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Abstract

In practice, in addition to the intervals x; = [z;, ;] of possible values
of inputs z1,...,Z,, we sometimes also know their means E;. For such
cases, we provide an explicit exact (= best possible) upper bound for the
mean of the product z1 - ... -z, of positive values x;.

1 Formulation of the Problem

Case study: practical problem from ecology. In many ecological applica-
tions (see, e.g., [6] and references therein), we have some information about
the (positive) parameters zi,...,Z,, and we are interested in the product
Yy =1x1 ... T,. For example, pollutant often comes from the industrial source
to, say, a lake, via a chain of transitions, so the resulting concentration can be
estimated as x; - T2 - ... - &,, where x; is the original pollutant amount and
the parameters x; (i > 2) describe what portion of the pollutant goes from one
link to the next one. For example, 5 may describe the portion of the pollutant
that seeps into the soil, z3 the portion of the soil pollutant that goes from the
soil into the creeks, and x4 describes the portion of the creek’s pollutant that
stays in the lake. For each of these parameters, we usually know the interval
x; = [z;,%;] of possible values.

In addition to the intervals x; = [z;,T;] of possible values of z;, we often
know the mean values E;. Our goal is then to find the interval of possible values
of the product y, and the bounds on the mean of this product.

Since in ecological problems, we are mainly interested in the worst-case es-
timates, so we mainly interested in the upper bound 7 for the interval y and in



the upper bound E for the mean E.

Comment: isn’t this problem too specific? At first glance, it may look
like this problem is too specific:

e it is mathematically specific: we only consider the simplest case of data
combination — a product, and we only consider the case when we know
the first moments;

e it is also application specific: we only consider a very specific class of
applications — applications to ecology.

Should not we attempt to handle a more general mathematical problem? Or, if
we cannot do that, should not we publish in a specialized ecological journal —
as opposed to a more general journal such as Reliable Computing? Here are our
answers to these doubts:

e First, as we will show, while we have an easy-to-compute (even explicit)
solution for our problem, even simple natural generalizations lead to hard-
to-solve (NP-hard) problems.

e Second, propagation of moments is an important practically useful sta-
tistical problem. We have discovered an explicit formula for solving this
problem. Although we were motivated by a specific class of problems
from ecology, we want to present this formula to the general community
because we strongly believe that it will turn out to be useful in other
practical problems as well.

Particular case when we only know intervals. If for each variable x;, the
only information we have is an interval [z;, T;] of possible values, then the only
thing that we can conclude about the product y is that it belongs to the interval
[y,7], wherey =z, - ... -z, and =T - ... Ty,

~ This problem is a simple particular case of interval computations [10, 11];
more precisely, it is a particular application of interval computations to indirect
measurement, when we are interested in the value of some quantity y that is
difficult (or even impossible) to measure directly). To estimate y, we therefore
measure the values of several easier-to-measure quantities z1,...,z,, and then
use the known relation y = f(z1,...,2,) between z; and y to reconstruct the
value y as y = f(Z1,...,Ty), where T; is the result of measuring z;.

In many real-life situations, the only information that we have about the

def ~ . .
measurement error Az; — T; — x; is that this error cannot exceed a known

bound A;, i.e., that |Az;| < A;. In such situations, after measuring z;, the
only information that we get about the actual (unknown) value of z; is that
this value belongs to the interval x; = [z;,%;] = [Z; — A4, T; + A;]. In this case,
we are interested in the interval y of possible value of y, i.e., in the range of the
function f(x1,...,2,) over the corresponding box x; X ... X Xp,.



Interval computations provide the exact range for the case when
f(x1,...,2,) is a simple arithmetic operation, and provide an enclosure for
the general case.

What if we also know expectations E; of variables z;: what is known.
In some practical situations, in addition to the upper bound on the measurement
error Az;, we have partial information about the probabilities of different values
within this interval. A very typical case is when we know the mean value of
this error. Thus, in addition to knowing the interval of possible values x; for
z;, we know the mathematical expectation E; for z; [15]. In such situations,
in addition to the interval of possible values of y = f(z1,...,%,), we want to
know the range of possible values of the mathematical expectation E of y.

In [7], we have shown how to compute the exact range of E for the case when
f(x1,...,2,) is a simple arithmetic operation — i.e., when n = 2 and f(z1, z2)
is equal either to the sum 1 + x2, or to the difference x; — x>, or to the product
T1 - X2, etc. — and provide an enclosure for the general case.

How can we apply known results and techniques to our ecological
problem: easy case. In the above ecological problem, in addition to the
intervals x; = [z;,%;] of possible values of z;, we also often know the mean
value E;. Our goal is then to find not only the upper bound on the interval of
possible values of the product y, but also the upper bound E on the mean E of
this product.

As we have mentioned, computing 7 is easy: since all the values z; are

positive, we have ¥ = %y - ... - Z,. When z; are independent, computing E is
also easy: in this case, E=E =FE; -...- E,.
How can we apply known results and techniques to our ecological
problem: general case. The situation becomes less trivial in the general case
when we cannot assume independence, and we therefore have to consider all
possible distributions on the box x; X ... X x,,.

From the practical viewpoint, what we can do is try several different dis-
tributions with E; € E;, compute E for all such distributions (or estimate it
by using Monte-Carlo simulations), and take the largest of the corresponding
values E as an estimate for E. In other words, as an estimate for the maximum
E of E=Elx -...-z,) over all possible distributions, we take the largest of
the values corresponding to finitely many distributions. The resulting estimate
does not give us a guaranteed upper bound on the actual maximum E, and in
ecological problems, we need a guaranteed upper bound for E.

Existing methods that provide a guaranteed upper bound for E over-
estimate E. There are several techniques that enable us to give a guaranteed
upper bound for E. We will show that none of these methods lead to the desired
exact value of E.

