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Abstract

Ordered Weighted Averaging (OWA) operators
have been successfully applied in many practi-
cal problems. We explain this empirical suc-
cess by showing that these operators are in-
deed guaranteed to work (i.e., are universal),
and that these operators are the best to use
(in some reasonable sense).

1 Aggregation is needed

In many areas of science and engineering, we have
several estimates xi,...,z, for the same quantity
2. These estimates may come from measurements
and/or they may come from experts. and we want
to combine them into a single (better) estimate y.

Several techniques have been successfully used to ag-
gregate different estimates. The most widely used
idea is to take an arithmetic average
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In the arithmetic average, we combine all the esti-
mates with equal weights. In some practical situa-
tions, it makes sense to give move weight to consis-
tent estimates and less weight to estimates that are
far away from the consensus of the majority. For ex-
ample, in some sports competitions, the lowest and
the highest scores are deleted, and the average of
the remaining values is taken as the resulting aggre-
gate. In more precise terms, this aggregating opera-
tion y = f(x1,...,%,) can be described as

def Z(2) + Z(3) + ...+ T(n-1)
N n—2 ’
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where z(;) is the smallest of the n values z1,...,z,,
T(2) is the second smallest, etc.

Instead of simply ignoring the outstanding estimates
(i.e., assigning them 0 weight), we can give them
smaller weight depending on their deviation from the
others. For example, we can compute the mean Z
and the standard deviation ¢ of the original n esti-
mates, and then combine then with weights propor-
tional to s(|z; — Z|/o), where s(z) is a decreasing
function.

How can we describe different possible aggregation
techniques?

2 Linearization: what is it and why
it is a widely used application tool

One of the main tools of applied mathematics is lin-
earization; see, e.g., [1]. The need for some tool of
this type comes from the fact that the actual depen-
dence y = f(x1, ..., T,) between physical quantities
can be very complex and thus, very difficult to ana-
lyze. However, it is usually smooth (differentiable).
As a result, when we know the approximate values
T1,...,T, of the quantities z1,...,x,, then we can
expand the dependence of y on x; into Taylor series
in z;:
f(xlr":wn) = f(i:l):'%n)—i_
(.’L’1 —551) 'f,l ++(.’L‘n—§n) 'f,n+
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where f; means a partial derivative over z1, f11
means second partial derivative, etc. Since x; is close
to z;, the differences z; — x; are small, hence we can
safely ignore terms which are quadratic (or of higher



order) in terms of these differences. As a result, we
conclude that with a reasonable accuracy, the orig-
inal complex dependence can be represented by a
linear function:
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For aggregation operations, we thus get a justifica-
tion for linear aggregation functions like arithmetic
average.

One practically useful feature of linearization is that
it is consistent in the following sense. Instead of di-
rectly aggregating n estimates z1,. .., z,, we can di-
vide them into groups (not necessarily disjoint), ag-
gregate the values within each group, and then ag-
gregate the results. This is a natural thing to do if
we have a large number of different experts: we can
first get an average of experts from the same area,
and then try to reconcile the resulting averages.

From the mathematical viewpoint, instead of apply-
ing a single aggregation operation to n estimates
Z1,---,Ty to get y, we first apply k different aggre-
gation operations to this data to get k intermediate
aggregation results yi,...,yx, and then use another
aggregation operation to combine these k intermedi-
ate results into a single estimate y. If all these £+ 1
aggregation operations are linear, then the resulting
aggregation operation z1 ...,x, — y is also linear:
indeed, if a quantity y linearly depends on y1,. .., Y,
and each of the quantities y1, - . ., yx linearly depends
on the quantities x1,...,T,, then the dependence of
yonzxy,...,x,is also linear. In mathematical terms,
this consistency can be expressed as follows: a com-
position of linear functions is linear.

It is worth mentioning that vice versa, every linear
function can be represented as a composition of two
basic operations: addition and multiplication by a
constant.

3 Linearization by itself does not
work well for fuzzy logic
operations: the appearance of
OWA operations

In fuzzy logic, linearization by itself does not work
well. Indeed, the simplest aggregation operations of
fuzzy logic — min and max — are not smooth and

therefore, cannot be well approximated by linear
functions.

How can we combine the convenience of linear ap-
proximations with the necessity to also have min and
max? A natural idea is to add min an max to the list
of basic operations. In other words, instead of linear
functions, i.e., functions obtained by composition of
addition and multiplication by a number, we con-
sider functions which are compositions of addition,
multiplication by a constant, min, and max.

