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Abstract— To design data processing algorithms with the small-
est average processing time, we need to know what this “average”
stands for. At first glance, it may seem that real-life data are really
“chaotic”, and no probabilities are possible at all: today, we may
apply our software package to elementary particles, tomorrow
– to distances between the stars, etc. However, contrary to this
intuitive feeling, there are stable probabilities in real-life data.
This fact was first discovered in 1881 by Simon Newcomb who
noticed that the first pages of logarithm tables (that contain
numbers starting with 1) are more used than the last ones (that
contain numbers starting with 9). To check why, he took all
physical constants from a reference book, and counted how many
of them start with 1. An intuitive expectation is that all 9 digits
should be equally probable. In reality, instead of 11%, about 30%
of these constants turned out to be starting with 1. In general,
the fraction of constants that start with a digit

�
can be described

as ����� ���	��

� ����� ��
 . We describe a new interval computations-
related explanation for this empirical fact, and we explain its
relationship with lifetime of the Universe and with the general
problem of determining subjective (fuzzy) probabilities on finite
and infinite intervals.

I. THE NEED FOR SUBJECTIVE (FUZZY) PROBABILITY ON

FINITE INTERVALS

In many engineering problems, we want a physical char-
acteristic � to lie within given range � ; e.g., a stress � of
a mechanical structure should not exceed a given value ��� ;
a temperature � within a chemical reactor should not exceed
a critical value ��� after which the walls become damaged,
etc. For most such problems, we know the dependence �������������� ���!�"�$#&%

of this characteristic � on the design parameters� � ����� �!�'� #
, and we know the intervals (
) of possible values

of these parameters that correspond to a given design. We can
then use interval computations to find the corresponding range
of � . If this range is completely within the desired range � ,
great.

But what if no such design is possible? In this case, from
the purely mathematical viewpoint, none of the proposed
designs is completely satisfying, so all of them are equally
bad. Intuitively, however, some designs seems to be more
“probable” to be good for the actual (unknown) values of the
parameters

� ) . For example, suppose that we have a single

parameter
�

whose interval of possible values is * + ��,�- , then,
intuitively, a design for which �.� ������%0/ � for all values�1/ * + � +2+ ,2��,!- is more probable to work well than a design for
which � / � only for the values

�1/ * + � + �435- .
How can we describe this subjective (fuzzy) notion of

probability?

II. SUBJECTIVE (FUZZY) PROBABILITY ON FINITE

INTERVALS: MOTIVATIONS, DEFINITION, AND THE

RESULTING DESCRIPTION (1D CASE)

Let’s first consider a 1-dimensional case, i.e., the case when
we are describing the value of only one physical quantity

�
.

Our goal is to describe, for the case when we know that
the actual value

�
is within an interval * 6 �879- (and no other

information about
�

is available), the corresponding subjective
(fuzzy) probability of different values within this interval. For
each subset :<;=* 6 �978- , the corresponding subjective (fuzzy)
probability will be denoted by >@? ACB DFE � : %

.
This value may not be defined for some complex sets : ,

but we want it to be well-defined at least for every subinterval
* G �"H�- ;I* 6 �978- . In other words, we require that once we know
that

�J/ * 6 �978- , and * G �"H�- ;K* 6 �978- is a subinterval of the interval
* 6 �879- , then there is a subjective (fuzzy) probability >�? ACB DFE � * G �9H�-�%
that > / * G �9H�- . Of course, once we know that

�L/ * 6 �978- , the
probability that

�1/ * 6 �879- should be 1, i.e., >@? ACB DFE � * 6 �978-M% � ,
.

Since the probability to get values outside * 6 �978- is 0, in
principle, we can define >
? ACB DFE � * G �"H�-�% for all intervals * G �9H�- ,
not only for subintervals of * 6 �879- : namely, we can define this
probability as the probability for

�
to be within the intersection

* 6 �879-�N * G �"H�- .
What are the natural requirements on such probability

measures?

