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Abstract

The aim of this paper is to shed some light
on the use of fuzzy measures and integrals as
aggregation operators in multicriteria decision
making. These techniques have been widely
used on an ad hoc basis, but with no ax-
iomatization. It is possible to obtain prefer-
ence representation theorems in multicriteria
decision making problems, relying on a formal
parallelism between decision under uncertainty
and multicriteria decision making. Though,
it raises some commensurability problems. In
this paper, we show how to obtain an axioma-
tization of multicriteria decision making prob-
lems, in a very natural way, and we show how
to solve the commensurability problem in a
particular case.

1 Introduction

In decision theory, we aim at representing the prefer-
ences of a decision maker, but also at understanding
the decision maker’s behavior. This pertains to both
decision under uncertainty and multicriteria decision
making.

Let us denote (in the uncertainty framework) by S
the set of states of the world, and by X the set of con-
sequences. Generally, the decision maker has clear
preferences over X, but the preferences over the ac-
tions she/he will take to lead to some consequences
depend on the true state of the world which is a
priori unknown. Therefore, decision under uncer-
tainty aims at “translating” the preferences over X
into a preference relation > over the actions. A sim-
ple example is a decision maker investing money in
the Stock market. The decision maker will exhibit

clear preferences over the consequences (e.g. earning
money for a rational decision maker). But, the prob-
lem is actually to decide whether to sell or buy, or do
nothing, with no a priori knowledge of the true state
of the world (the evolution of the Stock market).

Thanks to the work of Savage, we know that under
a set of hypotheses over S, X and >, there exists a
unique probability measure P over S and a unique
(up to an affine transformation) utility function w :
X — IR such that, if f and g are two actions:

froe /S u(f(s))dP(s) > /S u(g(s))dP(s).

When examining the properties over > we quickly
realize that they will not be fulfilled in practice and
therefore need to be relaxed. When doing so, we
need to drop the independence hypothesis of Sav-
age, namely the sure-thing principle. This was done
by Schmeidler [14], who obtained a similar result to
the one of Savage where the probability measure is
replaced by a more general measure which is only
monotonic with respect to the inclusion.

In the multicriteria decision making paradigm, where
the decision maker has to express preferences over a
multidimensional set X = X; x --- x X,,. The deci-
sion maker is able to express preferences over a set
X;, but needs to find a way to “aggregate” these
partial preferences into a global preference. For ex-
ample, a customer wants to buy a car that belongs
to a set X (therefore the car is represented by its
attributes or criteria). The decision maker has clear
preferences over a set of values of attributes X; (e.g.
200hp is preferred to 150hp), but has no such clear
preferences between two cars, due to compensatory
effects between values of attributes.



Fuzzy measures and integrals have been widely used
as aggregation operators. Nonetheless, there was no
axiomatization as was the case in decision under un-
certainty.

One of the authors of this paper proposed to use
a formal parallelism between multicriteria decision
making and decision under uncertainty to use the al-
ready existing representation results of decision un-
der uncertainty to generate in a very natural way
similar representation results in multicriteria deci-
sion making with respect to some fuzzy measure and
a fuzzy integral associated to this fuzzy measure, an
axiomatization that was lacking so far. When doing
some, commensurability hypothesis between the sets
X;’s has to be introduced but was not very satisfac-
tory so far.

The present paper aims at presenting the above
transformation process as well as solving the com-
mensurability problem under a weak hypothesis. In
the first section of this paper, we briefly recall basics
of fuzzy integration, then present them from a de-
cision making point of view. We show under which
conditions, decision under uncertainty and multicri-
teria decision making are equivalent. This leads us
very naturally to the commensurability problem, for
which we present a solution.

2 Fuzzy integration and decision
theory

In the sequel, we will restrict ourselves to the finite
case, for the sake of simplicity. Besides, to establish
a parallelism between uncertainty and multicriteria
decision making, this is necessary as we will see.

2.1 Fuzzy integration theory

In this section, € is a finite set and P (1) is the set of
subsets of (2. We briefly recall the definitions of fuzzy
measures and Choquet integral (for more details see
for example [2], [1]).