Each such function is piece-wise linear. We will
therefore call such functions p-linear (p is short of
“piecewise”). An important particular class of such
operations are Ordered Weighted Averaging (OWA)
operations (see, e.g., [4, 5]), i.e., operations of the
type

flxe,. .. 2n) =
ao+ay - Ty + a2 -T2y + ...+ an T, (1)
where ag,ay, ..., a, are constants.
The values (), ...,Ty) can be easily described in

terms of min and max:

,.Z'n);

® (9 = max(z(1),...,z(n)),
where (i) is the minimum of all the values ex-
cept i-th, i.e.:

o () = min(zy,...

def .
e 2(1) = min(xzy, z3,...,T,),

def .
o 2(2) = min(zy, 23,24, ..., Tp),

def .
e 2(n) = min(zy,..., T, 1);

o (3 = max(x(1,2),z(1,3),...,2(n — 1,n)),
where z(i,j) is the minimum of all the values
except i-th and j-th;

e etc.

Ezamples: min(x1,x2) can be described as an OWA
operation corresponding to ag = 0, a; =1, and as =
0; max(z1,z2) can be described as ag = a1 = 0,
as = 1; arithmetic average corresponds to ag = 0,
a3 = ... =a, = 1/n, and the above sports average
corresponds to ag = a3 = a, = 0 and ax = ... =
an—1=1/(n—-2).

Usually, only averaging OWA-operations are con-
sidered, i.e., operations for which ay = 0, values



ai,...,a, are non-negative, and a; + ...+ a, = 1.
However, a similar approach can be used to de-
scribe other aggregation operations, not only aver-
aging ones. In this case, it makes sense to consider
the most general operations of type (1), without im-
posing any restrictions on the real numbers a;.

4 In contrast to linearization, OWA
description is not fully consistent

Linear aggregation is consistent in the sense that for
linear aggregation operations, composition is always
a linear function. For OWA operations, this is not
always true: if the dependence of y on yi,...,y is
described by formulas of the type (1), and the de-
pendence of each y; on z1,...,x, is also described
by a similar formula, then the dependence of z
on Zi,...,T, may be more complex than the for-
mula (1).

So, we must consider not only the original OWA op-
erations, but also compositions of different OWA op-
erations. One can easily prove that the class of such
compositions coincides with the class of all composi-
tions of addition, multiplication by a constant, min,
and max — i.e., with the class of all possible p-linear
functions.

5 Natural questions: Are these
compositions universal? optimal in
any reasonable sense?

Not every aggregation operation is an OWA oper-
ation. For example, the weighted average with the
weight s(|z — Z|/o) is not an OWA operation. We
know one way of designing non-OWA operations:
composition of several OWA ones. The first natu-
ral question is therefore: are such compositions uni-
versal approximations? I.e., can we approximate an
arbitrary continuous function by compositions of this
type? In this paper, we give a positive answer to this
question.

The proof of this result is similar to the proofs of uni-
versal approximation results for fuzzy systems (see,
e.g., [2] and references therein).

The next question is: how good is this approxima-
tion? It is known that fuzzy systems are universal
approximators, that neural networks are universal
approximators, that polynomials are universal ap-

proximators, etc. Is there any advantage in using
OWA operators?

The empirical fact is that OWA operators are indeed
useful, but it would be nice to have a theoretical ex-
planation for that. We prove that, in some reason-
able sense, OWA-type operations are indeed optimal
— namely, they are (in some reasonable sense) the
fastest to compute.

The proof of this result is similar to the proof ex-
plaining why fuzzy control is sometimes useful even
when there is no expert knowledge, as a good ap-
proximation tool; see, e.g., [3].

6 It is often important to aggregate
fast; how can we do it?

In many real-life situations — e.g., in automated con-
trol — we must make urgent decisions based on the
values of certain critical physical characteristics. To
make an informed decision, we often make several
measurements of the same characteristic. Thus, in
order to make a decision, we must aggregate these
measurement results into a single value. Since a de-
cision needs to be made urgently, we must aggregate
fast.

A natural way to increase the speed of the computa-
tions is to perform computations in parallel on sev-
eral processors. To make the computations really
fast, we must divide the algorithm into paralleliz-
able steps, each of which requires a small amount of
time.