The first requirement is consistency between different mea-
sures. Suppose that initially, our only knowledge about the
physical quantity

�
is that its value belongs to an interval

* 6 �879- . Then, we made an additional measurement, and as a
result of that measurement, get a smaller interval * G �9H�- for
the same quantity. The initial subjective (fuzzy) probability



that
� / * G �"H�- was >
? ACB DFE � * G �"H�-M% . What we did by adding the

new knowledge is we deleted the values from the semi-open
intervals * 6 � G % and

�FH$�979-
from the list of possible values, so

the new probabilities of these values are now 0. We did not,
however, provide any new information about the probability of
the values inside * G �9H�- . Hence, it is natural to describe the new
probabilities > ? � B �"E � : %

as conditional probabilities under the
condition

�./ * G �9H�- , i.e., to require that >@? � B �"E � : % � > � : � � /
* G �9H�-�% . The conditional probability � � : � � % is defined as
� � : N � %�� � � � % . Therefore, for every set : , we have the
following requirement:

> ? � B �"E � : % � > ? ACB DFE � : N * G �"H�-M%
>
? ACB DFE � * G �9H�-�%

�

The second natural requirement is shift-invariance. The
values 6 ,

7
, etc, are usually obtained by measurements. If

we change the starting point of the measurement (time and
temperature are good examples where such a change is pos-
sible), then all the measured values are shifted (

��� �
	 G
for a fixed G ). This is a formal change that does not affect
our knowledge, like a change from Kelvin to centigrade in
measuring temperature. Therefore, it is natural to assume that
the subjective (fuzzy) probabilities do not change under this
change.

For example, suppose that we know that (in centigrade) the
temperature is from the interval * + �93 + - , and we are interested in
the subjective (fuzzy) probability that the temperature is actu-
ally from the interval [0,20]. This probability is >�? � B � � E � * + �
� + -M%!�
In Kelvin, this same question has a different numerical mean-
ing. Here, the initial information is that � / * �����&������� - , and
we are interested in the probability that it this temperature is
actually in the interval * �����&������� - . So, the probability of the
same event can be described as >
? ������B �����'E � * �����&������� -�% . The two
expressions for probability of the same event must coincide,
i.e., >
? � B � � E � * + ��� + -�% �	> ? ������B �����'E � * ����� �
����� -�% .

In general, we must have the shift-invariance condition
> ? ACB DFE ���.% � >
? A�� � B D�� � E ��� 	 G % .

The third requirement is unit-invariance. If we change the
unit in which we measure the physical quantity (i.e., go from
inches to centimeters), then, the numerical values of this
quantity change as

�!�#"%$��
for some

"'& + (= the ratio
of the old and the new units). The probabilities must not
change under this change either. So, we arrive at the formula
> ? ACB DFE ���.% � >
? (�) A5B (�) DFE �*"+$,�.%

.
As a result, we arrive at the following definition:

Definition 1. By a 1D subjective probability, we mean a
function > that to every interval * 6 �979- , puts into correspondence
a probability measure > ? ACB DFE with the following properties:
- For each interval * 6 �879- , the value > ? ACB DFE � * G �9H�-�% is defined for

all intervals * G �9H�- ,- For each interval * 6 �879- , the probability measure >@? ACB DFE is
localized on the interval * 6 �979- (i.e., > ? ACB DFE � * 6 �978-M% � ,

).- Measures >
? ACB DFE that correspond to different intervals * 6 �879-

are consistent, i.e.,

> ? � B �"E ���.% � >
? ACB DFE �.� N * G �"H�-M%
>
? A5B D�E � * G �"H�-�%

for arbitrary 6 �975� G �"H / /
, and for an arbitrary

>
? ACB DFE*0 measurable set
� ; / .- The measures > ? A5B D�E are shift-invariant, i.e.,

>
? A5B D�E �.��% � > ? A�� � B D*� � E �.� 	 G %
for an arbitrary set

�
.- The measures > ? A5B D�E are unit-invariant, i.e.,

>
? ACB DFE ���.% � >
? (�) ACB (�) DFE �*"1$2�.%
for an arbitrary set

�
.

It turns out that the above requirements uniquely describe
subjective probability:

Proposition 1. If > is a subjective 1-dimensional probability,
then

> ? ACB DFE � * G �"H�-M% �
� * 6 �879-�N * G �"H�- �� * 6 �979- �

�

where by
� � �

, we denoted the length of the interval
�

.

