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Abstract

In practice, in addition to the intervals x; = [z;, ;] of possible values
of inputs z1,...,Z,, we sometimes also know their means E;. For such
cases, we provide an explicit exact (= best possible) upper bound for the
mean of the product z1 - ... -z, of positive values x;.

1 Formulation of the Problem

Case study: practical problem from ecology. In many ecological applica-
tions (see, e.g., [2] and references therein), we have some information about
the (positive) parameters zi,...,Z,, and we are interested in the product
Yy =1x1 ... T,. For example, pollutant often comes from the industrial source
to, say, a lake, via a chain of transitions, so the resulting concentration can be
estimated as x; - T2 - ... - &,, where x; is the original pollutant amount and
the parameters x; (i > 2) describe what portion of the pollutant goes from one
link to the next one. For example, 5 may describe the portion of the pollutant
that seeps into the soil, z3 the portion of the soil pollutant that goes from the
soil into the creeks, and x4 describes the portion of the creek’s pollutant that
stays in the lake. For each of these parameters, we usually know the interval
x; = [z;,%;] of possible values.

In addition to the intervals x; = [z;,T;] of possible values of z;, we often
know the mean values E;. Our goal is then to find the interval of possible values
of the product y, and the bounds on the mean of this product.

Since in ecological problems, we are mainly interested in the worst-case es-
timates, so we mainly interested in the upper bound 7 for the interval y and in



the upper bound E for the mean E.

Particular case when we only know intervals. If for each variable z;, the
only information we have is an interval [z;, T;] of possible values, then the only
thing that we can conclude about the product y is that it belongs to the interval
[y,7], wherey =z, - ... -z, and Y =Ty - ... Tp,.

~ This problem is a simple particular case of interval computations [4, 5];
more precisely, it is a particular application of interval computations to indirect
measurement, when we are interested in the value of some quantity y that is
difficult (or even impossible) to measure directly). To estimate y, we therefore
measure the values of several easier-to-measure quantities z1,...,z,, and then
use the known relation y = f(z1,...,2,) between x; and y to reconstruct the
value y as y = f(Z1,...,Ty), where T; is the result of measuring z;.

In many real-life situations, the only information that we have about the

def ~ . .
measurement error Az; = T; — x; is that this error cannot exceed a known

bound A, i.e., that |Az;| < A;. In such situations, after measuring z;, the
only information that we get about the actual (unknown) value of z; is that
this value belongs to the interval x; = [z;,%;] = [Z; — A4, T; + A;]. In this case,
we are interested in the interval y of possible value of y, i.e., in the range of the

function f(x1,...,2,) over the corresponding box x; X ... X Xp,.
Interval computations provide the exact range for the case when
f(z1,...,x,) is a simple arithmetic operation, and provide an enclosure for

the general case.

What if we also know expectations E; of variables z;: what is known.
In some practical situations, in addition to the upper bound on the measurement
error Az;, we have partial information about the probabilities of different values
within this interval. A very typical case is when we know the mean value of
this error. Thus, in addition to knowing the interval of possible values x; for
x;, we know the mathematical expectation E; for z; [6]. In such situations, in
addition to the interval of possible values of y = f(z1,...,2%,), we want to know
the range of possible values of the mathematical expectation E of y.

In [3], we have shown how to compute the exact range of E for the case when
f(z1,...,2,) is a simple arithmetic operation — i.e., when n = 2 and f(z1, z2)
is equal either to the sum 1 + x2, or to the difference x; — x5, or to the product
Ty - X2, etc. — and provide an enclosure for the general case.

How can we apply the known results to our ecological problem. In the
above ecological problem, in addition to the intervals x; = [z;,Z;] of possible
values of z;, we also often know the mean value F;. Our goal is then to find not
only the upper bound on the interval of possible values of the product y, but
also the upper bound E on the mean E of this product.

As we have mentioned, computing 7 is easy: since all the values x; are
positive, we have § = Z; - ... - Z,. When z; are independent, computing E is
also easy: in this case, E=E =FE; -...- E,.