Definition 1 A fuzzy measure (or non-additive

measure) on (Q,P(N)) is a set function p: P(N) —
[0,1] such that

(1) p(@) =0, p(X)=1,

(2) if A,B € P(Q), A C B, then u(A) < u(B),

that is, p is a non decreasing set function w.r.t
inclusion.

Remark: Fuzzy measures are also called non-
additive measures, capacities...

We will note that a probability measure is a fuzzy
measure as the addivity of the probability implies
the monotonicity property.

Definition 2 Let p be a fuzzy measure on (2, P(Q))
and an application f : @ — [0,400]. The Choquet
integral of f w.r.t p is defined by:

(©) [ fdn =3 (Fw) = Fou)i4)

where the subscript (.) indicates that the indices have
been permuted in order to have f(wa)) < --- <

fwmy)s A = {w@), - wm)} and f(wey)) =0, b
convention.

It is easy to see that the Choquet integral is a clas-
sical Lebesgue integral up to a reordering of the in-
dices. Besides, if the fuzzy measure p is additive,
then the Choquet integral reduces to a Lebesgue in-
tegral. We refer the reader to [8] for properties of
fuzzy measures, and properties of the Choquet inte-
gral.

2.2 Applications to decision making

Let us consider a decision problem under uncertainty
(S, X, A, >). We know that additive representations
are not sufficient to model every facet of human be-
havior and therefore a non-additive representation is
necessary. Schmeidler [14], [15] has proved that un-
der a set of conditions on the preference relation >
(continuity and independence in some sense), there
exists a Choquet representation of the preference re-
lation, that is, there exist a function v : X — R,
unique up to an affinity, and a unique fuzzy measure
1 on S such that: for all acts f,g € A we have:

froe© |

S

(O > (€) [ ula(Dau. (1)
This result has been refined later by Gilboa [7],
then by Wakker [17]. In the multicriteria frame-
work, let us assume we have a cartesian product set



X = X x---xX,, with a preference relation > on X.
Let u; : X; = IR be the i-th monodimensional utility
function. Then, we need to find an aggregation oper-
ator H : R™ — IR such that for all z = (x1,-- -, %)
and y = (y1,---,yn) we have:

Ty Hui(z), - un(zs)) >
H(ul(yl)a"'aun(yn))- (2)

It is known that many aggregation usual opera-
tors can be written as a Choquet integral, that is,
there exists a fuzzy measure pu on the set of criteria
I = {1,---,n} such that H(ui(z1), -, un(z,)) =
Z?Zl[(u(,-)(x(i)) - u(i_l)(x(i_l))]u(A(,-)) with the
same notations as before (see [8]).

A very natural choice is to put weights as,---,a, €
[0,1], such that ) . a; = 1, that represents the im-
portance given to each criterion, by the decision
maker and to choose the aggregation operator

H(ul (371); et aun(wn)) = Z aiui(wi)

That is, the global score of an alternative is simply
a weighted sum of the partial score.

Unfortunately, this strategy (or any additive strat-
egy) is not sufficient to represent dependencies be-
tween criteria or attributes as is shown in the mea-
surement theory point of view in [9], or in [10].

Strangely enough, the reason why additivity is not
sufficient in the MCDM perspective is similar to the
equivalence between the sure-thing principle and the
existence of a probability measure in decision under
uncertainty. We have shown in [3] that the sure-
thing principle and the principle allowing an additive
aggregation operator, namely the mutual preferential
independence of criteria

Definition 3 Let X = X1 x --- x X,, a set with a
preference relation =. A subset J of I = {1,---,n}
is said to be preferentially independent of J¢ iff for
every xy,yy € Xy, for every xje,zy. € Xy we have

(xg,25¢) = (yg,xge) & (xg,27¢) = (Y, 27¢)

where Xj = X;cyX; and xy is an element of X ;. If
this property holds for every subset of I, we say that
> werifies the mutual preferential hypothesis.

are formally equivalent when the set of states of the
world S is finite. Therefore, the fact that decision

under uncertainty and multicriteria decision making
are formally equivalent (up to some technical details)
should not come as a surprise.