Comment
,
. In Proposition 1, we started with the situation

in which we know nothing about the probability of different
values

�J/ * 6 �978- , and we used natural symmetry requirements
to uniquely determine these probabilities. This result is not
unexpected: we started with reasonable conditions and we
ended up with reasonable probabilities.

The main reason why we explicitly formulated this –
somewhat uninspiring – result is to show that the symmetry
ideas are indeed in good accordance with common sense. We
hope that this makes our further use of these ideas – in less
predictable situations – more convincing.

The fact that symmetries can help in case of uncertainty is
no accident; in our previous interval-related papers, we used
symmetry:- in [15], to find the optimal selection of a side to bisect;- in [20], to select an optimal formula for the so-called

“ 3 -inflation”;- in [18], to optimally select a sub-box, and- in [22], for several other computational problems.

Comment
�
. We get the same uniform distribution as in Propo-

sition 1 if we use a Maximum Entropy approach (see, e.g.,
[13], [17], [19]), i.e., select, among all possible probability
distribution on the interval * 6 �979- , a distribution with the largest
possible entropy 05476 �F��%7$98;:�<�� 6 ����%'%>= � . This coincidence
is not surprising, because the maximum entropy criterion is
clearly shift- and unit-invariant.

Comment
�
. The use of uniform distributions is also in

line with the recommendations of several metrological (=
measurement-related) organizations that suggest to use uni-
form distribution if the only information we have is that the
measured value

�
belongs to an interval * 6 �879- [3], [4], [30];

see also [2].



III. APPLICATIONS: 1D CASE

The natural uniform distribution has been used to describe
subjective probability of different subintervals in numerous
areas including:- earthquake engineering [6], where it is used to gauge the

probability with which different design are earthquake-
proof;- technical diagnostics and manufacturing [14], [23], where
it is used to describe the probability that the value

�
of

the physical parameter about which we only know that� / * 6 �978- actually exceeds the critical value
� � (when

6 � � � � 7!%
;- material science [21], where it is used to select a material

that has the largest probability of having thermophysical
properties within a desired range;- metrology [21], where it is used to select a sensor that
has the largest probability of covering the desired range
of values.

An interesting use of uniform distribution in problems like
estimating the lifetime of the Universe comes from R. Gott
[9]. Gott’s main idea is as follows. Suppose that we are
witnessing some process that started at a moment ��� (not
necessarily known) and that will end at the moment ��� (also
not necessarily known). In accordance with the above result,
the current observation time � is uniformly distributed on
the interval * ��� � ��� - . Therefore, the probability that � happens
to be in the first 5% of this interval (i.e., in the interval
* � � � � � 	 + � + 3 $ � � � 0�� � % - ), is equal to 5% (5% is just an example,
any other small value will do). So, with 95% probability, the
current moment of time � is later than � � 	 + � + 3 $2� � � 0�� � % .

Suppose now that we know �	� and � , but we do not know
��� . We have already argued that with a 95% probability, ��

��� 	 + � + 3 $�� ��� 0���� % . This inequality leads to

� 0�� � 
 + � + 3 $2� � � 0�� � %�
�� =��	� 0 ����� � + $���� 0 �	�"%��
In other words, with a 95% probability, the total lifetime
� � 0�� � of a process does not exceed 20 times its current age.
Examples:- for the humanity (current age � � +2+ � +�+�+ years), Gott

concludes that with a 95% probability, its lifetime will
not exceed

� + $ � +�+ � +2+�+ ��� million years;- for the Universe (current age � � + billion years), with a
95% probability, its lifetime will not exceed

� + $ � + ���2+2+
billion years;- computer era (started in 1994, � 3 + years old) will
probably last for

� , +2+�+ more years, etc.

IV. SUBJECTIVE PROBABILITY ON MULTI-D FINITE

INTERVALS: MOTIVATIONS, DEFINITION, AND THE

RESULTING DESCRIPTION

Let’s now consider a multi-dimensional case, i.e., the case
when we are describing the values of several physical quan-
tities

� � ��� �����"� #
. In this case, interval information can be

described by a box
� � * 6 � �97 � -���������� * 6 # �97 # - .