The situation becomes less trivial in the general case when we cannot assume
independence, and we therefore have to consider all possible distributions on the
box x; X ...xX,. For this case, in principle, we can use algorithms presented in
[2] for a product of two variables, and, by applying this algorithm n — 1 times,
get estimates for x1 - x2, (1 - 23) - 23, ..., and finally, for y = z1 - ... - z,.

For our practical problem, it is desirable to have an explicit expression
for E. The problem with the approach that we have just described is that the
resulting algorithmic estimate cannot be easily described in an explicit form and
therefore, it is difficult to analyze — and the analysis of possible changes is one
of the main objectives of ecological research. It is therefore desirable to produce
an explicit easy-to-analyze expression for E. Such an expression is provided in
this paper.

2 Main Result

In formal terms, in this paper, we solve the following problem:

GIVEN: positive values z,, Z1, ..., Z,,, Tn, E1, ..., En,
FIND: the value

E = max{E(zy-...-z,)| all distributions of (zy,...,z,) for which
x1 € [21,%1),- .-, Tn € [Zy,Tn), E[z1] = Er, - .., Elz,] = E,}.

To describe the value E, we first compute the values p; def (Bi—z;)/(Ti—x;)
and then order the variables in the decreasing order of p;. Without losing
generality, we can assume that the variables z1,...,z, are already ordered in
this way, i.e., that p; > ps > ... > p,. Then:

E=01-p1) -z 29...-2,+

(p1—p2) " T1 Ty Tyt
+ (1)
(Pi —Piv1) "Tr- o T Tyyg t e Tyt
..+
PnTFi ... Tn.

The proof of this result is given in the Proofs section. Before we present
this proof, we will analyze the computational complexity of this algorithm, de-
scribe the intuitive meaning of the above formula, and present a (toy) numerical
example (that will be easy to trace by hand).



3 Algorithm for Computing E: Description and
Computational Complexity

At first glance, the formula (1) provides a straightforward algorithm for com-
puting E. Indeed, according to this formula, E is the sum of n + 1 products; so,
to compute E, we can simply compute all these products, and then add them
up. Of course, first, we compute the values p; (this requires O(n) steps), and
then sort the variables in the decreasing order of p;. It is well known that we can
sort a list of n elements in O(n - log(n)) steps; see, e.g., [1]. Once the sorting is
done, to compute each product, we need one subtraction and n multiplications
—i.e., n + 1 arithmetic operations. Thus, totally, we need (n + 1)? operations
to compute all the products — and n additions to add them up, to the total of
O(n?) operations.

This is reasonable when n is small, but when we have many factors, the
quadratic time algorithm may become too long. It turns out to be possible to
compute E much faster if we represent the formula (1) in the following equivalent
form:

E=0~-p1)-Oo+(p1—p2) i+ ...+ @i —piy1) i+ ...+ pn -, (2)

where we denoted

def _ _
Hiézl-...-mi-§i+1-...-gn. (3)
The advantage of this representation is that we do not need to use all n multi-
plications to compute each product II;: once we know II;, we can compute IT;_;
as

ZT.
o, =11, - =, (4)

i
Thus, we can compute E by using the following algorithm:

o First, we sort all the variables x; in the decreasing order of z;; this requires
O(n -log(n)) steps. After the sorting, we have p1 > pa... > p,

e Second, we compute II,, def T1 ... Tp; this computation requires n — 1 =
O(n) steps.
e After that, we consequently compute II,, 1, II,,_o, ..., IIg by using the

formula (4). Computing each new value of II; requires 2 arithmetic oper-
ations, so we have a total of 2n = O(n) operations.

e Finally, we compute F by using the formula (2): this computation requires
n subtractions, n + 1 multiplications, and n additions, i.e., totally, O(n)
operations.

Overall, this algorithm requires O(n -log(n)) + O(n) = O(n - log(n)) operations
— which, for large n, is much smaller than n2.



