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Abstract

We show that the need to maintain privacy in statistical databases
naturally leads to interval computations, and provide feasible algorithms
for the corresponding interval computation problems.

1 Privacy in Statistical Databases: A Problem

1.1 What is a Statistical Database

Privacy is an important issue in the statistical analysis of human-related data.
For example, to check whether in a certain geographic area, there is a gender-
based discrimination, we can use the census data to check, e.g., whether for all
people from this area who have the same same level of education, there is a corre-
lation between salary and gender. One can think of numerous possible questions
of this type related to different sociological, political, medical, economic, and
other questions. From this viewpoint, it is desirable to give researches ability
to perform whatever statistical analysis of this data that is reasonable for their
specific research.

On the other hand, we do not want to give them direct access to the raw
census data, because a large part of the census data is confidential. For exam-
ple, for most people (those who work in private sector) salary information is
confidential. Suppose that a corporation is deciding where to built a new plant
and has not yet decided between two possible areas. This corporation would
benefit from knowing the average salary of people of needed education level in
these two areas, because this information would help them estimate how much
it will cost to bring local people on board. However, since salary information
is confidential, the company should not be able to know the exact salaries of
different potential workers.



The need for privacy is also extremely important for medical experiments,
where we should be able to make statistical conclusions about, e.g., the efficiency
of a new medicine without disclosing any potentially embarrassing details from
the individual medical records.

Such databases in which the outside users have cannot access individ-
ual records but can solicit statistical information are often called statistical
databases.

1.2 Maintaining Privacy Is Not Easy

Maintaining privacy in statistical databases is not easy. Clerks who set up
policies on access to statistical databases sometimes erroneously assume that
once the records are made anonymous, we have achieved perfect privacy. Alas,
the situation is not so easy: even when we keep all the records anonymous, we
can still extract confidential information by asking appropriate questions. For
example, suppose that we are interested in the salary of Dr. X who works for
a local company. Dr. X’s mailing address can be usually taken from the phone
book; from the company’s webpage, we can often get his photo and thus find
out his race and approximate age. Then, to determine Dr. X’s salary, all we
need is to ask what is the average salary of all people with a Ph.D. of certain age
brackets who live in a small geographical area around his actual home address
— if the area is small enough, then Dr. X will be the only person falling under
all these categories.

Even if only allow statistical information about salaries s1, ..., s, when there
are several people within a requested range, we will still be able to reconstruct
the exact salaries of all these people if we ask for an average salary

s1+ ...+ 8¢
q )
and for several moments of salary (variance, third moment, etc): if we know the
values v; at least ¢ different functions f;(s1,...,s,) of s;, then we can, in general,
reconstruct all these values from the corresponding system of g equations with
g unknowns: fi(si...,84) =01, ..., fe(s1,...,8¢) = vg.

At first glance, moments are natural and legitimate statistical characteristics,
so researchers would be able to request them, but on the other hand, we do not
want them to be able to extract the exact up-to-cent salaries of all the folks
leaving in a certain geographical area. What restriction should we impose on
possible statistical queries that would guarantee privacy but restrict research in
the least possible way?

A similar problem occurs in security: for example, we want to be able to
publish statistical data about testing of a new plane without enabling potential
competitors (or, even worse, potential enemy) to extract the original data and
thus, gain a detailed insight into the design of this new plane. This issue was a
big concern in the Soviet Union, and even there — as one of the authors (VK)



has personally witnessed — there have been spectacular security lapses. Two
anecdotal examples:

e The first example shows that by asking the values of sufficiently many
functions, we can potentially reconstruct all the — supposedly unavail-
able — data. VK was working at the Special Astrophysical Observatory,
Pulkovo, Russia, on Very Large Baseline Interferometry (VLBI). The main
idea of VLBI is that by observing the same distant source (e.g., quasar)
from different telescopes, we can determine, very accurately, the relation
positions of these telescopes, the time delay between the clocks, the exact
location of the observed sources, etc. Although in principle, it is possible
to determine the telescope’s coordinates a and § from these measurements
without any prior information, the more we know about these coordinates,
the fewer computations we need, and with GHz data (billions of bits per
second), computation time was a big concern. Good quality coordinates
of all geographic objects were top secret — so that the “enemy” would not
be able to aim precisely. So, we could not get the actual values of a and
0. However, it turned out that while we could not be legally provided
with the actual values of a and 4, there was no legal restriction against
providing with us with necessary combinations of a and §. So, by asking
for the values of « - cos(d) and « - sin(d), we could easily reconstruct both
“top secret” values.