On each box
�

, we want to define a probability measure > � .

Definition 2. By an ! -dimensional subjective probability, we
mean a function > that to every box

� � * 6 � �97 � -"� ��� ��� * 6 # �97 # - ,
puts into correspondence a probability measure > � on

/ #
that

satisfies the following properties:- For each box
�

, the value >#� �%$ %
is defined for every

box
$

.- For every box
�

, the measure >#� is localized on the box�
(i.e., >&� � � % � ,

).- The measures >#� that correspond to different sets
�

are
consistent, i.e.,

>&' �.��% � >�� �.� N($ %
> � �%$ %

for arbitrary boxes
� �	$

, and for an arbitrary set
�

.- The measures are shift-invariant, i.e.,

> � �.��% � > � �*)� �.� 	,+G %
for an arbitrary vector

+G /
/ #
.- The measures are unit-invariant, i.e.,

>&� �.��% � > )(�) � � +"+$ �.%
for an arbitrary vector

+" � �*" � ��� ��� ��" # %
with
" ) &

+ . Here,
+"5$>�

means component-wise multiplication of
vectors, i.e.,

+" $ �.- �0/�21 +" $3+6 � +6 / �54
, and

+" $3+6 - �0/���" � $ 6 � � ��������" # $ 6 # % .
Motivations for these requirements are similar to the moti-
vations for the 1-dimensional case: shift means changing the
starting points of all ! quantities, and unit-invariance means
changing ! measuring units.

Proposition 2. If > is a subjective ! -dimensional probability,
then

>�� �%$ % �
� � N($ �
� � � �

where by
� � �

, we denoted the ! -dimensional measure of the
box
�

(i.e., area for !1� � , volume for !J� � , etc).

V. APPLICATIONS: MULTI-D CASE

1D subjective probabilities are used to compare the value
known with interval uncertainty with a threshold.

In many real-life situations, we need to compare interval
values with each other. For example, control rule bases often
include rules like “if the temperature 6 is higher than the
temperature

7
, then open valve 1, else open valve 2.” In

practice, after measurements, we only have intervals 6 and7
of possible values of 6 and

7
. If the corresponding two

intervals intersect, then none of the temperatures is guaranteed
to be higher than another.

On a box 6 � 7
, we have a naturally defined (subjective)

probability. A natural idea is therefore to choose an interval for
which the probability that 68
 7

is greater than the probability
that

7 
 6 , i.e., the probability

>:9<;>= � 1 � 6 �97!% � 68
 7?45%



that 68
 7
is greater than 1/2.

Another possibility is to take into consideration that the
inequality 6 
 7

is equivalent to 6 0 7 
K+ . Since we know
that 6 / 6 and that

7 / 7
, we can conclude that the difference��- �0/� 6 0 7

belongs to the interval 6+0 7 . So, as the desired
probability, we can take the conditional probability that the
number

�
is non-negative under the condition that

�J/ 6 0 7 ,
i.e., the conditional probability >#9 � = * + � � %

.
It turns out that both ways lead to the same selection:

Proposition 3. For every two intervals 6 � * 6 � 6 - and
7 �* 7 � 7"- , the following three conditions are equivalent to each

other:

i) >:9 � = * + � � % 
 , ���
for 1-dimensional subjective proba-

bility > .
ii) > 9>;<= � 1 � 6 �87!% � 6 
 7 45% 
 , ���

for 2-dimensional subjec-
tive probability > .

iii) 6 	 6� 

7 	 7
� .

This criterion is actually used in a expert system shell FEST
described in [29]. According to this criterion, out of several
values known with interval uncertainty, we select a one for
which the midpoint is larger (if we are looking for a maxi-
mum).

The above idea means that even if we have a 50.1%
probability that 6 is better than

7
, we reject

7
and choose 6 . In

many cases, we do not want to make a rejection decision on
such weak a basis. So, we may choose a value > � & , ���

, and
reject an alternative G only if there exists another alternative
6 with � � 6 & 7�% 
.> � .

