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Abstract

Traditional interval computations provide an
estimate for the result y = f(x1,...,25)
of data processing when we know intervals
X1,...,X, that are guaranteed to contain the
(unknown) actual values of the quantities
Z1,...,Zn. Often, in addition to these guar-
anteed intervals, we have confidence intervals
for these quantities, i.e., intervals x; that con-
tain the corresponding values z; with a cer-
tain probability. It is desirable, based on the
confidence intervals for z;, to produce the re-
sulting confidence interval for y. It turns out
that the formulas for computing such resulting
confidence interval are closely related with the
formulas for processing fuzzy numbers by using
Zadeh’s extension principle. Thus, known al-
gorithms for processing fuzzy data can be used
to process confidence intervals as well.

1 Why intervals?

Most information about real-life quantities come
from measurements. Measurements are never 100%
accurate; as a result, the measurement result T dif-
fers from the actual (unknown) value of the measured
quantity z. In many real-life situations, the only in-
formation that we have about the measurement error
Z — z is the upper bound A provided by the manu-
facturer. In such situations, after measurement, the
only information that we have about z is that = be-
longs to the interval [T — A, Z + A].

2 Why process intervals?

Some quantities y, like a distance to a star or the
amount of oil in a given area, are impossible (or dif-
ficult) to measure directly. To gauge y, we measure
quantities z1,...,x, related to y, and then use the
known relationship y = f(z1,-..,z,) between z; and
Yy to reconstruct y.

When after each measurement, we only know the in-
tervals x; of possible values of x;, we must there-
fore find the interval of possible values of y =
f(z1,...,2,) when x; is in the interval x4, ..., and
T, is in the interval x,,, i.e.., we must transform the
intervals x; into a new interval y. Techniques for
processing interval data — called “interval computa-
tions” — are successfully used in application areas
ranging from space exploration to robotics to chem-
ical engineering; see, e.g., [2, 3, 4].

3 From guaranteed intervals to
confidence intervals

Interval computations handle cases when the upper
bounds A on the measurement errors are guaranteed
and when, therefore, it is guaranteed that the actual
value z of the measured quantity belongs to the cor-
responding interval [ — A, Z+ A]. In many practical
situations, however, the bounds (and, correspond-
ingly, the intervals) are not guaranteed. Instead of a
single interval, we have several intervals that contain
z with different confidence. We may have an interval
that contains z with probability 99%, a slightly nar-
rower interval that contains x with probability 98%,
etc.



For indirect measurement, if we have such informa-
tion about each of the variables z1,...,z,, what can
we conclude about the value of the desired quan-
tity y?

The difficulty comes from the fact that, e.g., to get
an interval that contains y with probability 99%, we
cannot simply apply interval computations to the in-
tervals x; and x» that contain, correspondingly, x;
and zo with probability 99%: indeed, the resulting
interval would include y with the probability that
both z1 is in x; and z» is in X3, and this probability
of a joint event may be < 99%.

We must therefore generalize traditional interval
methods to confidence intervals. This generalization
is presented in the paper.

4 Relationship to fuzzy techniques

On the qualitative level, there is a clear relation be-
tween confidence intervals and fuzzy numbers:

e Confidence intervals are a “nested” collection of
intervals corresponding to different levels of con-
fidence probability.

e A fuzzy number can also be represented as a
“nested” collection of a-cuts, i.e., intervals cor-
responding to different thresholds of member-
ship value (see, e.g., [5, 6]).

This seemingly natural qualitative relationships is
known because it was sometimes used by statisti-
cians in their past claims that problems solved by
fuzzy logic can be solved even better by statistical
techniques.

It turns out that this qualitative relationship can be
actually upgraded to a quantitative one.

5 Input data for processing
confidence intervals

Let us assume that a variable z is guaranteed to lie
within an interval [z~ ,zT]. For every possible confi-
dence level g € (0,1), the corresponding confidence
interval is defined as an interval that contains z with
probability > 8. In other words, a confidence inter-
val [X~, X™] of confidence level 3 is defined as an
interval for which the probability pout to be outside

[X—,X*] does not exceed a B

There are two possibilities for x to be outside the
interval [X—, X*]:

e when z is smaller than the lower bound X ~, and

e when 1z is larger than the upper bound X ™.

Thus, the probability poyt that x is outside the con-
fidence interval is equal to the sum of the two prob-
abilities:

e the probability that = is smaller than the lower
bound X~ and

e the probability that z is larger than the upper
bound X+.