What are these steps? Inside the computer, each
computation is represented as a sequence of hard-
ware implemented operations: arithmetic operations
a+b,a—>b,a-b,a/b, and min(a,b) and max(a,b).
The time required for each operation, crudely speak-
ing, corresponds to the number of bit operations that
have to be performed:

¢ Operations min and max are the fastest. Indeed,
min and max of two n—bit binary numbers can
be done in n binary operations: we compare the
bits from the highest to the lowest, and as soon
as they differ, the number that has 0 as opposed
to 1 is the desired minimum: e.g., the minimum
of 0.10101 and 0.10011 is 0.10011, because in
the third bit, this number has 0 as opposed to 1.
Similarly, max is an n—bit operation.



e Operations — and + are second fastest. To add
two n—bit binary numbers, we need n bit ad-
ditions, and also potentially, n bit additions for
carries. Totally, we need about 2n bit opera-
tions.

¢ Multiplication by a constant can be imple-
mented as a sequence of additions, so it is also
a fast operation.

e Multiplication of two general n-bit numbers is
implemented as a sequence of n additions of n-
bit numbers (again, basically in the same man-
ner as we do it manually). It requires n? bit
operations and is thus much slower than +.

e Division is done by successive multiplication,
comparison and subtraction (basically, in the
same way as we do it manually), so, it is an
even slower operation than multiplication.

The fastest possible aggregation operations are,
therefore, operations that only use min and max.
Alas, not all aggregation operations can be thus
represented, because if we start with n numbers
Z1,---,Zy and apply only min and max, we end up
with one of these n numbers, so even an arithmetic
average will not be covered.

Thus, to describe generic aggregation operations, we
must use not only the fastest computer operations
(min and max), but also the second fastest: +, —,
and multiplication by a constant. In other words, we
must consider p-linear functions.

Which p-linear functions are the fastest to compute?
On each time step of a parallel computer, processor
perform several different hardware supported opera-
tions. The most time-consuming operations are +,
—, and multiplication by a constant. Therefore, to
speed up computations, we must consider computa-
tions in which a linear combination is computed on
the smallest possible number of time steps. We will
show that it is sufficient to have only one such time
step: exactly as many as for the original OWA oper-
ations.

In other words, we will show that it is sufficient to
first compute min and max, the compute (in parallel)
several linear combinations, and then again apply
min and max. Let us describe our result in exact
terms.

7 Definition and the main result

Definition. By a fast function, we mean a compo-
sition of min and max. We say that a function f(z),
x € R™, is computable with a single non-fast time
step if this function can be represented as

f(@) = F(g1(2), ..

where F(yy, . ..,yn) is a fast function, and each func-
tion gy is a linear combination of fast functions, i.e.,
has the form

- gn (7)),

gk(.fL') = ago + ar1 - hr1 (.’L‘) + ...+ hkmk (.TL‘)
for some fast functions hy;(z).

In other words, first we compute fast functions h;;,
then we compute (in parallel) all linear combinations
to compute g, and then we apply fast operations to
combine g into the desired value f. In particular, if
we take N = 1, hyi(z1,...,Tn) = 2(;), and F(z) = ,
we get an arbitrary OWA operation.

The following result shows that these fast-to-
compute operations can indeed approximate an ar-
bitrary continuous operation with an arbitrary accu-
racy:

Theorem. For every real number €, for every box
B =[a1,b1] X ... X [an,by], and for every continuous
function f : B — R, there exists a function ]7(:1:) that
is e—close to f(x) on B and that is computable with
a single non-fast time step.

In other words, the fastest-to-compute non-trivial
functions — i.e., functions computable with a single
non-fast time step — are universal approximators.

8 Proof

The main construction behind the proof is as follows:
we pick a small value @ > 0. Then, for each of n
coordinates z;, we select a grid of values a;+(1/2)-a,
a; +(3/2) - a, a; + (5/2) - a, ..., until we reach b;.
This selection is equivalent to dividing the interval
[ai, b;] into subintervals

[0,a],[®,2a],...,[k-a,(k+1)-af,...

of length «, and selecting midpoints of these subin-
tervals. Thus, for each coordinate, we select N; =
[(b; — a;)/a] different values.



We then take all possible points with these coordi-
nates, i.e., we take N = N; - N - ... - N, points
from the box B. We will denote these grid points
by zM,...,2®™) . This selection is equivalent to
subdividing the box B into N small boxes b; =
b1 X ... X by, of size a@ X ... X a, and selecting a
midpoint of each small box as z(*).

To design the approximating function, we need an-
other parameter — a large real number M > 0. Once
this number is selected, as the desired approximating
function, we take the function

def

f(z) = max(gi (), ..., gn(2)), (2)

where, for each k,

min(gkO (.CL'), gl?l (.CL'), gz_l (IE), e 79];7;(‘77)5 g;;;’_n (.’L‘)), (3)
gro(@) € fa®); (4)
95(@) L f@®) + M- (@ — & —a/2)); (5)

g (@) ¥ f@®) = M- (i — @ +a/2)).  (6)

Here:

e cach variable z; is, of course, a (trivial case of)
a fast function;

e the functions go(z), g5;(z), and gj;(z) are lin-
ear functions, i.e., linear combinations of fast
functions z;;

e finally, the transitions — from gro(2), g;(z), and
g (x) to gr(x), and then from gi(z) to f(z) -
are performed by using min and max, i.e., are
fast.