e Another example is that sometimes, the very fact that some information is
concealed discloses some supposedly secret information. In the Ukrainian
city of Dnepropetrovsk, like in many other Soviet cities, there were quite
a few military plants. It was known that one of these plants produces
the most secret devices — intercontinental missiles. We common folks
were not supposed to know where these plants are located, especially we
were not supposed to know where the missiles were produced. To ensure
this protection, all military plants had no signs outside — which, of course,
achieved the opposite effect of telling us immediately where military plants
are located. But, to ensure that the missile plant is doubly protected, the
authorities not only made sure that this plant had no sign outside — they
also deleted it from the freely available city maps. The result, of course,
was the opposite to what was intended: by investing 20 kopecks or so into
a local city map, one could easily detect a missile plant as the only plant
that was not on the published city map.

1.3 What Is Known, and What We Are Planning to Do

These are anecdotal example of poorly designed privacy and security, but, as we
have mentioned, the problem is indeed difficult: many seemingly well-designed
privacy schemes later turn out out to have unexpected privacy and security
problem. For different aspects of the problem of privacy in statistical databases,



and for different proposed solution to this problem and their drawbacks, the
readers is referred to [1, 2, 3, 4, 5, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24]; an extended bibliography of pre-1980s papers appears in Chapter 6 of
[2].

That the privacy problem is really difficult was confirmed by the fact that
several formalizations of this general privacy problem turned out to be, in their
general formulations, NP-hard [2].

In this paper, we consider several simple cases of this problem. We start
with the simplest possible of the privacy problem, the case when from each
individual, we collect a single real number: the value of a real-valued character-
istic. We show that for this simple problem, privacy naturally leads to interval
computations. Then, we show how this result can be extended to the case of
several characteristics.

2 Privacy in Statistical Databases Naturally
Leads to Interval Computations

A natural way to fully describe a single real-valued random variable 5 is to
provide the values of its cumulative density function (CDF) F(z) = Prob(n < z)
for all possible real numbers z. Once we know F(z), we can determine the values
of all possible statistical characteristics of this random variable — e.g., its first
moment, second moment, variance, etc. Thus, it is natural to allow the users
to solicit the values of F(z) for different x; from this information, the users will
be able to reconstruct all other statistical characteristics.

For discrete data z1,...,z,, the corresponding sample distribution — in
which each value z; occurs with probability 1/n — is described by the CDF
F(z) for which
_#iix <z

Fla) = 2

(1)

To get the full information about the data, we should allow the user to
ask for the values F'(z) for all possible real numbers z. However, since we are
worried about privacy, we may want to restrict possible queries to only some
real values z. Let us formulate privacy in more precise terms. Suppose that
we already have a partial information about one of the values z;, e.g., that we

know bounds for z;: z; € a def [a,a]. Perfect privacy means that after the user
asks all allowed queries about different values of F'(z), the user will not be able
to get any additional information about z; — i.e., the user will not be able to
deduce a narrower interval containing x;. Let us describe this requirement in
precise terms.



Definition 1.

e By a 1D statistical database, we mean a finite sequence 1, ...,%, of real
numbers.

e By a query policy, we mean a subset X C R of the set of all real numbers.

e For a given query policy X and a given 1D statistical database, by query
results, we mean the values F(x) (described by formula (1)) for all z € X .

If we allow all possible queries, i.e., if the query policy is X = R, then, from
the query results, we can reconstruct all n values zy,...,x,: indeed, they are
exactly the values z at which the function F(z) is discontinuous (“makes a
jump”). Since we are only allowing some queries (X # R), from the query
results, we may not be able to reconstruct the original 1D statistical database;
in other words, it may happen that two different 1D statistical databases lead
to the same query results.

Definition 2.

e We say that a formula can be deduced from the query results F(z), x € X,
if this formula holds for all 1D statistical databases that lead to given
query results.

e Let X be a query policy, and let {z1,...,z,} be a statistical database.
By a privacy violation, we mean a triple consisting of an integer i and of
two intervals b C a (b # a) for which the formula

(z; € a) = (z; € b)
can be deduced from the corresponding query results.

o We say that a given query policy X maintains perfect privacy for a given
1D statistical database {x1,...,z,} if no privacy violations are possible
for the corresponding query results.

It turns out that if a query policy maintains perfect privacy, then we can make
the following conclusion about it:

Proposition 1. If a query policy X maintains perfect privacy for a statistical
database {x;}, then between every two values xz,x' € X, there is at least one
value x;.

Proof. The proof is by reduction to a contradiction. Let us assume that there
exist values ' < 2" from X for which there is no z; in the interval (z',z""]. Let
us show that in this case, we have a privacy violation.

