xi. Therefore, in this case,
µ < xi.

• In the third case, we have µ′i > xi and xi = xi. Therefore, in this case,
µ > xi.

Thus:

• If µ ∈ xi, then we cannot be in the second or third cases. Thus, we are in
the first case, hence xi = µ.

• If µ < xi, then we cannot be in the first or the third cases. Thus, we are
the second case, hence xi = xi.

• If µ > xi, then we cannot be in the first or the second cases. Thus, we are
in the third case, hence xi = xi.

1.6◦. So, as soon as we determine the position of µ with respect to all the
bounds xi and xi, we will have a pretty good understanding of all the values xi

at which the minimum is attained.
Hence, to find the minimum, we will analyze how the endpoints xi and xi

divide the real line, and consider all the resulting sub-intervals.
Let the corresponding subinterval [x(k), x(k+1)] by fixed. For the i’s for which

µ 6∈ xi, the values xi that correspond to the minimal finite population variance
are uniquely determined by the above formulas.

For the i’s for which µ ∈ xi the selected value xi should be equal to µ. To
determine this µ, we can use the fact that µ is equal to the average of all thus
selected values xi, in other words, that we should have

µ =
1
n
·

 ∑

i:xi≥x(k+1)

xi + (n−Nk) · µ +
∑

j:xj≤x(k)

xj


 , (6.4)

where (n − Nk) · µ combines all the points for which µ ∈ xi. Multiplying
both sides of (6.4) by n and subtracting n · µ from both sides, we conclude
that (in notations of Section 2), we have µ = Sk/Nk – what we denoted, in
the algorithm’s description, by rk. If thus defined rk does not belong to the
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subinterval [x(k), x(k+1)], this contradiction with our initial assumption shows
that there cannot be any minimum in this subinterval, so this subinterval can
be easily dismissed.

The corresponding finite population variance is denoted by σ′2k. If Nk = 0,
this means that µ belongs to all the intervals xi and therefore, that the lower
endpoint σ2 is exactly 0 – so we assign σ′2k = 0.
2◦. To complete the proof of Theorem 2.1, we must show that this algorithm
indeed requires quadratic time.
Indeed, sorting requires O(n · log(n)) steps (see, e.g., [1]), and the rest of the
algorithm requires linear time (O(n)) for each of 2n subintervals, i.e., the total
quadratic time.

The theorem is proven.

Proof of Theorem 3.1

1◦. By definition, a problem is NP-hard if any problem from the class NP can be
reduced to it. Therefore, to prove that a problem P is NP-hard, it is sufficient
to reduce one of the known NP-hard problems P0 to P.

In this case, since P0 is known to be NP-hard, this means that every problem
from the class NP can be reduced to P0, and since P0 can be reduced to P,
thus, the original problem from the class NP is reducible to P.

For our proof, as the known NP-hard problem P0, we take a subset problem:
given n positive integers s1, . . . , sn, to check whether there exist signs ηi ∈
{−1,+1} for which the signed sum

n∑

i=1

ηi · si equals 0.

We will show that this problem can be reduced to the problem of computing
σ2, i.e., that to every instance (s1, . . . , sn) of the problem P0, we can put into
correspondence such an instance of the C-computing problem that based on its
solution, we can easily check whether the desired signs exist.

As this instance, we take the instance corresponding to the intervals [xi, xi] =
[−si, si]. We want to show that for the corresponding problem, σ2 = C0, where
we denoted

C0
def=

1
n
·

n∑

i=1

s2
i , (6.5)

if and only if there exist signs ηi for which
∑

ηi · si = 0.
2◦. Let us first show that in all cases, σ2 ≤ C0.
Indeed, it is known that the formula for the finite population variance can be
reformulated in the following equivalent form:

σ2 =
1
n
·

n∑

i=1

x2
i − µ2. (6.6)

13



Since xi ∈ [−si, si], we can conclude that x2
i ≤ s2

i hence
∑

x2
i ≤

∑
s2

i . Since
µ2 ≥ 0, we thus conclude that

σ2 ≤ 1
n
·

n∑

i=1

s2
i = C0.

