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(Consistent with Data) a Good Idea?
A Simple Explanation
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“Everything should be made as simple as possible, but not simpler.”
A. Einstein, Autobiographical Notes [3]

When there are several different hypotheses that can explain an observed phenomenon, which
of these hypotheses should we choose?

Occam, a well known 13th century philosopher, was the first to formulate a natural idea:
choose the simplest of these hypotheses. This principle has been successfully used in many
areas of science.

Occam’s principle works very well: why?

In many cases, this Occam’s principle is in good accordance with common sense. For exam-
ple, when we observe that the amount NV; of the radioactive material decays exponentially
with time ¢ — i.e., that for some constant a, we have N; = exp(—a - t) for t = 1,2,...,T
— then it is natural to select the hypothesis that NV, = exp(—a« - t) for all ¢, although from
the purely mathematical viewpoint, a hypothesis that, say, NV, = exp(—« - t) for ¢t < T and
N; = cos(In(t)) for ¢ > T would be also equally good in explaining all the data.



Occam’s principle is deeper than such common sense examples. Not only it works well
in physics, but, e.g., the authors of a recent survey [2] on expert estimates noted, to their
surprise, that the simplest models explaining the original expert estimates turned out to be
the best in fitting the following data as well.

How can we explain this unexpected efficiency of Occam’s principle?

Existing explanations of Occam’s principle: what’s good, what’s bad, and what
we are planning to do. Occam’s principle has a nice insightful explanation within Algo-
rithmic Information Theory — i.e., theory of Kolmogorov complexity; see, e.g., [1, 6].

The connection between Occam’s principle and Kolmogorov complexity dates back to
pioneer papers [7, 8] by R. J. Solomonoff — one of the three founders (with A. N. Kolmogorov
and G. J. Chaitin) of this area. This explanation, however, is somewhat technical and
requires technical-level understanding of Kolmogorov complexity.

For probabilistic physical theories, the technicality of the existing explanations is probably
unavoidable. Indeed, before we proceed with any such explanation, we need to first formalize
what it means for a probabilistic theory to be consistent with the observations (i.e., whether
the observations are random relative to the probability measure predicted by the theory).
The necessity for such formalization is what started Kolmogorov complexity in the first place.

The main objective of this paper is to give a simple explanation for Occam’s principle for
determanistic physical theories, an explanation that would be more accessible to researchers
outside theory of computing.

Our explanation of Occam’s principle: definitions and the main results. Let O
and H be two countable sets. Elements of the set O will be called observations, elements of
the set H will be called hypotheses.

For simplicity, we will consider discrete time, with time moments 1, 2, ..., n, ... The set
of all possible moments of time will be denoted by T'= {1,2,...}.

Let p : H x T — O be a function called prediction function'. We say that a hypothesis
h predicts observation p(h,t) at time ¢.

We assume that different hypotheses lead to different predictions, i.e., that if h # A,
then p(h,t) # p(h',t) for some moment of time ¢t € 7.

Let C : H — N be a function that assigns to every hypothesis a natural number. We
will call the value C'(h) a complexity of the hypothesis h. We will require that for every
hypothesis h, there are only finitely many hypotheses ' € H that are simpler than A (i.e.,
hypotheses for which C(h") < C(h)).

By data, we mean a sequence of observations oy,...,0, € O. We will say that o; is the
observation at moment t.

We say that a hypothesis h is consistent with the data o4, ..., o0, if for every ¢ from 1 to
n, we have p(h,t) = o;.

We assume that there exists an actual world history, i.e., an infinite sequence of obser-
vations 0q,...,0,,... We assume that the class H contains the correct hypothesis, i.e., a
hypothesis hq that is consistent with all the observations (to be more precise, a hypothesis

I'While in practice, we would expect this function to be computable, in our derivation, we do not make
any assumptions about the computability of the functions involved.



for which p(ho,t) = o, for all t). Since we assumed that different hypotheses lead to different
predictions, there is only one correct hypothesis.