Indeed, since there are no values z; inside the interval (z',z"'], all the values
z; are either smaller than or equal to z' or larger than z"”. Without losing



generality, let us assume that there are values z; < z'. Let z; be the largest
of such values, i.e., ; < 2’ and there are no other values z; inside the interval
[zj,2']. Let z < z; be any real number which does not exceed z;. Let us show
that in this case, the triple

(j,a=[z,2"],b=[z,2'])

is a privacy violation.

Indeed, let us assume that we know that z; € a. Query results include
the values F(z') and F(z"). Since there are no values x; between z' and z"”,
we have F(z') = F(z"). Vice versa, from the query results, we conclude that
F(z") = F(2") and thus, we conclude that there are no values z; in the interval
(«',2"]. Thus, once we know that z; € a = [z,2"], we can use the fact that z;
cannot be inside (z',2"] and thus, conclude that z; € [2,2'].

The existence of a privacy violation contradicts to our assumption that the
query policy X maintains perfect privacy. This contradiction shows that our
initial assumption was false and therefore, that between every two values z, z' €
X, there is at least one value x;. The proposition is proven.

Due to Proposition 1, if we sort n values into a sequence z(;) < z(2) < ... <
Z(n), we can conclude that in each of n + 1 interval (—o0,z(1)], (1), Z2)]; ---
(T(n=1), T(n)]; (T(n),00), there is at most one element z € X. Thus, the set X
of allowed queries consists of no more than n + 1 values.

Let us sort these allowed values into an increasing sequence X =
{z® .. 2™ where 2V < 2? < ... < (™. After getting answers to
the corresponding queries, all we know is the values F(z(?), i.e., how many of
z; are < (). In other words, the only information that we get about x; is
how many of these values are in (—oo,z(")], how many are within the interval
(M, 2?], how many are within the interval (z(*), z(3)], etc. — but we do not
know where exactly on these intervals are there values located.

In other words, instead of the actual values z;, all we know is intervals that
contain these values. In practice, it is convenient to consider closed intervals,
so we have intervals (—oco, z(1], [z(1), ()], etc. It is important to mention that
these intervals are almost disjoint in the sense that every two of them either
coincide, or have no intersection at all, or their intersection is a single point.

Based on the values F'(z), we must determine other statistical characteristics.
If we knew all the values F'(x), x € R, then we would be able to reconstruct
the actual values z;, and thus, we would be able to compute the sample average
E, the sample variance V, etc. Since we are only allowed to ask queries F(x)
for x € X, we can only deduce the intervals that contain xz;; based on these
intervals of possible values of x;, we must therefore find the intervals of possible
values of E, V, etc. The problem of computing such intervals is a particular
case of the general problem of interval computations — where we have a function
f(z1,...,2,), we know the intervals x; of possible values of the inputs z;, and



we must find the range y of possible values of f(z1,...,z,) when z; € x;. Thus,
privacy in statistical databases naturally leads to interval computations.

3 Specific Interval Computation Problems Re-
lated to Privacy in Statistical Databases, and
How to Solve Them

Before we start describing algorithms for solving the corresponding interval
computation problems, let us first mention that for some values z;, we have
infinite intervals — with the possibility of arbitrarily small or arbitrarily large
values. Thus, even for the simplest statistical characteristic — sample average

T+t
- o

E (2)
the set of possible values of E simply coincides with the entire real line R. To
get non-trivial estimates, we must ignore the smallest and the largest values —
for which no containing interval is known — and only consider values which are
bounded by intervals.

For the average (2), once we know the intervals x; = [z;,7;] that contain z;,
we can easily find the range E = [E, E] of possible values of E:
+...43, = Tit...+T,

; .

E =
n n

E=2

The problem of estimating the range V = [V, V] of the sample variance

(x1 —E)Y? +...+ (z, — E)?

V= n—1

3)

when z; € [z;,T;] is not so easy: while there is a feasible algorithm for computing
the lower bound V of this range, the general problem of computing the upper
endpoint V of this range for z; is known to be NP-hard [6, 7, 12, 14]. Tt turns
out, however, that for specific case of intervals coming from privacy, a special
feasible algorithm is possible that computes V:

Proposition 2. There ezists a quadratic-time algorithm that computes the exact
range V of the variance V for the case when intervals x; of possible values of
x; are pairwise almost disjoint.

Proof. Since there exists an algorithm that computes V. in feasible time (see,
e.g., [6, 7]), it is sufficient to produce a feasible algorithm for computing V.
According to the proof of Theorems 4.1 and 4.2 from [6], the values z; € x;

that lead to the largest possible value of V satisfy the following property:

o if £ < g, then z; = T;;



o if £ > %;, then z; = ;5
o if £ € (z;,T;), then z; = g, or z; = T;.