In other words, every possible value σ2 of the finite population variance is smaller
than or equal to C0. Thus, the largest of these possible values, i.e., σ2, also
cannot exceed C0, i.e., σ2 ≤ C0.
3◦. Let us now prove that if the desired signs ηi exist, then σ2 = C0.
Indeed, in this case, for xi = ηi · si, we have µx = 0 and x2

i = s2
i , hence

σ2 =
1
n
·

n∑

i=1

(xi − µx)2 =
1
n
·

n∑

i=1

s2
i = C0.

So, the finite population variance σ2 is always ≤ C0, and it attains the value C0

for some xi. Therefore, σ2 = C0.
4◦. To complete the proof of Theorem 3.1, we must show that, vice versa, if
σ2 = C0, then the desired signs exist.
Indeed, let σ2 = C0. Finite population variance is a continuous function on a
compact set x1 × . . .× xn, hence its maximum on this compact set is attained
for some values x1 ∈ x1 = [−s1, s1], . . . , xn ∈ xn = [−sn, sn]. In other words,
for the corresponding values of xi, the finite population variance σ2 is equal to
C0.

Since xi ∈ [−si, si], we can conclude that x2
i ≤ s2

i ; since (µx)2 ≥ 0, we get
σ2 ≤ C0. If |xi|2 < s2

i or (µx)2 > 0, then we would have σ2 < C0. Thus, the
only way to have σ2 = C0 is to have x2

i = s2
i and µx = 0. The first equality

leads to xi = ±si, i.e., to xi = ηi · si for some ηi ∈ {−1,+1}. Since µx is, by
definition, the (arithmetic) average of the values xi, the equality µx = 0 then

leads to
n∑

i=1

ηi · si = 0. So, if σ2 = C0, then the desired signs do exist.

The theorem is proven.

Proof of Theorem 3.2

1◦. Let ε > 0 be fixed. We will show that the subset problem can be reduced
to the problem of computing σ2 with accuracy ε, i.e., that to every instance
(s1, . . . , sn) of the subset problem P0, we can put into correspondence such
an instance of the ε-approximate C-computation problem that based on its
solution, we can easily check whether the desired signs exist.

For this reduction, we will use two parameters. The first one – C0 – is the
same as in the proof of Theorem 3.1. We will also need a new real-valued pa-
rameter k; its value depend on ε and n. We could produce this value right away,
but we believe that the proof will be much clearer if we keep it undetermined
until it becomes clear what value k we need to choose for the proof to be valid.

14



As the desired instance, we take the instance corresponding to the intervals

[xi, xi] = [−k ·si, k ·si] for an appropriate value k. Let σ̃2 be a number produced,
for this problem, by a ε-accurate computation algorithm, i.e., a number for which∣∣∣∣σ̃2 − σ2

∣∣∣∣ ≤ ε. We want to to show that σ̃2 ≥ k2 · C0 − ε if and only if there

exist signs ηi for which
∑

ηi · si = 0.
2◦. When we multiply each value xi by a constant k, the finite population
variance is multiplied by k2. As a result, the upper bound σ2 corresponding
to xi ∈ [−k · si, k · si] is exactly k2 times larger than the upper bound v corre-
sponding to k times smaller values zi ∈ [−si, si]: v = σ2/k2.

Hence, when σ̃2 approximates σ2 with an accuracy ε, the corresponding

value ṽ
def= σ̃2/k2 approximates v (= σ2/k2) with the accuracy δ

def= ε/k2.

In terms of ṽ, the above inequality σ̃2 ≥ k2 · C0 − ε takes the following
equivalent form: ṽ ≥ C0 − δ.

Thus, in terms of ṽ, the desired property can be formulated as follows:
ṽ ≥ C0 − δ if and only if there exist signs ηi for which

∑
ηi · si = 0.