Copula-based method. One of these methods — see, e.g., [6, 8, 16] — is based
on copula techniques pioneered in [19]. In these methods, we transform the



available information about the (unknown) probability distribution for each z;
into bounds on its CDF (so-called p-box). Copula-based formulas enable us to
transform the p-boxes corresponding to individual variables z; into a p-box for
the product y. Based on this p-box, we can then produce guaranteed bounds
on the mean E[y] of y.

The problem with this method is that the resulting upper bound for E
is often an overestimation for the desired value E. This is true even in the
simplest case when n = 2 and one of the variables — e.g., z2 — is equal to 1
with probability 1 (i.e., it is actually a non-random deterministic real number).
In this case, once we know the mean E; = E[z;], we can determine the p-box
[F(z), F(z)] containing all possible CDFs for which E[z;] = FE;. Since based
on the first moment, we cannot uniquely determine the CDF, this p-box is non-
degenerate. Due to x5 = 1, this p-box is identical with the p-box for y = z - x».
Based on the p-box for y, we can determine the interval of possible values of
Ely] — it is easy to see that the endpoints of this interval are the mean values
corresponding to the CDFs F(x) and F(z). Since the p-box is non-degenerate,
these values are different.

Thus, by using the copula techniques, we get a non-degenerate interval of
possible values for E[y]. However, by construction, we know the mean E[y] to
be precisely equal to E;. Thus, copula-based CDF bounds, while providing an
enclosure for Ey], lead to excess width. In other words, for our problem, the
results of the copula techniques are, although rigorous, not best possible.

Histogram-based method. Another — histogram-based — method was pro-
posed by Berleant and others in [1, 2, 3, 4]. In this method, a class of possible
distributions is described by listing several intervals [z;,Z;] on the real line and
describing intervals [B,-:I_Di] of possible values of the probability p; that the ran-
dom variable belongs to the corresponding interval [z;,Z;]. For this method
(similarly to the copula method), even when we know the exact value of E|[z]
and we know that zo = 1 with probability 1, we still get a non-degenerate
interval of possible values of E[y] for y = z1 - 2.

This fact can be independently confirmed, or it can be deduced from the
general result [16] that in many problems, the histogram method gives the same
answers as the copula-based method.

Interval Monte-Carlo method. A third method, described in Lodwick [13],
uses an interval analogue of Monte-Carlo techniques — dividing the real line into
subintervals and providing guaranteed bounds for each combination of subinter-
vals corresponding to 1, . .., z,. This method enables us to effectively compute
lower and upper bounds on the distribution for y = z; -...-z,, and, as a result,
lower and upper bounds on E[y]. Again, even when we know the exact value
of E[z;] and we know that z2 = 1 with probability 1, we still get a guaranteed
upper bound for E[y] that is larger than the exact value E[y].

Analytical method. A fourth — analytical — method is based on a pioneering
work by Rowe [17]. For simple transformations of random variables (e.g., linear



transformations) and for simple combinations of random variables (e.g., sum
or, more generally, linear combinations), textbooks on mathematical statistics
contain explicit formulas for the expectation of such a combination. In his recent
work [17], Rowe extended these formulas to more general transformations (such
as log(z)) and more general combinations.

In [7], we extended Rowe’s formulas to the case when y = 1 - 3. According
to this result of ours, once we know the values E; and E», we can compute the
largest possible value E of E[y] = E[z; - z2] as follows: first, we compute the

values p; def (B; — z;)/(®; — z;), and then compute

E = min(1—p1,1—ps)-z; -2y + max(ps — p2, 0) - Ty -z5 + max(ps —p1,0) -z -T2+

min(p1,p2) - Tt - Ta-

This formula can be somewhat simplified if we order the variables in the de-
creasing order of p;. Without losing generality, we can assume that the variables
z1 and zo are already ordered in this way, i.e., that p; > ps. Then, the above
formula takes a simplified form:

E=(1-p1) -z 2o+ (p1 —p2) - T1 - Ty + P2+ Ty * To.

(It turns out that this formula is a particular case n = 2 of our general formula
— which is the main result of this paper — so this n = 2 formula can be deduced
from our more general result.)

Since we know how to estimate the mean of the product for two variables,
we can, in principle, estimate the mean of the product of n variables as follows:

e first, we use the above formula to find the bounds on E[z; - z2];

e then, we use the above formula once again to transform the known bounds
on E[zy - 23] and E[z3] into bounds on E[(z1 - z2) - z3];

e etc.

After applying the above formula n — 1 times, we get bounds on

These bounds are valid enclosures — in particular, they lead to a correct upper
bound for E[y]. The problem with this method is that this upper bound is
sometimes an overestimation for E.

Let us show this on a simple example of three variables. Let x; = x5 =
x3 =[1,2], By =1, E» = 2, and E3 = 1.5. In this case, the variable z; is equal
to 1 with probability 1, the variable x5 is equal to 2 with probability 1, thus,
Yy = T1 - Ty - x3 = 223 so Efy] = 2E[xz3] = 2- 1.5 = 3. Thus, the exact upper
bound E on E[y] is equal to 3. Let us show that the above sequential estimate
leads to an overestimation.



First, we combine x; and z,. Based on the fact that FE; is equal to the
lower endpoint of the corresponding interval x;, we conclude that z; is (with
probability 1) equal to 1. Similarly, 2, is (with probability 1) equal to 2. Thus,
1 - T2 is equal to 1-2 = 2. One can check that the above formula indeed leads
to the correct value E = 2 (and a similar formula for E — also described in [7]

— also leads to the correct value E = 2). Thus, for z; def 1 - X2, we know the
exact value of E[z]: it is 2.