In order to use this property to compute V, we test all possible locations of E
in relation to the intervals x;: E = z,;, E = T;, and E € (z;,T;) for different
1i=1,2,...,n.

Let us first consider the cases when E = z; (the case when E = T; is treated
similarly). In these cases, since the intervals x; are almost disjoint, the above
property uniquely determines the values x;; thus, we can compute F, check
whether it indeed satisfies the corresponding condition, and if yes, compute the
corresponding value V.

Let us now consider the cases when E € (z;,Z;). Let k denote the number
of different intervals of such type, and let n;, j = 1,...,k denote the number of
intervals x; that coincide with j-th interval. Then, n = ny + ...+ ng. For each
of these k intervals x;, the values of z; are uniquely determined when 7; < z;
or 7; < z;; for the remaining n; values x;, we have z; = 2, or z; = ;. Modulo
transposition, the resulting set of values {z1,...,%,} is uniquely determined by
how many of these n; x;’s are equal to ;. The number of such z;’s can be 0, 1,
2,..., nj + 1. Thus, the total number of such combinations is equal to n; + 1.
Overall, for all j from 1 to k, we have

k k
(nj+1):an+k:n+k§2n
j=1 j=1
resulting sets {x1,...,2,}. For each of these sets, we compute E, check that

the resulting F is indeed inside the corresponding interval x;, and if it is, we
compute V.

Thus, we have < 2n+n = 3n cases, for each of which we need O(n) compu-
tations to compute V. The largest of these V is the desired V, and we compute
it in time < 3n - O(n) = O(n?). The proposition is proven.

A similar algorithm can be proposed for computing covariance

1 n
CZE'Z(%—E)'(ZH—Q), (4)
=1
where
j:a:1+...+mn; g:y1+...+yn‘
n n

In general, the problem of computing the range C of covariance C' over intervals
x; and y; is NP-hard [6, 7, 12, 14]. It turns out, however, that for specific case
of intervals coming from privacy, a special feasible algorithm is possible that
computes C:



Proposition 3. There exists a cubic-time algorithm that computes the exact
range C of the covariance C for the case when intervals x; of possible values of
x; are pairwise almost disjoint, and the intervals y; of possible values of y; are
pairwise almost disjoint.

Proof. Let us describe the algorithm for computing the largest possible value
C of the covariance C' (the problem of computing minimum can be reduced to
computing maximum if we take y} def y; with intervals y; = —y;).

Let 1,-..,%Zn,Y1,---,Yn be values for which which the covariance C' attains
its maximum. The covariance function is linear with respect to each of its 2n
variables; therefore, this maximum is attained either for z; = ¥; or for z; = g;
— depending on whether the function C increases or decreases as a functions of
z; (same for y;).

The derivative of C' with respect to z; can be easily computed as follows:

aC _ 1 IR IR _
o, = n Wi - 5 2 w9

n
Since Z(y] —g) = 0, we conclude that
j=1

oc 1

oz, — 5 W)

Thus:

e when y; > ¢, we have > 0 hence z; = T;;

6231'

e when y; < ¢, we have < 0 hence z; = z,.

Ox;
Hence:

e when Y, > ¥, we have y; > Y, > ¢ hence z; = T;;

e when y; < ¢, we have y; <¥; < ¢ hence z; = z;.
Similarly:

e when z; > T, we have y; = ¥;;

e when z; < Z, we have y; = Y,

Due to these implications, to find the largest possible value C of the covariance
C, it is sufficient to consider all k; - k, possible cases when z € x; and when
Y € y;, where k; is the number of different intervals x;, and k, is the number of



different intervals y;. For each of these cases, similarly to the proof of Propo-
sition 2, there are n;(y) + 1 possible situations with & and ng(z) + 1 psosible
situations with y: the total of < (ng(z) + 1) - (n;(y) + 1). The overall number

of resulting combinations x1, ..., Ty, Y1, .- -, Yn is therefore bounded by
DY (@) +1) - (ny(y) +1) = (Z(nk(w) + 1)) Y +1) ) <
Jj ok k J
2n - 2n = O(n?).

For each of these cases, we need O(n) arithmetic operations ot check whether
the resulting values ¥ and ¢ are indeed within the corresponding intervals and,
if they are, to compute C. Thus, we need O(n?) - O(n) = O(n3) computational
steps to compute C as the largest of these O(n?) values. The proposition is
proven.
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