3◦. Let us first show that if the desired signs ηi exist, then ṽ ≥ C0 − δ.
Indeed, in this case, similarly to the proof of Theorem 3.1, we can conclude
that v = C0. Since ṽ is a δ-approximation to the actual upper bound v, we can
therefore conclude that ṽ ≥ v − δ = C0 − δ. The statement is proven.
4◦. Vice versa, let us assume that ṽ ≥ C0 − δ. Let us prove that in this case,
the desired signs exist.
4.1◦. Since ṽ is a δ-approximation to the upper bound v, we thus conclude that
v ≥ ṽ − δ and therefore, v ≥ C0 − 2δ.

Similarly to the proof of Theorem 3.1, we can conclude that the maximum
is attained for some values zi ∈ [−si, si] and therefore, there exist values zi ∈
[−si, si] for which the finite population variance v exceeds C0 − 2δ:

v
def=

1
n
·

n∑

i=1

z2
i − (µz)2 ≥ C0 − 2δ,

i.e., substituting the expression (6.5) for C0, that

1
n
·

n∑

i=1

z2
i − (µz)2 ≥ 1

n
·

n∑

i=1

s2
i − 2δ. (6.7)

4.2◦. The following proof will be similar to the corresponding part of the proof
of Theorem 3.1. The main difference is that we have approximate equalities
instead of exact ones:

• In the proof of Theorem 3.1, we used the fact that σ2 = C0 to prove that
the corresponding values xi are equal to ±si, and that their sum is equal
to 0.
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• Here, v is only approximately equal to C0. As a result, we will only be
able to show that the values zi are close to ±si, and that the sum of zi

is close to 0. From these closenesses, we will then be able to conclude
(for sufficiently large k) that the sum of the corresponding terms ±si is
exactly equal to 0.

4.3◦. Let us first prove that for every i, the value z2
i is close to s2

i . Specifically,
we know that z2

i ≤ s2
i ; we will prove that

z2
i ≥ s2

i − 2(n− 1) · δ. (6.8)

We will prove this inequality by reduction to a contradiction. Indeed, let us
assume that for some i0, this inequality is not true. This means that

z2
i0 < s2

i0 − 2(n− 1) · δ. (6.9)

Since zi ∈ [−si, si], for all i, in particular, for all i 6= i0, we conclude, for all
i 6= i0, that

z2
i ≤ s2

i . (6.10)

Adding the inequality (6.9) and (n− 1) inequalities (6.10) corresponding to all
values i 6= i0, we get

n∑

i=1

z2
i <

n∑

i=1

s2
i − 2(n− 1) · δ. (6.11)

Dividing both sides of this inequality by n−1, we get a contradiction with (6.7).
This contradiction shows that (6.8) indeed holds for every i.
4.4◦. The inequality (6.8) says, crudely speaking, that z2

i is close to s2
i . Ac-

cording to our “action plan” (as outlined in Part 4.2 of this proof), we want to
conclude that zi is close to ±si, i.e., that |zi| is close to si.

To be able to make a meaningful conclusion about zi from the inequality
(6.8), we must make sure that the right-hand side of the inequality (6.8) is
positive: otherwise, this inequality is true simply because its left-hand side is
non-negative, and the right-hand side is non-positive.

The value si is a positive integer, so s2
i ≥ 1. Therefore, to guarantee that

the right-hand side of (6.8) is positive, it is sufficient to select k for which, for
the corresponding value δ = ε/k2, we have

2(n− 1) · δ < 1. (6.12)

In the following text, we will assume that this condition is indeed satisfied.
4.5◦. Let us show that under the condition (6.12), the value |zi| is indeed close
to si. To be more precise, we already know that |zi| ≤ si; we are going to prove
that

|zi| ≥ si − 2(n− 1) · δ. (6.13)
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Indeed, since the right-hand side of the inequality (6.8) is supposed to be close
to si, it makes sense to represent it as s2

i times a factor close to 1. To be more
precise, we reformulate the inequality (6.8) in the following equivalent form:

z2
i ≥ s2

i ·
(

1− 2(n− 1) · δ
s2

i

)
. (6.14)

Since both sides of this inequality are non-negative, we can extract the square
root from both sides and get the following inequality:

|zi| ≥ si ·
√

1− 2(n− 1) · δ
s2

i

. (6.15)

The square root in the right-hand side of (6.15) is of the type
√

1− t, with
0 ≤ t ≤ 1. It is known that for such t, we have

√
1− t ≥ 1− t. Therefore, from

(6.15), we can conclude that

|zi| ≥ si ·
√

1− 2(n− 1) · δ
s2

i

≥ si ·
(

1− 2(n− 1) · δ
s2

i

)
,

i.e., that

|zi| ≥ si − 2(n− 1) · δ
si

.