The interval of possible values for z; = 1 - 5 can be computed by straight-
forward interval computations: it is [1,2] - [1,2] = [1,4]. According to the
sequential algorithm, to find the upper bound for E[(z; - 2) - 23], we can now
apply the above formula for E to the following two factors:

® 21 =z - T2 with interval of possible values [1,4] and mean 2, and

o 2, % 23 with interval of possible values [1,2] and mean 1.5.

Here, p1 = 1/3, p2 = 1/2. After ordering and renaming variables in decreasing
order of p;, we get:

.p1:1/2a§1:1721:2a
.p1:1/37§2:1722:47

and the above formula leads to

1 1 1 1
Z).1-1 Z_-Z2).2.14+2-.2.4=
(3) 11+ (G5) 2

i.e., to an overestimation for E.

8 1
+ +§—3§>3,

1
3
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For our practical problem, it is desirable to have an exact upper
bound for E. To make the best decision — and not to be over-cautious — we
must use the most accurate (ideally, exact) estimates for E. Since none of the
existing method provides an exact upper bound E, a new method is needed.
Such a method is described in this paper.

2 Main Result

In formal terms, in this paper, we solve the following problem:

GIVEN: positive values z,, 1, ..., Z,,, Tn, E1, ..., Enp,
FIND: the value
E Y max{E[z; - ... z,]| all distributions of (z1,...,2,) for which

21 € [21,%1],- -, Tn € [Z,,Fn], E[21] = EA, ..., Elz,] = Ey}.



To describe the value E, we first compute the values p; def (Bi—z;)](@Ti—z;)

and then order the variables in the decreasing order of p;. Without losing
generality, we can assume that the variables z1,...,z, are already ordered in
this way, i.e., that p; > ps > ... > p,. Then:

E=0-p1) -z -29...-2,+

(Pr—p2) T1 Ty - Tyt
.+ (1)
(Pi = Pix1) " T1- oo T -ZTyyq e Tyt
-+
Pn-T1 ... Tnp.

Comment. This formula can be represented in an alternative form. Namely, if
we group together terms containing p;, pa, etc., in this formula, we end up with
the following formula:

E:gl-gz...-gn—}—
p- (T —zy) Ty Tt
.+ (1a)
Pi T Timt (T —Z) " Tyyq e Tyt
.-+
Pn-T1-eo o Tno1 - (T — 2,)-

By definition of p;, we have p;- (%; —z;) = E; —z;, therefore (1a) can be rewritten
as:

E:gl ‘Lo ... Tyt
(Br—21) Ty ... Z,+
+ (1b)
T Ti1-(Bi—2) Zigq oo Tyt
.-+
T Tp_1-(En —z,)

The proof of the formula (1) is given in the Proofs section. Before we present
this proof, we will analyze the computational complexity of this algorithm, de-
scribe the intuitive meaning of the above formula, and present a (toy) numerical
example (that will be easy to trace by hand).



3 Algorithm for Computing E: Description and
Computational Complexity

At first glance, the formula (1) provides a straightforward algorithm for com-
puting E. Indeed, according to this formula, E is the sum of n + 1 products; so,
to compute E, we can simply compute all these products, and then add them
up. Of course, first, we compute the values p; (this requires O(n) steps), and
then sort the variables in the decreasing order of p;. It is well known that we can
sort a list of n elements in O(n - log(n)) steps; see, e.g., [5]. Once the sorting is
done, to compute each product, we need one subtraction and n multiplications
—i.e.,, n + 1 arithmetic operations. Thus, totally, we need (n + 1)? operations
to compute all the products — and n additions to add them up, to the total of
O(n?) operations.

This is reasonable when n is small, but when we have many factors, the
quadratic time algorithm may become too long. It turns out to be possible to
compute E much faster if we represent the formula (1) in the following equivalent
form:

E=0~-p1)-Oo+ (p1—p2) M+ ...+ @i —piy1) Wi+ ...+ pn -, (2)

where we denoted

def _ _
Hiézl-...-mi-§i+1-...-gn. (3)
The advantage of this representation is that we do not need to use all n multi-
plications to compute each product II;: once we know II;, we can compute IT;_;
as

ZT.
o, =11, - =, (4)

i
Thus, we can compute E by using the following algorithm:

o First, we sort all the variables x; in the decreasing order of z;; this requires
O(n -log(n)) steps. After the sorting, we have p1 > pa... > p,

e Second, we compute II,, def T1 ... Tp; this computation requires n — 1 =
O(n) steps.
e After that, we consequently compute II,, 1, II,,_o, ..., IIg by using the

formula (4). Computing each new value of II; requires 2 arithmetic oper-
ations, so we have a total of 2n = O(n) operations.

e Finally, we compute F by using the formula (2): this computation requires
n subtractions, n + 1 multiplications, and n additions, i.e., totally, O(n)
operations.

Overall, this algorithm requires O(n -log(n)) + O(n) = O(n - log(n)) operations
— which, for large n, is much smaller than n2.



4 Intuitive Meaning of the Above Formula

The probability p; can be interpreted as follows: if we only allow values z; and
T;, then there is only one probability distribution on xz; for which the average is
exactly F;. In this probability distribution, the probability p[Z;] of Z; is equal
to pi, and the probability p[z;] of z; is equal to 1 — p;.

In general, when we have two events A and B with known probabilities

p(A) and p(B), then the probability of A& B can take any value from the

interval [p(A) & p(B), p(A) & p(B)], where a & b % max(a+b—1,0) and a & b &'

min(a, b) (see, e.g., [18]).