4 Intuitive Meaning of the Above Formula

The probability p; can be interpreted as follows: if we only allow values z; and
T;, then there is only one probability distribution on xz; for which the average is
exactly F;. In this probability distribution, the probability p[Z;] of Z; is equal
to pi, and the probability p[z;] of z; is equal to 1 — p;.

In general, when we have two events A and B with known probabilities

p(A) and p(B), then the probability of A& B can take any value from the

interval [p(A) & p(B), p(A) & p(B)], where a & b % max(a+b—1,0) and a & b &'

min(a, b) (see, e.g., [7]).

Let us explain where these formulas come from. Let us first show that
a & b = min(a, b) is indeed the largest possible value of p(4 & B) for all possible
pairs of random events A and B for which p(A) = a and p(B) = b. Indeed:

e Since p(A& B) < p(A) = a and p(A& B) < p(B) = b, we can conclude
that p(A & B) < min(a, b), i.e., that the probability p(A & B) cannot ex-
ceed min(a, b).

e So, to complete the proof, it is sufficient to show that there exist events
A and B for which p(4) = a, p(B) = b, and p(A& B) = min(a,b). To
produce such events, let us consider a random variable £ that is uniformly
distributed on the interval [0,1]; for this random variable, we can define
A and B as follows:

o Ais trueif £ € [0,a], and
e B to be true if £ € [0, b].

In this case, A& B means that £ belongs to both sets, i.e., that £ €
[0,a] N [0,b] = [0, min(a,b)]. By definition of a uniform distribution, here,
p(A) = a, p(B) = b, and p(A& B) = min(a,b) — so min(a,b) is indeed
possible.

Similarly, one can show that a &b = max(a + b — 1,0) is the smallest possible
value of p(A& B) for all possible pairs of random events A and B for which
p(A) = a and p(B) = b. Indeed:

e It is known that for every two events A and B, we have p(A& B) =
p(A) + p(B) — p(AV B). Since p(4) = a, p(B) = b, and p(AV B) < 1,
we can conclude that p(A& B) > a + b — 1. Since p(A& B) > 0, we
can therefore conclude that p(A & B) > max(a + b — 1,0), i.e., that the
probability p(A & B) cannot be smaller than max(a + b — 1,0).

e To complete the proof, it is sufficient to show that there exist events A
and B for which p(A) = a, p(B) = b, and p(A & B) = max(a+b—1,0). To
produce such events, let us consider the same random variable £ uniformly
distributed on the interval [0, 1] as we considered for &; we can define A
and B as follows:



o A is the same as before: A is true if £ € [0, a;
e b is defined differently: B is true if £ € [1 —,1].
In this case, p(4) = a, p(B) = b, and A & B means that £ belongs to both

sets, i.e., that £ € [0,a] N [1 — b, 1]. The probability p(A & B) depends on
whether these two intervals intersect:

e When a < 1-b,e.g., when a+b < 1, the intersection is empty hence
p(A& B) =0.

e When a > 1 — b, the intersection is equal to the interval [1 — b, a] of
width a — (1 —b) = a+ b —1, so the probability p(A & B) is equal to
a+b-—1.

In both cases, p(A & B) = max(a+b—1,0) — so the value max(a+b—1,0)
is indeed a possible value of p(A & B).

Thus, we can introduce a natural notation —p defy _ p and rewrite the above
formula as follows: .
B-Y m

where, for I = {iy,...,ix} and N — I = {j1,..., 51}, we denoted:

Ejdéf(pz'lg...gpik)&(—'pjlg...&ﬁpjl)-fz’l-...-Tik-.’LV RN

=71 =5

Indeed, we have o o
Diy &... &pik = min(piu s apik)a
Pi1 g .- g_'pjl = mln(l —Pjis-- 1 _p]l) =1- ma‘x(pjla' -- 7pjl)7
and therefore, a p;-dependent factor in E; can be rewritten as
ma‘x(min(pil PR 7pik) - ma‘x(p,h PR 7pjl)7 0)

The only possibility for the corresponding difference to be > 0 is when each
value p;,, is larger than each value p;, — in other words, when all the values
Diy»- -+, Pij, precede all the values p;,,...,pj, in the decreasing order of p;.