Since si ≥ 1, we have
2(n− 1) · δ

si
≤ 2(n− 1) · δ,

hence

|zi| ≥ si − 2(n− 1) · δ
si

≥ si − 2(n− 1) · δ.

So, the inequality (6.13) is proven.
4.6◦. Let us now prove that for the values zi selected on Step 4.1, the average
µz is close to 0. To be more precise, we will prove that

(µz)2 ≤ 2δ. (6.16)

Similarly to Part 4.3 of this proof, we will prove this inequality by reduction to
a contradiction. Indeed, assume that this inequality is not true, i.e., that

(µz)2 > 2δ. (6.17)

Since z2
i ≤ s2

i , we therefore conclude that

n∑

i=1

z2
i ≤

n∑

i=1

s2
i ,
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hence
1
n
·

n∑

i=1

z2
i ≤

1
n
·

n∑

i=1

s2
i . (6.18)

Adding, to both sides of the inequality (6.18), the inequality (6.17), we get an
inequality

1
n
·

n∑

i=1

z2
i − (µz)2 <

1
n

n∑

i=1

s2
i − 2δ,

which contradicts to (6.7). This contradiction proves that that the inequality
(6.16) is true.
4.7◦. From the fact that the average µz is close to 0, we can now conclude that
the sum

∑
zi is also close to 0. Specifically, we will now prove that

∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣ ≤ n ·
√

2δ. (6.19)

Indeed, from (6.16), we conclude that (µz)2 ≤ 2δ, hence |µz| ≤
√

2δ. Multiplying
both sides of this inequality by n, we get the desired inequality (6.19).
4.8◦. Let us now show that for appropriately chosen k, we will be able to conclude
that there exist signs ηi for which

∑
ηi · si = 0.

From the inequalities (6.13) and |zi| ≤ si, we conclude that

|si − |zi|| ≤ 2(n− 1) · δ. (6.20)

Hence, |zi| ≤ si− 2(n− 1) · δ. Each value si is a positive integer, so si ≥ 1. Due
to the inequality (6.12), we have 2(n− 1) · δ < 1, so |zi| > 1− 1 = 0. Therefore,
zi 6= 0, hence each value zi has a sign. Let us take, as ηi, the sign of the value
zi. Then, the inequality (6.20) takes the form

|ηi · si − zi| ≤ 2(n− 1) · δ. (6.21)

Since the absolute value of the sum cannot exceed the sum of absolute values,
we therefore conclude that

∣∣∣∣∣
n∑

i=1

ηi · si −
n∑

i=1

zi

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

(ηi · si − zi)

∣∣∣∣∣ ≤
n∑

i=1

|ηi · si − zi| ≤

n∑

i=1

2(n− 1) · δ = 2n · (n− 1) · δ. (6.22)

From (6.22) and (6.19), we conclude that
∣∣∣∣∣

n∑

i=1

ηi · si

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑

i=1

zi

∣∣∣∣∣ +

∣∣∣∣∣
n∑

i=1

ηi · si −
n∑

i=1

zi

∣∣∣∣∣ = n ·
√

2δ + 2n · (n− 1) · δ. (6.23)
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All values si are integers, hence, the sum
∑

ηi · si is also an integer, and so is
its absolute value |∑ ηi · si|. Thus, if we select k for which the right-hand side
of the inequality (6.23) is less than 1, i.e., for which

n ·
√

2δ + 2n · (n− 1) · δ < 1, (6.24)

we therefore conclude that the absolute value of an integer
∑

ηi · si is smaller
than 1, so it must be equal to 0:

∑
ηi · si = 0.