Let us explain where these formulas come from. Let us first show that
a & b = min(a, b) is indeed the largest possible value of p(4 & B) for all possible
pairs of random events A and B for which p(A) = a and p(B) = b. Indeed:

e Since p(A& B) < p(A) = a and p(A& B) < p(B) = b, we can conclude
that p(A & B) < min(a, b), i.e., that the probability p(A & B) cannot ex-
ceed min(a, b).

e So, to complete the proof, it is sufficient to show that there exist events
A and B for which p(4) = a, p(B) = b, and p(A& B) = min(a,b). To
produce such events, let us consider a random variable £ that is uniformly
distributed on the interval [0,1]; for this random variable, we can define
A and B as follows:

o Ais trueif £ € [0,a], and
e B to be true if £ € [0, b].

In this case, A& B means that £ belongs to both sets, i.e., that £ €
[0,a] N [0,b] = [0, min(a,b)]. By definition of a uniform distribution, here,
p(A) = a, p(B) = b, and p(A& B) = min(a,b) — so min(a,b) is indeed
possible.

Similarly, one can show that a &b = max(a + b — 1,0) is the smallest possible
value of p(A& B) for all possible pairs of random events A and B for which
p(A) = a and p(B) = b. Indeed:

e It is known that for every two events A and B, we have p(A& B) =
p(A) + p(B) — p(AV B). Since p(4) = a, p(B) = b, and p(AV B) < 1,
we can conclude that p(A& B) > a + b — 1. Since p(A& B) > 0, we
can therefore conclude that p(A & B) > max(a + b — 1,0), i.e., that the
probability p(A & B) cannot be smaller than max(a + b — 1,0).

e To complete the proof, it is sufficient to show that there exist events A
and B for which p(A) = a, p(B) = b, and p(A & B) = max(a+b—1,0). To
produce such events, let us consider the same random variable £ uniformly
distributed on the interval [0, 1] as we considered for &; we can define A
and B as follows:



o A is the same as before: A is true if £ € [0, a;
e b is defined differently: B is true if £ € [1 —,1].
In this case, p(4) = a, p(B) = b, and A & B means that £ belongs to both

sets, i.e., that £ € [0,a] N [1 — b, 1]. The probability p(A & B) depends on
whether these two intervals intersect:

e When a < 1-b,e.g., when a+b < 1, the intersection is empty hence
p(A& B) =0.

e When a > 1 — b, the intersection is equal to the interval [1 — b, a] of
width a — (1 —b) = a+ b —1, so the probability p(A & B) is equal to
a+b-—1.

In both cases, p(A & B) = max(a+b—1,0) — so the value max(a+b—1,0)
is indeed a possible value of p(A & B).

Thus, we can introduce a natural notation —p defy p and rewrite the above
formula as follows: .
B-Y m

where, for I = {iy,...,ix} and N — I = {j1,..., 51}, we denoted:

Ejdéf(pz'lg...gpik)&(—'pjlg...&ﬁpjl)-fz’l-...-Tik-.’LV RN

=71 =5

Indeed, we have o o
Diy &... &pik = min(piu s apik)a

Pj1 & ... &_'pjl = mln(l — Pj1> 71 _p]l) =1- ma‘x(pjla' "7pjl)7
and therefore, a p;-dependent factor in E; can be rewritten as
ma‘x(min(pil 3. 7pik) - ma‘x(p,h 3 .- 7pjl)7 0)

The only possibility for the corresponding difference to be > 0 is when each
value p;,, is larger than each value p;, — in other words, when all the values
Diy»- -+, Pij, precede all the values p;,,...,pj, in the decreasing order of p;.

5 Numerical (Toy) Example

To illustrate our algorithm, let us consider the following simple example. Sup-
pose that we have 3 variables x1, z2, and z3. We know:

e that z; € [1, 3], with the mean E; = 2;

e that x5 € [1,6], with the mean E; = 3; and

10



o that z3 € [10,20], with the mean E3 = 17.
In this case, the range of possible values of the product y = 21 - z2 - x3 is
[1,3]-[1,6]-[10,20] =[1-1-10,3-6-20] = [10, 360].

What is the largest possible value E of the mean of y? According to our algo-
rithm, first, we compute the values p;. Here,

El—gl _2—1_

=g T3-1°

0.5.

Similarly, we compute p, = (3—1)/(6—1) = 0.4 and p3 = (17—10)/(20—10) =

0.7.
Then, we sort the variables z; in the decreasing order of p;. Here, 0.7 >

0.5 > 0.4, so the original variable z3 is now the first variable, the original z;
is now the second one, and the original z2 is now the third one. If we list the
variables in this new order, then these variables are:

e 17 with range [10,20], with E; =17 and p; = 0.7;
e 1z, with range [1, 3], with Ey = 2 and p; = 0.5;
e 13 with range [1, 6], with E3 =4 and p; = 0.4.
For these variables, we compute
II, =13 =% - T> - T3 = 20 - 3 - 6 = 360.

After that, we consequently compute

1
n2=n3-§—3=360-6=60;

zs3
1
M =T 22 =60 - = 20;
ZIo 3
T 10
Mo =1 - =L =20.- — = 10.
0= g 20

Finally, we compute

E=Q1-p) -To+ (p1 —p2) - i +p2 -1y =
(1-0.7)-10+(0.7—-0.5)-20+ (0.5 —0.4) -60+0.4-360 = 3+ 4 + 6 + 144 = 157.

As we will see from the proof, this value is attained for the following joint
probability distribution on the set of all possible vectors (1, x2,x3):

e with probability 0.3, we have 1 = 10, 2 = 1, and z3 = 1;

11



e with probability 0.2, we have z; = 20, 2 = 1, and z3 = 1;
e with probability 0.1, we have z; = 20, 2 = 3, and z3 = 1;
e with probability 0.4, we have z; = 20, 2 = 3, and z3 = 6.

One can easily check that for this distribution, E[z1] = 17, E[zs] = 2, E[z3] = 3,
and E[zy - z2 - z3] = 157.