Fuzzy measures and integrals, which are non-
additive operators, become natural candidates to
avoid the drawbacks of additive methods. In this
case, the fuzzy measure is defined on the criteria,
and acts like a weighting operator, that is, an opera-
tor defining the importance of a coalition of criteria.
This is not the only interpretation of fuzzy measures
in multicriteria decision making. Indeed, fuzzy mea-
sures can be used to define the interaction between
two criteria 4, j € I in the following way [13]:

Lij = X kex\gigy SUE DK Ui, j})
—u(K Ui) — p(K U j) + p({i,j})] 3)

with &(k) = % This representation through
interaction indices happens to be much closer to the
decision maker’s mind than the usual measure rep-

resentation.

3 Uncertainty and Multicriteria are
Equivalent

3.1 From (DU) to (MCDM)

As the authors have shown in [4] and as it was al-
ready noticed before in [6] for instance, decision un-
der uncertainty with a finite number of states of the
world and multicriteria decision making are formally
equivalent. Indeed, let f be an act of an uncertainty
decision problem with a finite number of states and
S ={s1,---,8n}. Let f(s1),---, f(sn) be the values
of f in X. Then each act can be identify with a vec-
tor of X™. Therefore the comparison of two acts f
and g reduces to compare their values:

f g (f(sl)a' af(sn)) = (9(31),‘ e 7g(sn))'

Compared to the multicriteria decision notation:

xty®($17”'7$n)t(yb"':yn)

we see that the problem of decision under uncertainty
has been written in a multicriteria decision frame-
work by identifying the states of the world with the
criteria and the acts with the consequences.



3.2 From (MCDM) to (DU)

Actually, the above allows us to write a decision
under uncertainty problem as a multicriteria deci-
sion making problem, where the uncertainty on the
states of the world becomes equivalent to identify-
ing the most important criterion, or set of criteria.
Nonetheless, it does not allow us to write a multi-
criteria decision making problem as a problem under
uncertainty as the set of alternatives in multicriteria
decision making setting is X; X --- X X,, where the
sets X; can be different, whereas in uncertainty the
set, of consequences is X™. Therefore, we need to find
a way to send the sets X; into a common scale.

The solution to this problem is actually very simple
and lies in the foundations of measurement theory
(see for example [9] for a thorough presentation) that
aims at finding necessary and/or sufficient conditions
for the existence of order-preserving isomorphisms
between ordered-algebraic structures and “more un-
derstandable” sets (e.g. the set of real numbers en-
dowed with its natural order (IR, >).

In the sequel, wwe assume that each set X; is en-
dowed with a weak order »; that is a binary relation
satisfying

(1) Vmi,yi S Xz', either Ti; > Yi OT Y; > Tj (COII—
nectedness)

(2) V:cz c Xz', XT; >‘,’ xX; (reﬂexivity)

(3) Vxi,yi,2i € X, x; >; y; and y; >; z; implies
x; >4 z; (transitivity)

Remark: We can assume that the weak order is an
order that is z > y and y > x implies x = y by using
the quotient set X/ ~.

Our first step is to construct a function ¢; : X; - IR
such that z; i Yi & ¢,(x,) > ¢,(yz) that is an
order-preserving function from X; to the real num-
bers. Under what conditions can we construct such
a function? The idea is very simple. We know that
the set @ of rational numbers is dense in IR that is,
between two different real numbers, we can find a
rational number. Besides, @ is at most countable.
The answer to our problem is simply to copy this
property of the real numbers, called separability.

Definition 4 Let (X, =) be a set with a weak order
relation. A subset of X, A is said to be order-dense

w.r.t > iff for all z,y € X,x =y, there exists a € A
such that x > a > y. X 1is said to be order-separable
iff there exists an order-dense, at most countable sub-
set of X.

Then, we can prove the following;:

Then, we have the following theorem:

Theorem 1 Let (X,>) be a set with a weak order.
Then there exists an application ¢ : X — IR such
that Vz,y € X the following propositions are equiva-
lent

(1) z =y & ¢(z) > d(y)
(2) X is order-separable.