Thus, to complete the proof, it is sufficient to find k for which, for the
corresponding value δ = ε/k2, both the inequalities (6.12) and (6.24) hold. To
guarantee the inequality (6.24), it is sufficient to have

n ·
√

2δ ≤ 1
3

(6.25)

and
2n · (n− 1) · δ ≤ 1

3
. (6.26)

The inequality (6.25) is equivalent to

δ ≤ 1
18n2

;

the inequality (6.26) is equivalent to

δ ≤ 1
6n · (n− 1)

;

and the inequality (6.12) is equivalent to

δ ≤ 1
2(n− 1)

.

Thus, to satisfy all three inequalities, we must choose δ for which δ = ε/k2 = δ0,
where we denoted

δ0
def= min

(
1

18n2
,

1
6n · (n− 1)

,
1

2(n− 1)

)
.

The original expression (1.1) for the finite population variance only works for
n ≥ 2. For such n, 18n2 > 6n · (n − 1) and 18n2 > 2(n − 1), hence the above
formula can be simplified into

δ0 =
1

18n2
.

To get this δ as δ0 = ε/k2, we must take k =
√

ε/δ0 = 3n · √2ε. For this k, as
we have shown before, the reduction holds, so the theorem is proven.
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Proof of Theorem 3.3

Let x
(0)
1 ∈ x1, . . . , x

(0)
n ∈ xn be the values for which the finite population vari-

ance σ2 attains maximum on the box x1 × . . .× xn.
Let us pick one of the n variables xi, and let fix the values of all the other

variables xj (j 6= i) at xj = x
(0)
j . When we substitute xj = x

(0)
j for all j 6= i into

the expression for finite population variance, σ2 becomes a quadratic function
of xi.

This function of one variable should attain its maximum on the interval xi

at the value x
(0)
i .

As we have mentioned in the proof of Theorem 2.1, by definition, the finite
population variance σ2 is a sum of non-negative terms; thus, its value is always
non-negative. Therefore, the corresponding quadratic function of one variable
always has a global minimum. This function is decreasing before this global
minimum, and increasing after it. Thus, its maximum on the interval xi is
attained at one of the endpoints of this interval.

In other words, for each variable xi, the maximum is attained either for
xi = xi, or for xi = xi. Thus, to find σ2, it is sufficient to compute σ2 for 2n

possible combinations (x±1 , . . . , x±n ), where x−i
def= xi and x+

i
def= xi, and find the

largest of the resulting 2n numbers.

Proof of Theorems 4.1 and 4.2

1◦. Similarly to the proof of Theorem 2.1, let us first show that the algorithm
described in Section 4 is indeed correct.
2◦. Similarly to the proof of Theorem 2.1, let x1, . . . , xn be the values at which
the finite population variance attain its maximum on the box x1 × . . .× xn. If
we fix the values of all the variables but one xi, then σ2 becomes a quadratic
function of xi. When the function σ2 attains maximum over x1 ∈ x1, . . . , xn ∈
xn, then this quadratic function of one variable will attain its maximum on the
interval xi at the point xi.

We have already shown, in the proof of Theorem 2.1, that this quadratic
function has a (global) minimum at xi = µ′i, where µ′i is the average of all the
values x1, . . . , xn except for xi. Since this quadratic function of one variable is
always non-negative, it cannot have a global maximum. Therefore, its maximum
on the interval xi = [xi, xi] is attained at one of the endpoints of this interval.

An arbitrary quadratic function of one variable is symmetric with respect to
the location of its global minimum, so its maximum on any interval is attained
at the point which is the farthest from the minimum. There is exactly one
point which is equally close to both endpoints of the interval xi: its midpoint
x̃i. Depending on whether the global minimum is to the left, to the right, or
exactly at the midpoint, we get the following three possible cases:

1. If the global minimum µ′i is to the left of the midpoint x̃i, i.e., if µ′i < x̃i,
then the upper endpoint is the farthest from µ′i. In this case, the maximum
of the quadratic function is attained at its upper endpoint, i.e., xi = xi.
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2. Similarly, if the global minimum µ′i is to the right of the midpoint x̃i, i.e.,
if µ′i > x̃i, then the lower endpoint is the farthest from µ′i. In this case,
the maximum of the quadratic function is attained at its lower endpoint,
i.e., xi = xi.