Let us try one more distribution to make sure that in this example, 157 is
indeed the upper endpoint of the interval of possible values of y = x - x5 -x3: the
distribution in which all three variables z; are statistically independent. For this
distribution, we have E = E[x; - 2 - #3] = E[z1] - E[z2] - E[z3] =2-3-17 = 102,
so indeed E = 102 < 157 = E.

6 Proof of the Main Result

1°. To get the desired bound for E, we must consider the values E[z; . ..-z,] for
all possible probability distributions on the box x; x ... x x,, for which E[z;] =
Ey, ..., E[z,] = E,. The set of all such probability distributions is infinite-
dimensional: indeed, in order to describe a probability distribution completely
via moments, of which we have only one known, an infinite number of moments
are required. Thus, the optimization problem that we have to solve the problem
of maximizing an objective function E over an infinite-dimensional set. By
definition of dimension, this means that we need infinitely many parameters to
describe individual distributions from this set. It is known that in optimization
problems, the larger the dimension of the set over which we optimize — i.e., the
more parameters we need to describe the individual elements of this set — the
more difficult the problem. Therefore, our problem — with infinite dimension —
is difficult to solve directly.

To make the problem simpler, we will show that a general distribution with
E[z;] = E; can be simplified without changing the values E[z;] and E[z;-. .. -z,].
Thus, to describe possible values of E[zy - ... z,], we do not need to consider
all possible distributions, it is sufficient to consider only the simplified ones.

We will describe the simplification for discrete distributions that concentrate
on finitely many points z() = (ng), e ,:L'gf')), 1 < j < N. An arbitrary proba-
bility distribution can be approximated by such distributions, so we do not lose
anything by this restriction.

So, we have a probability distribution in which the point z(!) appears with
the probability p), the point z(?) appears with the probability p(®, etc. Let
us modify this distribution as follows: pick a point z(9) = (xgj),mgj ), ...) that
occurs with probability p(), and replace it with two points: 7 = (Z1, ng ), .
with probability p(@ - p() and z() = (gl,m(j),...) with probability p(@) - p(¥),

12



where )
o) def o~ 2y
T1 — Iy

8|
—~
.
=

e e

Here, the values ') and Q(j) = 1—pY are chosen in such a way that

D .z +I_9(j) x, = mgj)_ Due to this choice,

pD 5@ gy 4 pl) . pl) g = p@ 2,

hence for the new distribution, the mathematical expectation E[z] is the same
as for the old one. Similarly, we can prove that the values E[zs], ..., E[z,],
and E[zy - ... z,] do not change.

We started with a general discrete distribution with N points for each of
which mgj ) could be inside the interval x;, and we have a new distribution for
which < N — 1 points have the value z; inside this interval. We can perform a
similar replacement for all N points and get a distribution with the same values
of E[z1], ..., E[zy,], and E[z; - ... z,] as the original one but for which, for
every point, z1 is equal either to z;, or to Z;.

For the new distribution, we can perform a similar transformation relative
to 1 and end up — without changing the values x1; — with the distribution for
which always either zo = 2, or x2 = T»:

7J)

13



Similarly, we can perform such a transformation for z3, etc. Thus, instead of
considering all possible distributions, it is sufficient to consider only distributions
for which z; € {z,,T1}, ..., 2n € {2,,,Tn}. In other words, it is sufficient to
consider only distributions which are located in 2" corner points of the box
X1 X ... XXp!

2°. Let us now show that, if we are looking for the maximum E of E, it is suf-
ficient to consider only distributions with the following property: for every two

points () and 2) with non-zero probability, if .’L‘Sj) < a:,(cj ) for some coordinate

k, then :1:,(1) < :cl(’ ) for all other coordinates 1.

We will prove this statement as follows. Let us assume that the above
property is not satisfied. This means that for some k and I, we have x,(;) < w,(j )
and xl(i) > ml(j).

Let p(® > 0 and p'¥) > 0 be the probabilities of these two points. We will

show that, if with probability p & min(p(®,p()), we “swap” the coordinates
of the points 2" and z(9), we thus increase (or keep unchanged) the value E.
Therefore, when we are looking for the maximum of E, it is sufficient to consider
only distributions for which the above property holds.

Specifically, let kq,...,k, be coordinates for which xi’i < x,(c’rz , and let
l(i) (9)

l1,...,1ls be coordinates for which z;” > z;7”. With probability p, we replace

the points (¥ and () with two new points 29 and z$), for which coordi-
nates km remain thg same whi.le the coo'rdinates lt.are swapped: mffgw’ ko = xi’l,
;t:,(i)w’km = ;vSCJW)L : ml(fe)w,lt = a:l(f), and ml(fe)w,lt = a:l(:) It is easy to see that this
swap does not change the averages E[z;]. How does it affect the mathematical
expectation of the product E[zy - ... z,]? The only two terms that changed

are terms corresponding to z(* and z(9) with probability p:

e For the original points, the sum of these two terms is equal to

" (H o0+ 1 wéf") = p- @ 1P 1 ),
z=1 z=1

14



where we denoted:

q s

9 ] o), 10 [
m=1 t=1

np & ] o), 10 < [T
m=1 t=1

e For the new points, the corresponding sum is equal to
p- (@ - + 1) ).

o Therefore, the difference between the new and the old values of
Elzy - ...z, is equal to:

p- (HI(:) i Hl(j) + Hscj) i Hl(i) _ HS) . Hl(i) _ Hg,j) i Hl(j))‘
One can easily see that this difference is equal to
p- () -y - () — ).

By definition of &,,, we have 331(92 < wsfn)t ; multiplying these inequalities between
positive numbers, we conclude that 1'[5:) < Hij ). Similarly, from a:l(:) > a:l(f ), we
conclude that Hl(i) > Hl(j). Thus, the difference between the new and the old
values is indeed non-negative.