For the same probability distribution and for the
same confidence level 3, we can have different confi-
dence intervals:

e we can set X~ = 2~ and find the value X for
which the probability

Prob[z < X]
that z < X7 is equal to 3;

e alternatively, we can set X = zT and find the
value X~ for which the probability

Prob[z > X 7]
that x < X~ is equal to g;

e we can also find X~ for which the probability
that z < X~ is equal to /2 = (1 — §)/2 and
X7 for which the probability that z > X is
equal to a/2:

Prob[z < X ] =Prob[z > X1] = a/2.

There are many other options.

In view of these various possibilities, before we
start describing computations with such intervals,
we must decide which confidence intervals we will
consider. the above three examples provide us with
the following three possibilities. For each confidence
level 8, we can define the corresponding confidence
interval as:

e an interval [z7, 27 (3)], where z+(8) is defined
as the value for which Prob [z < zt(8)] = 3;



e an interval [z~ (83),z*], where z7 () is defined
as the value for which Prob [z > 27 (8)] = 5;

e an interval [z3,,(8), 28, (8)], where 27 (3) is

defined as the value for which

Prob [z < 25, (8)] = (1 - 8)/2

and
Prob[z > ()] = (1 - §)/2.

These three different possibilities express the same
information, albeit in different form:

e If we know the values z1 () for all 8, then (pro-
vided that the distribution is non-atomic), we
can reconstruct:

e z7(8) as 27 (1 — 3), and
o z.,,(8) and z}  (8) as, correspondingly,

z((1-p)/2) and (1 - (1 - B)/2).

e If we know the values 2z~ (3) for all 3, then we
can find:

e z7(B) as = (1 — B3), and
o z5,,(0) and g, (B) as, correspondingly,

¢ (1-(1-7)/2) and 2~ ((1 - B)/2).

e Finally, if we know the values zg,,(8) and
T3 m(B) for all 3, then:
e when 3 > 0.5, we can reconstruct z~ (3) as
xsg,m(2ﬂ —1) and z*(0) as xjym(Zﬂ —1);
e when 3 < 0.5, we can reconstruct z— (3) as
zd (1 —26) and zt(B) as zg,,, (1 — 20).

It is therefore sufficient to consider only one of these
representations, e.g., the representation by intervals

[z7, 2% (8)].

For simplicity, we will assume that the function
f(z1,...,z,) is a non-decreasing function of all its
variables.

6 Possible cases
In this paper, we will consider two possible cases:

e when the probabilities corresponding to differ-
ent variables x1,...,x, are independent, and

e when we have no information about the possible
correlation between these probabilities.

7 Main result for independent case

Let us first consider the case when the probabili-
ties corresponding to different variables zi,...,z,
are independent. Let us fix # and try to find, for
y = f(x1,...,7,), the value yT(B) for which the
probability Prob[y < y*(8)] is equal to 8.

For every tuple (81,...,0s), we have:

oz € [z],2](B1)] — ie., z1 < 27 (B1) — with

probability 8;;
o ...

e x1 € [z,,25(0)] - ie., z, < z}t(B,) — with
probability 3,,.

Since the probabilities are independent, we can

therefore conclude that with probability £; - ... - By,
all n inequalities hold, i.e., z; < 2 (81), ..., and
zn, < z}t(B,). Since the function f(z1,...,2,) is

non-decreasing, we conclude that with probability
B1-... Bn, we have

y=F@1,..,20) < f@(Br),- -, 25 (Bn))-

Thus, we have a bound that bounds y from above
with probability 81 - ... 8,. In particular, if we
select (; for which the product is equal to 3, we get
the bound corresponding to the given 5.

One such bound is easy to find: with probability > 3,
we have y < yT. Our goal is to find the smallest of
such bounds, so we can take

y* (B) = min f(zf (A1), ..., 25 (Ba)), (1)

where minimum is taken over all values 81,..., 0,
for which 8, -...- 8, = 0.

8 Relation between the main result
for independent case and fuzzy
data processing

As we have mentioned, for each variable z;, we can
combine the corresponding confidence intervals into
a single fuzzy number X;. Specifically, we must de-
sign a fuzzy number for which, for every 3, the S-cut

coincides with the interval [z}, z} (8)].



By definition, the -cut consists of all the values x
for which the values of the corresponding member-
ship function p;(x) is greater than or equal to .
Thus, the right-hand side z7 (8) of the 3-cut interval
is the value where the inequality p;(z) > 8 changes
to pi(z) < B, i.e. —for continuous membership func-
tions — the value for which p;(z) = . Therefore,
z] (B) = z if and only if u;(x) = 8.

k3

Let us use this equivalence to reformulate the above
formula (1) in terms of the corresponding member-
ship functions p;(z;) and u(y). Indeed, according to
(1), for every value y, 8 = u(y) is the smallest possi-
ble value of 8 .. .- 8, among all the tuples for which
f&f(B),-.., 2t (Bn) = v, ie., in terms of p;(z;),
the smallest possible value of up(z1) - ... - pn(zy)
among all tuples for which f(z1,...,z,) = y.