3. If µ′i = x̃i, then the maximum of σ2 is attained at both endpoints of the
interval xi = [xi, xi].

3◦. In the third case, we have either xi = xi or xi = xi. Depending on
whether xi is equal to the lower or to the upper endpoints, we can “combine”
the corresponding situations with Cases 1 and 2. As a result, we arrive at the
conclusion that one of the following two situations happen:

1. either µ′i ≤ x̃i and xi = xi;

2. either µ′i ≥ x̃i and xi = xi.

4◦. Similarly to the proof of Theorem 2.1, let us reformulate these conclusions
in terms of the average µ of the maximizing values x1, . . . , xn.

The average µ′i can be described as
∑′

i xj

n− 1
,

where
∑′

i means the sum over all j 6= i. By definition,
∑′

j xj =
∑

j xj − xi,
where

∑
j xj means the sum over all possible j. By definition of µ, we have

µ =

∑
j xj

n
,

hence
∑

j xj = n · µ. Therefore,

µ′i =
n · µ− xi

n− 1
.

Let us apply this formula to the above three cases.
4.1◦. In the first case, we have x̃i ≥ µ′i. So, in terms of µ, we get the inequality

x̃i ≥ n · µ− xi

n− 1
.

Multiplying both sides of this inequality by n − 1, and using the fact that in
this case, xi = xi = x̃i + ∆i, we conclude that

(n− 1) · x̃i ≥ n · µ− x̃i −∆i.

Moving all the terms but n · µ to the left-hand side and dividing by n, we get
the following inequality:

µ ≤ x̃i +
∆i

n
.
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4.2◦. In the second case, we have x̃i ≤ µ′i. So, in terms of µ, we get the
inequality

x̃i ≤ n · µ− xi

n− 1
.

Multiplying both sides of this inequality by n − 1, and using the fact that in
this case, xi = xi = x̃i −∆i, we conclude that

(n− 1) · x̃i ≤ n · µ− x̃i + ∆i.

Moving all the terms but n · µ to the left-hand side and dividing by n, we get
the following inequality:

µ ≥ x̃i − ∆i

n
.

5◦. Parts 4.1 and 4.2 of this proof can be summarized as follows:

• In Case 1, we have µ ≤ x̃i + ∆i/n and xi = xi.

• In Case 2, we have µ ≥ x̃i −∆i/n and xi = xi.

Therefore:

• If µ < x̃i−∆i/n, this means that we cannot be in Case 2. So we must be
in Case 1 and therefore, we must have xi = xi.

• If µ > x̃i + ∆i/n, this means that we cannot be in Case 1. So, we must
be in Case 2 and therefore, we must have xi = xi.

The only case when we do not know which endpoint for xi we should choose is
the case when µ belongs to the narrowed interval [x̃i −∆/n, x̃i + ∆i].
6◦. Hence, once we know where µ is with respect to the endpoints of all narrowed
intervals, we can determine the values of all optimal xi – except for those that
are within this narrowed interval. Since we consider the case when no more
than k narrowed intervals can have a common point, we have no more than
k undecided values xi. Trying all possible combinations of lower and upper
endpoints for these ≤ k values requires ≤ 2k steps.

Thus, the overall number of steps is O(2k · n2). Since k is a constant, the
overall number of steps is thus O(n2).

The theorem is proven.

Proof of Theorem 5.1

1◦. Similarly to the proof of Theorem 3.1, we reduce a subset problem to the
problem of computing C.

Each instance of the subset problem is as follows: given n positive integers
s1, . . . , sn, to check whether there exist signs ηi ∈ {−1, +1} for which the signed

sum
n∑

i=1

ηi · si equals 0.
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We will show that this problem can be reduced to the problem of computing
C, i.e., that to every instance (s1, . . . , sn) of the subset problem P0, we can put
into correspondence such an instance of the C-computing problem that based
on its solution, we can easily check whether the desired signs exist.