If ¢ is an other function verifying (1) and (2) then
there exists a non-decreasing bijection f : R — IR
such that 1 = f o ¢.

(see [9] for a proof).

Therefore if we assume that each set X; is order-
separable for its weak order, we have our transfor-
mations to a common scale IR. Note that from an
application point of view, this is not restrictive as any
finite, or at most countable set if order-separable.

These functions allow us now to transform the sets
X; in a common scale, and to write any multicriteria
decision making problem as a decision under uncer-
tainty problem. With some additional restrictions,
we can show how we can use the representation the-
orems derived in the uncertainty paradigm, to prove
similar results in the multicriteria paradigm as was
shown in [11] following Wakker, and [12] for an ex-
tension to lotteries.

4 The Commensurability problem

In this section, we consider a multicriteria decision
making problem (X = Xj ---x--- X,,, >) where each
set X; is endowed with a weak order >;, and is an
order-separable set, i.e. for each ¢ = 1,---,n there
exists a set A; in X; which is order-dense and at most
countable. Then, we know from the previous section
that for each ¢ = 1,---,n there exits an application
¢; : X; = IR such that

T =i Y & diwi) > di(ys)-



Now, consider the following problem. Assume that 4
and j are different and let us take z; and z; in X;
and X; respectively. Because the functions ¢; and
¢; are constructed independently, it can happen that

¢i(zi) = ¢j(z;)

Does it entail that x; and z; are equivalent in some
sense? Generally no.

We will restrict the commensurability problem, to
the following case: we assume that there exists an
equivalence relation ~ between some elements

2€7ZC Uznlei

that is, the decision maker is able to express to indif-
ference between elements in different sets. We have
a partial weak order over U}, X;.

An example of where such a situation could arise is
if a customer wants to buy a car and has the choice
between two cars, one with a very good consumer
report on security, the other with a very low gas
consumption. We assume the customer has no clear
preference between these two alternatives.

Now, the functions ¢; we have constructed are not
unique. So our question is, can we construct such
a family, order-preserving for each X;, that will also
represent the weak order over Z. We will assume
that Z with this weak order is order-separable and
denote by A an order-dense subset of Z which is at
most countable and a; will denote an element of A.

We will now show that such a selection if possible by
constructing a function ¢ : X — IR which is order-
preserving over Z and is derived from the functions
¢;. For the sake of clarity, we will write ¢ with no
index for ¢(a;) as each a; can be in a set Xy or X4
etc...

For every k let us define the following:

¢ = max{¢(a;)|ar > aj, k> j}
and similarly,

¢* = min{¢(a;)|a; = ax,j > k}

Now, if both ¢~ and ¢t are finite for a given k,
the value of the constructed function at aj is the
midpoint between ¢~ and ¢+. Else, we will choose
¢~ + 1if ¢T is infinite, or ¢t — 1 if ¢~ is infinite.

Then, for every element z € Z, we define the order-
preserving function ¢ by

¢(z) = sup{d(a)lz > a}

From this construction, it is clear that we have

z~y <o) > oY)

And therefore, we have the existence of an order-
preserving family of functions, accomodating for the
partial weak order.

5 Conclusion

In this paper, we have presented how fuzzy measures
and integrals were a natural choice to replace the
probabilistic approach traditionally used in decision
under uncertainty. Then, we have shown that de-
cision under uncertainty and multicriteria decision
making were formally equivalent under the condi-
tions that the set of states of the world are finite,
and the order-separability of the sets of values of at-
tributes. This led us to a commensurability problem.
We have seen how this problem could be solved if we
assumed the set U}, X; to be endowed with a partial
weak order, and order-separable. Then, a previous
paper has shown how to use the results existing in
decision under uncertainty to derive representation
theorems in multicriteria decision making, offering
a simple axiomatization of the field, at least with
the Choquet integral. A next step is to provide a
similar approach in a more qualitative setting, using
the Sugeno integral [16] following the axiomatization
proposed in [5].
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