Thus, the above formulas describe how we can com-
pute the function f(z) with a single non-fast time
step.

To complete the proof, we must therefore find o and
M for which this fast-to-compute function f(z) is
e-close to the given continuous function f(z).

Since the function f is continuous, there exists a § >
0 such that if |z; — z}| < ¢ for all 4, then

|f (@1, s 2n) = f(ah,.. ., 2)| <e. (8)

Let us take o = 6/2. As M, we will then take

1 ) .
M= max|f(@®) - f@@).  (9)
a  i#]
Let us show that for this choice, for every point z €
B, we have

/(@) = f(z)| <e. (10)
Let x be an arbitrary point from the box B. Small
boxes by, cover the entire box B, thus, the point x
belongs to one of these small boxes. Let by be the
corresponding subbox, and let z(®) be its midpoint.
Then, the box by has the form

[xgk)—g x&’“)+9] X ...

a
2’ 2 '

X [m%’“) - g,m%’“) + 2

2
Since z € by, we conclude that for every i, we have
x; € [:cz(k) - a/2,x§k) +a/2), ie, mgk) —af2< ;<

:ng) + a/2.

For such values, z; — (argk) — a/2) > 0, hence, by
definition of the function g;(x), we have g,;(z) >
f(@®), ie., (due to definition of gio(z)), gp;(7) >
gro(z). Similarly, we have g;(z) > gro(z), and so,
due to (3), gi(z) = gro(z) = f(z®). Thus, due to

(2), f(2) > gi(2) = f@®).

Since |z; — mgk)| < /2 and a = §/2, we conclude
that |z; — xz(k)| < 4, and hence, due to our choice of
4, that

/(@) = fa®)| <e, (11)

in particular, that f(z*)) > f(z) — . From flz) >
f (™), we can now conclude that f(z) > f(z) —e.

To complete the proof, we must show that f(z) <

f(z) + e. Since f(z) is defined as the maximum of
N values g;(z), it is sufficient to prove that

g(x) < fz) +e (12)

for each of N functions g1(x),...,gn(z). We will

prove this by considering two possible cases:

e the first case is when for every i, we have
l
jz; — 2] < (3/2) - o5
e the second case is when for some i, we have

|z — mgl)| > (3/2) - a.

Let us first consider the first case, when for every i,
we have |z; — x§1)| < (3/2) - a. Due to our choice



of a, we have |z; — wgl)| < 4, hence, due to our

choice of §, we have |f(z) — f(z()| < . Therefore,
f(z®) < f(zx) +e. By definition, the function go(x)
is a constant function equal to f(z(?)), hence the last
inequality can be rewritten as gio(z) < f(z)+e. Due
to (3), the value g;(z) is the smallest of several values
including gjo(x). Since gio(z) < f(x)+e€, we can thus
conclude that g;(z) < f(z) + &. So, the inequality
(12) is proven for the first case.

Let us now consider the second case, when for some
i, we have |z; — wgl)| > (3/2) - a. In this case, there
are two possible subcases:

o either ; — 21V > (3/2) - @,

i

o orz; — ol < —(3/2) - a.

k3

In the first subcase, z; — (mgl) +a/2) > a, hence, due
to (6), we get

g (@) = (@) = M - (z; — &V +a/2)) <

fz®)y =M -a. (13)

Due to our choice of M (formula (9)), we have M >
(1/a) - |f(z® — f(z®)], hence

M =0 - f),

and (13) implies that

gt < f@0) = (f0) - f9) = f0).

Thus, the value g;(z) which is defined (by formula
(3)) as the smallest of several values including g,; (x),
is also smaller than f(z(®*)): g;(z) < f(z®). From
(11), we conclude that f(z*)) < f(z)+¢ and hence,
we get the desired inequality g;(z) < f(z) +&.

In the second subcase, this equality similarly follows
from considering a function g;; (). In all cases, the
inequality (12) is proven, so the theorem is proven
as well.

9 Conclusion

OWA operators have been successfully applied in
many practical problems. We explain this empiri-
cal success by showing two things:

e that these operators are indeed guaranteed to
work (i.e., are universal), and

o that these operators are the best to use (in some
reasonable sense).
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