5 Numerical (Toy) Example

To illustrate our algorithm, let us consider the following simple example. Sup-
pose that we have 3 variables x1, z2, and z3. We know:

e that z; € [1, 3], with the mean E; = 2;

e that x5 € [1,6], with the mean E; = 3; and



o that z3 € [10,2], with the mean E3 = 17.
In this case, the range of possible values of the product y = 21 - z2 - x3 is
[1,3]-[1,6]-[10,20] =[1-1-10,3-6-20] = [10, 360].

What is the largest possible value E of the mean of y? According to our algo-
rithm, first, we compute the values p;. Here,

El—gl _2—1_

=g T3-1°

0.5.

Similarly, we compute p» = (3—1)/(6—1) = 0.4 and p3 = (17—10)/(20—-10) =

0.7.
Then, we sort the variables z; in the decreasing order of p;. Here, 0.7 >

0.5 > 0.4, so the original variable z3 is now the first variable, the original x;
is now the second one, and the original x5 is now the third one. If we list the
variables in this new order, then these variables are:

e 11 with range [10,20], with E; =17 and p; = 0.7,
e 1z, with range [1, 3], with Ey = 2 and p; = 0.5;
e 13 with range [1, 6], with E3 =4 and p; = 0.4.
For these variables, we compute
II, =13 =% -T2 - T3 = 20 - 3 - 6 = 360.

After that, we consequently compute

1
n2=n3-§—3=360-6=60;

T3
1
M, =122 =60-> = 20;
ZIo 3
T 10
Mo =1I; - =L =20- — = 10.
0= g 0-90=10

Finally, we compute

E=1-p1) Mo+ (p1 —p2) -1 +p2-Ia =

(1-0.7)-10+(0.7—0.5)-20+ (0.5 —0.4) -60+0.4-360 = 3+ 4 + 6 + 144 = 157.

As we will see from the proof, this value is attained for the following joint
probability distribution on the set of all possible vectors (z1,z2, x3):

e with probability 0.3, we have 1 = 10, 2 = 1, and z3 = 1;



e with probability 0.2, we have z; = 20, 2 = 1, and z3 = 1;
e with probability 0.1, we have z; = 20, 2 = 3, and z3 = 1;
e with probability 0.4, we have z; = 20, 2 = 3, and z3 = 6.

One can easily check that for this distribution, E[z1] = 17, E[zs] = 2, E[z3] = 3,
and E[zy - z2 - z3] = 157.

6 Proof of the Main Result

1°. To get the desired bound for E, we must consider the values E[z; - ... zp)
for all possible probability distributions on the box x; X ... x x, for which
Elz1]) = Eu, ..., E[z,] = E,. To describe a general probability distribution,
we must use infinitely many parameters, and hence, this problem is difficult to
solve directly.

To make the problem simpler, we will show that a general distribution with
E[z;] = E; can be simplified without changing the values E[z;] and E[z; -. .. -z,].
Thus, to describe possible values of E[z1 - ... - z,], we do not need to consider
all possible distributions, it is sufficient to consider only the simplified ones.

We will describe the simplification for discrete distributions that concentrate
on finitely many points /) = (mgj), e ,a:%j)), 1 < j < N. An arbitrary proba-
bility distribution can be approximated by such distributions, so we do not lose
anything by this restriction.

So, we have a probability distribution in which the point (1) appears with
the probability p("), the point z(® appears with the probability p(®, etc. Let
us modify this distribution as follows: pick a point z() = (mg),azgj ), ...) that
occurs with probability p(¥), and replace it with two points: ZU) = (z, xgj ), o)
with probability p@ - p) and ) = (z,,2%,...) with probability p@ - pd),
where ) B

_(4) def Ty~ — Iy
p(J) = s




Here, the values pU) and Q(j) = 1 —p are chosen in such a way that
P97 +p) gy = 27, Due to this choice,
pD - p@ gy +pli) . pl) g = p@ z,

hence for the new distribution, the mathematical expectation E[z;] is the same
as for the old one. Similarly, we can prove that the values E[z2], ..., E[z,],
and E[zy - ... z,] do not change.