The statement is proven.
3°. Due to Part 2° of the proof, for every two different points 29 # 2(%):

e cither xfj) < mgﬂj) for all £ and mg) < xfcj )

some all k; we will denote this

e or mscj) < mg) for all k and :c,(gj) < mgj) some all k£ —i.e., z() < 2,

So, the relation < defines a linear (total) order on the set of all the points
=), Without losing generality, let us assume that the points (9 are ordered
according to this order, i.e., that

e < 2@ < <,
By definition of <, we can conclude that for each coordinate k, we have:
azg) < :cf) <...< mch).

In Part 1° of the proof, we have already shown that for every point z(®, each

coordinate xg) is equal either to smallest possible value z; or to the largest

15



possible value Ty. Due to the above inequality, once :cg) is equal to its largest

possible value, i.e., once xg) = Xy, all the following values of z; must also be

equal to the same largest possible value, i.e., :cgﬂ) =...= :cch) = Tp.

Therefore, when we move from z(9 to z(**1, the overall number of co-
ordinates equal to Ty cannot decrease; it cannot also stay the same because
otherwise, we would have z(® = 2+ Thus, this number can only increase.
This overall number can take values from 0 to n, and this overall number in-
creases once we go from z(? to z(i+1); thus, we cannot have more than n such
increases, and so, we can have no more than n + 1 different points z(?.

Based on the order between the points (9, we can defined the order between
the coordinates zj: namely, we say that zj, precedes ; if in the sequence z(®,
the first appearance of T, precedes the first appearance of T;. One can easily see
that this relation is an order. This is, in general, partial order; let us arbitrarily
extend it to a linear order on the set of n coordinates x1,...,Ty.

For simplicity, let us assume that the variables x1, ..., x, are already ordered
according to this order, i.e., that ; first appears in the sequence z() before (or
at the same time as) 2, etc. Due to this order, if for some point 2(?), we have

a “small” value of some coordinate xfj) = z,,, then all the following coordinates
are also “small”: m,(g_l =Ty ey :vgf)
can take one of the following values:

= z,,. In other words, each vector z(?)

(El;gm---;gn);(flagm"':@n)a-";(Tla'":Tiagi_}_la"'a&n)a"';(fla"-;fn)-

These are exactly the vectors corresponding to the expression for E that we are
proving. To complete the proof, we must therefore show that these expressions
occur with probabilities, correspondingly, 1 — p1, p1 — p2, etc.

Indeed:

e let p(V) be the probability of (z,,z,,...,z,);
e let p( be the probability of (Zy,z,,...,z,);

let p{tV) be the probability of (T1,...,Ts Tiy1s---»Tp);
o ...
o let p("t1) be the probability of (F1,...,Tx)-

The sum of all these probabilities should be equal to 1:

pM +p@ 4 g pnth) =1,

For each i, the mean value of z; (that should be equal to E;) is equal to

z; - (PN + ..+ )+ 3 (Y L pntD),
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By definition, p; is the probability with which we must take Z; so that if we
take z; with probability 1 — p;, we get the desired mean p;. Thus, for every i,
we have:

pi = pth) 4 4 p(ntD),

In particular, for ¢ < n, we have
piy1 =p 4 4 pln
thus,
Di — Pig1 = (p(i+1) + plit2) 4 +p(n+1)) — (p(i+2) +... +p(n+1)) = p(+D),

For i = n, we have p, = p(»*1). Finally, the probability p(*) can be determined
as
P 21— (p® 44 ) =

1= ((p1 —p2) + (P2 = p3) + ... + (Pn—1 = Pn) + ) =1 - p1.

For the values (¥ with these probabilities, the mathematical expectation of the
product z1 - ... x, is exactly equal to the expression from our Main Result.
The theorem is proven.

7 Alternative Algorithm for Computing F and
Its Justification

In Section 1, we have shown that if we sequentially apply formula (1) with n = 2,
we may end up with an overestimation for E. It turns out, however, that if we
apply the “n = 2” formula in the order in which p1 > p2 > ... > p,, we get the
exact upper bound E. This alternative algorithm consists of n — 1 applications
of the “n = 2” formula and thus, after sorting (which takes O(n -log(n)) steps),
requires linear computation time — just like the algorithm described above.

Let us outline the proof that this sequential algorithm is indeed correct.
Indeed, first, we combine estimates for z1 and x5 into an estimate for z12 =
1 - 2. For xi1s, the upper bound Ejs for the mean E is determined by the
formula

Eix=(01—=p1) 2, 2o+ (p1 —P2) - T1 - Ty + P2 T1 - T,

and the exact bounds on z12 come from interval multiplication: z,, = Z; - 2
and T12 = T1 - T2. Therefore,
Ty Ty — Iy

2 —"EZ
— = — = — 24 = -4 (1 —1r
D12 T1 T -z, (Pl Pz) T, - T T b2 =p1 D2 ( )7

Eyy—x) -2y

where _
def 1 Xy — Xy * Ty
T1-Ty — 2 'Ezl
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Since 2 - 25 < T1 - &5 < T1 -T2, we conclude that 0 < r < 1, i.e., p12 is a convex
combination of p; and ps. Since p; > p2 > p3... > p,, we thus conclude that
P12 > p3 > ... > pnp. Thus, for the remaining variables x5, 23, ..., 2y, we still
have the right order of p;.