As this instance, we take the instance corresponding to the intervals [xi, xi] =
[y

i
, yi] = [−si, si]. We want to to show that for the corresponding problem,

C = C0 (where C0 is the same as in the proof of Theorem 3.1) if and only if
there exist signs ηi for which

∑
ηi · si = 0.

2◦. Let us first show that in all cases, C ≤ C0.
Indeed, it is known that the finite population covariance C is bounded by the
product σx·σy of finite population standard deviations σx =

√
σ2

x and σy =
√

σ2
y

of x and y. In the proof of Theorem 3.1, we have already proven that the finite
population variance σ2

x of the values x1, . . . , xn satisfies the inequality σ2
x ≤ C0;

similarly, the finite population variance σ2
y of the values y1, . . . , yn satisfies the

inequality σ2
y ≤ C0. Hence, C ≤ σx ·σy ≤

√
C0 ·

√
C0 = C0. In other words, every

possible value C of the finite population covariance is smaller than or equal to
C0. Thus, the largest of these possible values, i.e., C, also cannot exceed C0,
i.e., C ≤ C0.
3◦. Let us now show that if C = C0, then the desired signs exist.
Indeed, if C = C, this means that for the corresponding values of xi and yi, the
finite population covariance C is equal to C0, i.e.,

C = C0 =
1
n
·

n∑

i=1

s2
i .

On the other hand, we have shown that in all cases (and in this case in particu-
lar), C ≤ σx ·σy ≤

√
C0 ·

√
C0 = C0. If σx <

√
C0, then we would have C < C0.

So, if C = C0, we have σx = σy =
√

C0, i.e., σ2
x = σ2

y = C0. We have already
shown, in the proof of Theorem 3.1, that in this case the desired signs exist.
4◦. To complete the proof of Theorem 5.1, we must show that, vice versa, if the
desired signs ηi exist, then C = C0.
Indeed, in this case, for xi = yi = ηi · si, we have µx = µy = 0 and xi · yi = s2

i ,
hence

C =
1
n
·

n∑

i=1

(xi − µx) · (yi − µy) =
1
n
·

n∑

i=1

s2
i = C0.

The theorem is proven.

Proof of Theorem 5.2

This proof is similar to the proof of Theorem 5.1, with the only difference that
in this case, we use the other part of the inequality |C| ≤ σx · σy, namely, that
C ≥ −σx · σy, and in the last part of the proof, we take yi = −xi.
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Proof of Theorem 5.3

1◦. Similarly to the proof of Theorems 3.1 and 5.1, we reduce a subset problem
to the problem of computing σ2.

Each instance of the subset problem is as follows: given m positive integers
s1, . . . , sm, to check whether there exist signs ηi ∈ {−1,+1} for which the signed

sum
m∑

i=1

ηi · si equals 0.

We will show that this problem can be reduced to the problem of computing
ρ, i.e., that to every instance (s1, . . . , sm) of the subset problem P0, we can put
into correspondence such an instance of the ρ-computing problem that based
on its solution, we can easily check whether the desired signs exist.

As this instance, we take the instance corresponding to the following inter-
vals:

• n = m+2 (note the difference between this reduction and reductions from
the proofs of Theorems 3.1 and 5.1, where we have n = m);

• [xi, xi] = [−si, si] and yi = [0, 0] for i = 1, . . . ,m;

• xm+1 = ym+2 = [1, 1]; xm+2 = ym+1 = [−1,−1].

Like in the proof of Theorem 3.1, we define C1 as

C1 =
m∑

i=1

s2
i . (6.27)

We will prove that for the corresponding problem, ρ = −
√

2
C1 + 2 if and only

if there exist signs ηi for which
∑

ηi · si = 0.