For every time ¢, the correct hypothesis is consistent with the observations oy,...,0;. In
addition to the correct hypothesis, we may have several other hypothesis consistent with the
same observations. Based on these observations, we do not know which of these hypotheses
is correct, so we must select one of them. Occam’s principle says that at each moment of
time t, we select the simplest of all the hypotheses h that are consistent with the observations
01,--.,0; (i.e., the hypothesis with the smallest possible complexity C'(h); if there are several
simplest hypotheses, we select one of them arbitrarily).

It turns out that if we follow Occam’s principle, then, eventually, we will pick the correct
hypothesis. On the other hand, if we consistently pick a non-simplest hypothesis, we may
never select the correct hypothesis. Let us formulate these results in more precise form (and
prove them):

Theorem 1. Let 01,...,04, ... be an actual world history. If at every moment of time
t, among all hypotheses which are consistent with the observations o1,...,0;, we select the
simplest one (or one of the simplest ones), then there exists a moment of time to after which
we always select the correct hypothesis.

Theorem 2. If for some actual world history, for every t, among all hypothesis which are
consistent with the observations o1, ...,0;, we select a hypothesis which is not the simplest,
then there exists a time ty after which we will never select a correct hypothesis.

Comment. From the purely mathematical viewpoint, it is possible that for some %, there is
only one hypothesis consistent with observations oy, ...,0;. In this case, Theorem 2 is true
by default. In practice, however, there are always many hypotheses consistent with given
data.

Proof of Theorem 1. Let hy be the correct hypothesis. Due to the property of the com-
plexity function, there exist only finitely many hypotheses hq, ..., h,, that are simpler than
hy, i-e., for which C(h;) < C(hg). Since different hypotheses lead to different predictions,
for each of these hypotheses h;, there exists a moment of time ¢; for which its prediction is
different from the prediction of the correct hypothesis hy, i.e., for which p(h;,t;) # p(ho, t;)-

Let t def max(ty,...,t,), and let us show that for every t > ty, hg is selected. Indeed,
the correct hypothesis hg is clearly consistent with all the observations o1,...,0;. Since we
select the simplest hypothesis consistent with the observations, we must now show that for
any h # hg such that C(h) < C(hy), the hypothesis A is not consistent with oq,...,0;. The
only hypotheses h for which C'(h) < C(hg) are hq,...,h,. For each of these h;, we have
p(hi, t;) # p(ho, t;). Since hy is correct, we have p(hg,t;) = oy, hence p(h;, t;) # oy,. Due to
our choice of ty, we have t; < ty < t, hence the hypothesis h; is not consistent with one of
the observations oy, ..., 0, — namely, with the observation oy,.

The theorem is proven.

Proof of Theorem 2. In the proof of Theorem 1, we have shown that there exists a moment
to such that for all consequent moments of time ¢ > t,, the correct hypotheses is the simplest
hypothesis among all hypotheses which are consistent with the observations oy, ..., 0;. Since,
by assumption, we always select a hypothesis that is not the simplest, this means that for



all such moments of time ¢ > ¢,, we are not selecting the correct hypothesis. The theorem
is proven.

Comment. Our proofs are clearly applicable to Kolmogorov complexity C'(h): indeed, the
Kolmogorov complexity is, by definition, the shortest length of a program computing h.
There are only finitely many shorter programs and therefore, only finitely many hypotheses
of smaller Kolmogorov complexity.

It is worth mentioning that in the above proofs, the function C(h) does not have to
be Kolmogorov complexity, it can be any function — provided that for every hypothesis A,
there are only finitely many hypotheses A’ € H with smaller values of C(h') (i.e., for which
C(h') < C(h)).

Thus, our results cover not only the natural idea of selecting the simplest hypothesis, but
— arguably — similarly natural philosophical ideas produced by physicists, such as (Einstein’s
favorite) selecting the most beautiful hypothesis (in Einstein’s words, “The pursuit of truth
and beauty”). Here, C'(h) is the degree to which A is not esthetically pleasing (for attempts
to formalize this notion in Kolmogorov complexity-related terms, see, e.g., [4, 5]).
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