That the resulting formula is the same can be seen if we use the form (1b)
of the main formula. If we explicitly emphasize terms related to z; and x, in
this formula, we get:

E=z -2y-25-...-2,+
(By—zy) Ty -T3-... T, +
Ty (By —zy) 23+ .. Tyt
Ty -Tp- (B3 —23) Zy-...-Zp+
o
Ty -To-Tz-... T - (B —xy) -2y g oo - 2+
.+
T1-To Tz .- Tpo1-(En—2x,)

Since z; - x5 = £, and Ty - Ty = T12, we can reformulate this formula as:

E=2y-25...-2,+
(Bi—z1) Ty Xy ... Tyt
Ty-(B2—xy) Zg-o..-Z,+
Ti2- (B3 —23) 2y ... Z,+

-+
T12-T3... Tim1 (B —2)Zyyq oo Tyt
ot
T12 - T3 Tp-1 - (En —z,)

A similar formula for n = 2 leads to
Eqs = x5+ (El _El) “ Ty + Ty - (E2 _Ez);

thus
Ep—2-2,= (El —£1) "Xy +7T1 - (E2 _£2)-
Hence, the above formula for E can be rewritten as:

E=zy-25...-2,+

(Br2 —zy5) Tz -+ .z, +

18



ot
Tig-T3-...-Ti1- (B —x) -2, z,+
ot
T12-T3... Tp-1 - (Bn —2Z,),
i.e., exactly the formula (1b) for z12, 23, ..., z,. Thus, the sequential algorithm

is indeed correct.

8 Can We Compute the Exact Lower Bound?
First Auxiliary Result

In the previous sections, we have described an explicit analytical expression that
enables us to compute the exact upper bound E on the mean of the product of
many positive random variables with known expectations. A natural question
is: can we have a similar analytical expression for computing the exact lower
bound E for this mean?

In this section, we show that, unless P=NP, we cannot expect such an ex-
pression — in other words, that if such an expression exists, then we would have
P=NP, which most computer scientists believe to be impossible (for definitions
and detailed description of the P=NP problem, see, e.g., [9, 12, 14]).

Specifically, we will show that if a feasible (computable in polynomial time)
analytical expression for E exists, then we would have a polynomial-time algo-
rithm for solving a known NP-hard problem. Thus, we would conclude that the
class NP of all“hard” problems would coincide with the class P of all problems
that can be solved in polynomial time (e.g., in time bounded by a polynomial
of a length of the input).

In our proof, as the known NP-hard problem Py, we take a subset problem:
given n positive integers si,...,s,, to check whether there exist signs 7; €

n

{-1,+1} for which the signed sum 2 n; - 8 equals 0.

i=1

We will show that this problem czan be reduced to the problem of computing
E, i.e., that to every instance (s1,...,s,) of the problem Py, we can put into
correspondence such an instance of the V-computing problem that based on its
solution, we can easily check whether the desired signs exist.

As this instance, we take the instance corresponding to the intervals [z;, Z;] =
[275,2%], with means E; = (1/2) - (27% + 2%). We want to show that for the
corresponding problem, always £ > 1, and E = 1 if and only if there exist signs
n; for which " n;-s; = 0.

Let us first show that in all cases, £ > 1. Similarly to the proof of the main
result, we can show that the minimum of E is attained on distributions that are
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located in points z(1), ..., z(¥) that are corner points of the box x1 X ... X X,
U) = g, or 21 = %;. Hence, E =Y p) . v(@),

i.e., in which, for every ¢ and j, z; i
where (@) 4 mgj) 2D,

We can represent this expression as E = 3 p\¥) - exp(t\)), where
@) L og(v@)) = log(z(?) + ... + log(z).

Since (9) is the sum, its expectation ¢ 2 pW) - ) can be represented as the
sum of n terms ¢; % S pl) . log(ng)). In each of these n terms ¢;, we add the
values log(z;) = —s; and log(Z;) = s;. The total probability of log(z;) = —s;
and of log(Z;) = s; and is equal to 1/2 — because the mean F; is exactly the
average of 27% and 2%. Thus, in each sum ¢;, we add log(z;) = —s; with a total
probability 1/2 and log(Z;) = s; with a total probability 1/2. The resulting sum
is 0, hence t =t; +...+1t, =0,ie, > p¥ . ¢tld) = 0.

Since the function exp(z) is strictly convex, we have E = 3" pU) -exp(t()) >
exp(3p¥) - 1)) = exp(0) = 1. Due to the same strict convexity, E = 1 is
a(n;i only if all the values t) are equal to 0 — and each t() is a sum of values
t; =

i +s;. The reduction is proven.

9 Can We Compute the Exact Upper Bound if
Some Values z; Are Negative? Second Auxil-
iary Result

In the main part of this paper, we started with a practical problem in which all
the values z; are non-negative. For this practical problem, we came up with an
exact solution. A natural question is: is it possible to generalize our result to
the case when some variables z; may take negative values?

Our result does not directly apply to this case, because in our proof, we used
the fact that for z; > 0, the function f(z1,...,T,) = T1-.. .2, is non-decreasing
in each of the variables; this property is not true for negative x;.

It turns out that we cannot easily compute the exact upper bound E for the
case when some of the values z; may be negative. Indeed, if we could do that,
then we could compute the exact lower bound for non-negative x; as follows:

o forx) = —x1, 25 =2, ..., 2, =2,, wehave y' =2} ... 2}, = —y;

e hence, E[y'] = E[-y] = —Ely];

e thus, the exact upper bound E for E[y'] and the exact lower bound E for
E[y] are related by a simple formula: E = -E;

e 50, if we could easily compute E’, we would thus be able to easily compute

E for non-negative x; — and this, as we have shown, is not possible (unless
P=NP).
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So, no easy algorithm is possible for computing exact upper bounds in the
general case of not necessarily non-negative z;.

10 How Can We Actually Compute E? FE for
Non-Negative z;?

In the previous sections, we have shown that it is provably difficult to compute
the exact lower bound E on the mean of the product of many random variables
and to compute the exact upper bound for possibly negative x;. In practical
terms, this difficulty means that when the number n of variables increases, the
amount of time required to compute the corresponding quantities may grow
exponentially with n — so that when n becomes really large, in hundreds and
thousands, the required computation time may exceed the lifetime of the Uni-
verse.