We started with a general discrete distribution with N points for each of
which a:g] ) could be inside the interval x;, and we have a new distribution for
which < N — 1 points have the value z; inside this interval. We can perform a
similar replacement for all N points and get a distribution with the same values
of E[z1], ..., E[zy], and E[z; - ... - z,] as the original one but for which, for
every point, x; is equal either to z,, or to Tj.

For the new distribution, we can perform a similar transformation relative
to 1 and end up — without changing the values z1 — with the distribution for
which always either zo = 2, or 2 = Ts:

7)

Similarly, we can perform such a transformation for z3, etc. Thus, instead of
considering all possible distributions, it is sufficient to consider only distributions
for which zy € {z,,%1}, ..., z,, € {2,,T,}. In other words, it is sufficient to
consider only distributions which are located in 2" corner points of the box
X1 X ... X Xy




2°. Let us now show that, if we are looking for the maximum E of E, it is suf-
ficient to consider only distributions with the following property: for every two
points (¥ and 2() with non-zero probability, if xfj) < x,(cj ) for some coordinate
k, then wl(i) < xl(j ) for all other coordinates L.

We will prove this statement as follows. Let us assume that the above
property is not satisfied. This means that for some &k and /, we have wff) < mg )
and .'L"l(i) > a:l(j).

Let p(® > 0 and p'¥) > 0 be the probabilities of these two points. We will
show that, if with probability p % min(p®, p¥)), we “swap” the coordinates
of the points (9 and z), we thus increase (or keep unchanged) the value E.
Therefore, when we are looking for the maximum of E, it is sufficient to consider
only distributions for which the above property holds.

Specifically, let ki,...,%k; be coordinates for which :1:5;32 < a:gi , and let
(4) (9)
1

l1,...,ls be coordinates for which z;” > z;7°. With probability p, we replace

the points (¥ and z9) with two new points xSfe)w and wﬁje)w for which coordi-

nates k,, remain the same while the coordinates l; are swapped: 2t ()

) i ) ) i . new,km = mkm7
mi’e)w,km = mgfl , a:ffe)wili = ml(f), and a:ffe)wili = ml(:) It is easy to see that this

swap does not change the averages E[z;]. How does it affect the mathematical
expectation of the product E[z; - ... - z,]? The only two terms that changed
are terms corresponding to (¥ and z(/) with probability p:

e For the original points, the sum of these two terms is equal to

n n
: (H 0+ ] wﬁj)) =p- (-1 + 1),

z=1 z=1

where we denoted:

q s
i) def i i) def i
& [T o, 10 [T

m=1 t=1

q s
n o ] o, 1 Laf).

m=1 t=1

e For the new points, the corresponding sum is equal to
p- (@ - + 1) - m).

e Therefore, the difference between the new and the old values of
Elzy - ... z,] is equal to:

p- (HI(:) i Hl(j) + Hscj) i Hl(i) _ HS) . Hl(i) _ Hg,j) i Hl(j))‘

10



One can easily see that this difference is equal to
p- () -y - () — ).
By definition of k,,, we have :1:22 < 5’7592 ; multiplying these inequalities between
positive numbers, we conclude that 1'[5:) < H;cj ). Similarly, from xl(:) > xl(tj), we
conclude that Hl(i) > Hl(j). Thus, the difference between the new and the old
values is indeed non-negative.
The statement is proven.

3°. Due to Part 2° of the proof, for every two different points z(9) # 2(/):

e either xfci) < w,(cj) for all £ and w,(:) < xfcj ) some all k; we will denote this

(4)

e Or msj) < xgj) for all k and z; (@)

<z, some all k —i.e., z() < z(®.

So, the relation < defines a linear (total) order on the set of all the points
29, Without losing generality, let us assume that the points z(*) are ordered
according to this order, i.e., that

B <z@ < <),

By definition of <, we can conclude that for each coordinate k, we have:

xg) < w,(f) <...< arch).