2◦. The correlation coefficient is defined as ρ = C/
√

σ2
x ·

√
σ2

y. To find the range

for ρ, it is therefore reasonable to first find ranges for C, σ2
x, and σ2

y.
3◦. Of these three, the variance σ2

y is the easiest to compute because there is
no interval uncertainty in yi at all. For yi, we have µy = 0 and therefore,

σ2
y =

1
n
·

n∑

i=1

y2
i − (µy)2 =

2
n

=
2

m + 2
. (6.28)

4◦. To find the range for the covariance, we will use the known equivalent
formula

C =
1
n
·

n∑

i=1

xi · yi − µx · µy. (6.29)

Since µy = 0, the second sum in this formula is 0, so C is equal to the first sum.
In this first sum, the first m terms are 0’s because for i = 1, . . . , m, we have
yi = 0. The only non-zero terms correspond to i = m + 1 and i = m + 2, so

C = − 2
n

= − 2
m + 2

. (6.30)
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5◦. Substituting the formulas (6.28) and (6.30) into the definition (5.1) of finite
population correlation, we conclude that

ρ = −
2

m + 2√
2

m + 2 ·
√

σ2
x

= −
√

2
(m + 2) · σ2

x

. (6.31)

Therefore, the finite population correlation ρ attains its maximum ρ if and only
if the finite population variance σ2

x takes the largest possible value σ2
x:

ρ = −
√

2
(m + 2) · σ2

x

. (6.32)

Thus, if we can know ρ, we can reconstruct σ2
x as

σ2
x =

2
(m + 2) · (ρ)2

. (6.33)

In particular, the desired value ρ = −
√

2
C1 + 2 corresponds to σ2

x = C1 + 2
m + 2 .

Therefore, to complete our proof, we must show that σ2
x = C1 + 2

m + 2 if and only
if there exist signs ηi for which

∑
ηi · si = 0.

6◦. Similarly to the proof of Theorem 3.1, we will use the equivalent expression
(6.6) for the finite population variance σ2

x; we will slightly reformulate this
expression by substituting the definition of µx into it:

σ2
x =

1
n
·

n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

. (6.34)

We can (somewhat) simplify this expression by substituting the values n = m+2,
xm+1 = 1, and xm+2 = −1. We have

n∑

i=1

xi =
m∑

i=1

xi + xm+1 + xm+2 =
m∑

i=1

xi

and
n∑

i=1

x2
i =

m∑

i=1

x2
i + x2

m+1 + x2
m+2 =

m∑

i=1

xi + 2.

Therefore,

σ2
x =

1
m + 2

·
m∑

i=1

x2
i +

2
m + 2

− 1
(m + 2)2

·
(

m∑

i=1

xi

)2

. (6.35)

Similarly to the proof of Theorem 3.1, we can show that always σ2
x ≤ C1 + 2

m + 2 ,

and that σ2
x = C1 + 2

m + 2 if and only if there exist the signs ηi for which
∑

ηi·si = 0.
The theorem is proven.
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Proof of Theorem 5.4

This proof is similar to the proof of Theorem 5.3, with the only difference that
we take ym+1 = 1 and ym+2 = −1. In this case,

C =
2

m + 2
,

hence

ρ =

√
2

(m + 2) · σ2
x

,

and so the largest possible value of σ2
x corresponds to the smallest possible value

of ρ.
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Testing of Aerospace Structures: Granularity and Data Mining Approach”,
Proceedings of FUZZ-IEEE’2002, Honolulu, Hawaii, May 12–17, 2002, pp.
685–689.

[13] C. H. Papadimitriou, Computational Complexity, Addison Wesley, San
Diego, 1994.

[14] S. Rabinovich, Measurement Errors: Theory and Practice, American Insti-
tute of Physics, New York, 1993.

[15] S. A. Vavasis, Nonlinear optimization: complexity issues, Oxford University
Press, N.Y., 1991.

[16] H. M. Wadsworth, Jr. (eds.), Handbook of statistical methods for engineers
and scientists, McGraw-Hill Publishing Co., New York, 1990.

[17] P. Walley, Statistical reasoning with imprecise probabilities, Chapman and
Hall, N.Y., 1991.

[18] G. W. Walster, “Philosophy and practicalities of interval arithmetic”, In:
R. E. Moore (ed.), Reliability in Computing, 1988, pp. 307–323.

27