In many practical problems, n is not very large but moderate. How can
we then compute, say, E? We have already shown that to find the minimum
E, it is sufficient to consider probability distributions located in corner points
zM ...,z of the box X3 X ... X X,,. There are N = 2" such corner points,
s0, to find E, it is sufficient to solve the following linear programming problem:

where v def m§j) S :L"(n’ ), under the conditions

PV 4.+ pN) =1

Ny _

p(l)-x§1)+...+p(m-x§ Ey;

p(l) . mgll) +... +p(N) . z-glN) — En;
p@ > 0.
The unknown here are the values p!¥). With respect to the these unknowns,
we are minimizing a linear function under linear constraints (equalities and
inequalities). Geometrically, the set of all points that satisfy several linear
constraints is a polytope. It is well known that to find the minimum of a linear
function on a polytope, it is sufficient to consider its vertices (this idea is behind
linear programming). In algebraic terms, a vertex can be characterized by the
fact that for N variables, N of the original constraints are equalities. In our
case, we have n + 1 equalities and inequalities p() > 0. Thus, in our case, all
but n + 1 probabilities p(¥) must be equal to 0. So, to find the smallest possible
value E of E[zy - ... - zp], it is sufficient to consider probability distributions
that are located on n + 1 points z(9).
In other words, to compute E, we can do the following:
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e For each combination 71 < ... < jp41 < N of n + 1 corners, we solve the
system of n + 1 linear equations

PO 4+ pline)) = 1

p(jl) . m-gjl) + ... +p(jn+1) . .Z'gj""'l) = FEy;

?

pln) . 1-%]'1) + .o 4 plnsn) . l.gj"ﬂ) = E,.

o If the resulting values p' J1)s-ens pl=+1) are all non-negative, we compute
n+1
E= Zp(jk) . plde) |
k=1

o The smallest of such values F is the desired exact lower bound E.

For moderate n, solving each system of n+1 linear equations with n+1 unknowns
is fast. This algorithm requires solving

27L
(n + 1)
such systems. What does it mean for small n?

e For n = 2, we need (é) = 4 gystems (since for n = 2, we have exact
formulas, we do not actually need to solve these systems).

e For n = 3, we need to solve () = 70 systems.
16

e For n = 4, we need to solve () = 4,368 systems.

e For n = 5, we need to solve (36) = 906,192 systems — it is still quite
doable.

Do

e For n = 6, we need to solve (674) ~ 6.3 - 10° systems — potentially doable

on a high performance computer.

e For n = 7, we need to solve (138)

of modern computers.

~ 1.4-10'? systems — close to the limit

e For n = 8, we need to solve (286) ~ 3.4 -10'6 systems — way beyond the

limit of modern computers.

A similar algorithm — but with taking the largest of the values E = Y p¥) - v(9)
instead of the smallest — can compute E for the case when the values x; can be
negative.
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11 What If, In Addition to the Means E;, We
Also Know Variances? Third Auxiliary Re-
sult

Often, in addition to the first moments (means) E[z;] of the variables z;, we
also have information about their variances V[z;]. In this case, for an arbitrary
function f(x1,...,%,), it is natural, in addition to asking about the possible
values of the mean E[y] of y, to also ask about the possible values of the variance
V]y]. It turns out that adding variances makes the problem very difficult to
solve. Specifically, we will show that even for the simplest possible combination
function f(x1,...,2Zn) = &1 + ...+ Tn, the corresponding problem is NP-hard.

We will also show that it is NP-hard if we know second moments instead of
variances.

Specifically, we show that the following problem is NP-hard:

GIVEN: values z,, T1, ..., &, Tpn, Er, ..., En, Vi,...,Vp;
FIND: the value

v min{V[z;+...4+2,]| all distributions of (z1,...,zy) for which

z1 € [21,%1),--.,%n € [2,,Tn], E[z1] = Ey,...,E[z,] = E,,
V[Z‘l] = V1,.. ,V[:En] = Vn}

To prove this NP-hardness, we will reduce, to this problem, the same subset
problem as in the previous section. Specifically, to every instance sy, ..., s, of
the subset problem, we put into correspondence the following particular case of
the above problem: z; = —s;, T; = s;, E; =0, and V; = s?. We will show that
V =0 if and only if the original subset problem has a solution.

Indeed, variance is always non-negative, so ¥V > 0. If the subset problem

has a solution, i.e., if these exist signs n; € {—1,+1} for which the signed sum
n

Z 7; - 8; equals 0, then we can take an auxiliary random variable a that takes
i=1

values 1 and —1 with equal probability 1/2, and then take z; = n; - s; - a. In
this case, y = > x; = a- > (n; - s;) =0, i..e, y is always equal to 0. Hence, the
variance of y is 0.

Vice versa, if the variance of y is 0, this means that the sum y = Y z; is
equal to its average 0 with probability 1. For each variable z;, the average is
0, so the variance is equal to the second moment V[z;] = E[z?]. The square
x? takes possible values from the interval [0, s?]. Since the expectation of z? is
equal to its largest possible value, we can thus conclude that with probability
1, 22 = s? — i.e., that either z; = s; or x; = —s;. Since z1 + ...+ z, = 0, we
can thus conclude that Y +z; = 0 — i.e., that the original particular case of a
subset problem has a solution. For variances, NP-hardness is proven.
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A variance V[z;] is naturally related to the second moment M|z;] def E[z?):
Viz;] = M[z;] — (E[z;])* and M[z;] = V[z;] + (E[z:])*>. So, knowing second
moments is equivalent to knowing variances. Thus, for second moments, the
corresponding problem is NP-hard as well.
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