In Part 1° of the proof, we have already shown that for every point z(?, each

coordinate ng) is equal either to smallest possible value z; or to the largest

possible value Zj. Due to the above inequality, once :cg) is equal to its largest

possible value, i.e., once mg) = Ty, all the following values of x; must also be

equal to the same largest possible value, i.e., :c,(;H) =...= :c,(gN) = Ty.

Therefore, when we move from z(® to z(*'1)  the overall number of co-
ordinates equal to Ty cannot decrease; it cannot also stay the same because
otherwise, we would have (¥ = 21 Thus, this number can only increase.
This overall number can take values from 0 to n, and this overall number in-
creases once we go from z(? to z(t1); thus, we cannot have more than n such
increases, and so, we can have no more than n + 1 different points z(9.

Based on the order between the points (9, we can defined the order between
the coordinates zj: namely, we say that z; precedes ; if in the sequence z(®,
the first appearance of Ty precedes the first appearance of Z;. One can easily see
that this relation is an order. This is, in general, partial order; let us arbitrarily
extend it to a linear order on the set of n coordinates z1,...,x,.

For simplicity, let us assume that the variables x1, ..., x, are already ordered
according to this order, i.e., that Z; first appears in the sequence z(9 before (or

11



at the same time as) T, etc. Due to this order, if for some point z9 we have

a “small” value of some coordinate .’L‘Sj) = , then all the following coordinates

are also “small”: a:,(:J)rl =Zpiq, -, a:gf) = z,,. In other words, each vector z(®

can take one of the following values:
(&1;&2,- .. ;zn)a(flagzy" '7&7})3 sy (Ela' "7§i7£i+17" ‘7§n)7“ '5(E15' .. afn)-

These are exactly the vectors corresponding to the expression for F that we are
proving. To complete the proof, we must therefore show that these expressions
occur with probabilities, correspondingly, 1 — p;, p1 — p2, etc.

Indeed:

e let p(!) be the probability of (z,,z,,...,z,);
e let p be the probability of (Z1,z,,...,z,);
.o ...
e let p(i+1) be the probability of (Z1, ..., Ti, Ziy1,---»Ty);
.o ...
e let p("t1) be the probability of (F1,...,Z,).
The sum of all these probabilities should be equal to 1:
pD 4+ p® 4 4 ptD) =1,
For each i, the mean value of z; (that should be equal to E;) is equal to
z; - (PV 4+ . 4+ pD) 7 (Y 4 pntD),

By definition, p; is the probability with which we must take Z; so that if we
take z; with probability 1 — p;, we get the desired mean p;. Thus, for every ¢,
we have:

p; = p(“‘l) 4+ + p("+1)_
In particular, for ¢ < n, we have

piy1 =pt? + 4 pnth;

thus,
Di — Dit+1 = (p('H_l) + p(i+2) + ... +p(”+1)) — (p(l+2) + ...+ p("+1)) — p(H‘l)‘

For i = n, we have p, = p(»*1)_ Finally, the probability p(*) can be determined
as
pV=1— (p(2) +... +p(n+1)) =
1—((pr —p2) + (P2 —p3) + ...+ (Pn-1 —pn) +Pn) =1 —p1.
For the values (¥ with these probabilities, the mathematical expectation of the
product z1 - ... -z, is exactly equal to the expression from our Main Result.
The theorem is proven.

12



7 Open Problem and Future Work

In this paper, we started with a practical problem in which all the values z; are
non-negative. For this practical problem, we came up with an exact solution.

It is desirable to generalize our result to the case when some variables z; may
take negative values. Our result does not directly apply to this case, because
in our proof, we used the fact that for z; > 0, the function f(z1,...,2,) =
T1 - ... Ty is non-decreasing in each of the variables; this property is not true
for negative z;. We hope, however, that although our result is not directly
generalizable, our techniques will be. What would probably help is an example
of a practical problem with z; < 0; an intuition behind such an example may
help.
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