In other words, if we form:

e a fuzzy number X; (with membership func-
tion pj(z1)) from the confidence intervals cor-
responding to x1,

e another fuzzy number X, (with membership
function pa(x2)) from the confidence intervals
corresponding to 2,

o etc.

then the fuzzy number Y formed by the result-
ing confidence intervals for y can be obtained from
Xi,...,X, by applying Zadeh’s extension principle:

n(y) = maxt(p1 (1), .. -, wn(Tn)), (2)

where max is taken over all tuples (z1,...,z,) for
which f(z1,...,2,) = v, and t(a,b) = a-b is an
appropriate t-norm.

9 Main result for possibly dependent
case and its relation to fuzzy data
processing

Let us now consider the case when we have no infor-
mation about the correlation between x;. Let us fix
B and try to find, for y = f(x1,...,%,), the value
yT(B) for which the probability Prob[y < y*(3)] is
equal to 3.

Similarly to the independent case, for every tuple
(Bi,- .-, Bn), we have:

ez € [xf,xf(ﬂl)] — e, z; < mf(ﬂl) — with

probability fB1;

e x1 € [z, 25 (B)] - ie., z, < z}t(B,) — with
probability 3,,.

The probability that ¢-th inequality fails is equal to
1—0;, hence the probability that one of n inequalities
fail cannot exceed the sum of these probabilities, i.e.,
<(1-=p1)+...+ (1 —B,). Thus, with probability

>1=((1=61)+...+(1=5p)) = fi+...+Bn—(n-1),

all n inequalities hold, i.e., z; < 2 (81), ..., and
z, < zt(B,). Since the function f(z1,...,2,) is
non-decreasing, we conclude that with probability
max(0,0; + ...+ B, — (n — 1)), we have

y=f(@1,...,2a) < f@F (Br), -, 2 (Bn))-

Thus, we have a bound that bound y from above with
probability By - ... - B,. In particular, if we select (;
for which the product is equal to 3, we get the bound
corresponding to the given 3.

One such bound is easy to find: with probability > 3,
we have y < yT. Our goal is to find the smallest of
such bounds, so we can take

y* (8) = min f(zf (B1), ..., 25 (Ba)),  (3)

where minimum is taken over all values 81,..., 08,
for which max(0,81 +...+ 8, — (n—1)) = 3.

Similar to the independent case, we can thus con-
clude that if we form:

e a fuzzy number X; (with membership func-
tion p(x1)) from the confidence intervals cor-
responding to z1,

e another fuzzy number X, (with membership
function paz(x2)) from the confidence intervals
corresponding to xs,

e etc.

then the fuzzy number Y formed by the result-
ing confidence intervals for y can be obtained from
Xi,...,X, by applying Zadeh’s extension princi-
ple (2) — albeit with a different t-norm t(a,b) =
max(a + b —1,0). In short:



e if the probabilities are independent, then we
should use the algebraic product

t(a,b) = a-b;

e if we have no information about the possible cor-
relation, then we should use

t(a,b) = max(a + b —1,0).

10 The relationship between
confidence intervals and fuzzy
data processing is very useful

The above relationship between nested confidence in-
tervals and fuzzy numbers is, in our opinion, method-
ologically interesting, because they provide one more
case when the formulas of fuzzy logic, formulas orig-
inally designed to handle human uncertainty, can be
also used to solve well formulated and mathemati-
cally well-defined practical problems.

This relationship is also practically useful because we
can now apply the multi-decade experience of com-
puting extension principle formulas to solve problems
with purely statistical uncertainty.

It is worth mentioning that a similar example of use-
fulness of fuzzy formulas in solving purely statistical
problems (planning, including robotic planning) was
presented in our paper [8].

11 From intervals to p-boxes

Confidence intervals appear not only when we mea-
sure a physical quantity, they also appear when we
reconstruct the value of the probability (or of any
other physical characteristic) from the sample; see,
e.g., [9].

For example, when we reconstruct a cumulative dis-
tribution function (CDF) from the sample, then
Kolmogorov-Smirnov inequalities enable us to pro-
vide bounds for the actual CDF (called probability
bozes, or p-boxes) with a certain confidence interval.
Thus, we have a nested collection of bounds corre-
sponding to different confidence probabilities. Such
a nested collection is called hybrid number in [1].

There are methods which enables us, knowing p-
boxes for z1 and z2, to find the p-box containing

the CDF for f(z1,z2); see, e.g., [7). We must there-
fore extend these methods to the case when, instead
of p-boxes, we have a collection of p-boxes corre-
sponding to different confidence probabilities. Here
too formulas based on extension principle work.
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