To be able to make these choices, we must be able to
compute the corresponding probabilities. The formulas are
provided by the following proposition:

Proposition 4.
i) For 1-dimensional subjective probability > ,

> 9 � = * + � � % � 6 0 7
6 0 7 0 6 	 7

if 68
 7
and 0 else.

ii) For 2-dimensional subjective probability > ,

> 9<;>= � 1 � 6 �97!% � 68
 7?45% �
� � 	 � � 	 � �� 6 0�6 %!� 7 0 7 % �

where
� � - �0/� �', ����%�� 
���� + ���	� � � 6 � 7!% 0 � 
�� � 6 �87 %'% � , � � -

�0/
�� 7 0 7 % $
� 
��
� + � 6 0 7�%

, and
� � -

�0/
� � 6 0 6 % $
� 
�� � + � 6 0 7 %

.

Comment
,
. Part ii) was first proved in [29].

Comment
�
. It is worth mentioning that for > �
�� ,����

, these
formulas are different. Therefore, unless we take > � � , ���

,
the two ways to define probability lead to different sets of
solutions. For example, for 6 � * ,2����- and

7 �I* + �
�5- , the first
formula leads to 0.75, and the second one to 0.875.

Comment
�
. For the first formula, we can get an explicit

criterion for choosing the best alternative 6 :

Definition 3. Let � be a family of intervals. Assume that a real
number > � / * ,���� � ,!- is fixed. We say that an element 6 / �
is the possibly best interval with probability 
 > � if for every7 / � (

7 ���6 ), the probability >&9 � = * + � � %
is 
.> � .

Proposition 5. For every family � of intervals, the interval
6 / � is the possibly largest interval with probability 
.> � if
and only if

> � $ 6 	 � , 0 > � % $ 6 
 �����=���� B =��� 9
�'�', 0 > � % $57 	 > � $ 7!%!�

In some cases, the possible values of the objective function
do not form an interval; for example, if we have finitely many
different possibilities each of which leads to an interval of
possible values, then the set of all possible values of

��� 6 % is
a union of finitely many intervals.

Another case when such a union appears is the case of
expert systems [26], [29], when an expert may say that the
value of a quantity 6 belongs to a certain interval 6 , and
that it does not belong to another interval

7�� 6 . In this
case, the resulting knowledge is that 6 belongs to the set
6%0 7 � * 6 � 6 - 0 * 7 � 79- , which is the union of two intervals
* 6 �87 -�� * 75� 6 - . If we have several negative statements, the
resulting set of possible values may be a union of more than
two non-intersecting intervals.

In these cases, to compare the choices of 6 and
7
, we

can compare these sets of possible outcomes. In [29], a
probabilistic approach is generalized to this case. Namely, if
we know the set : of possible values of 6 and the set

�
of

possible values of
7
, then we can define the probability of

68
 7
as follows:- we choose the intervals 6 and

7
that contain : and

�
–

e.g., as interval hulls of the sets : and
�

;- we define the desired probability as the conditional prob-
ability that 68
 7

on the condition that 6 / : and
7 / �

,
i.e., as

> � :,
 � %3-
�0/
� >:9>;<= � 1 � 6 �97�% � 6 / :
� 7 / � ��6 
 7?4 %

>:9>;<= � : � � % �

where > is a subjective 2-dimensional probability.

This definition uses the intervals 6 and
7

, but the result turn
out to be independent on them:

Proposition 6. For every two intervals 6 � : and
7 � � ,

and for measurable sets : and
�

, the above formula leads to
the same value

� � :,
 � % �"! �
� 1 � 6 �87!% / : � �'� 68
 7?4 %
!
� � : % $

!
��� � % �

where !$# denotes a % 0 dimensional Lebesgue measure: length
for % � ,

, and area for % � � .
Comments

,
. The proof follows directly from the formulas for

subjective 2-dimensional probability.

Comment
�
. For the case when both : and

�
are finite unions

of intervals, an explicit formula for � � : 
 � % is given in



[29]. Namely, if we combine intersecting intervals into a larger
interval that they constitute, we can represent each of the sets
: and

�
as a finite union of non-intersecting intervals. Then,

the following formula applies:

Proposition 7. [29] If : �
#�
) � � 6 ) and

� � ��� � ���
� (where

6 ) N 6 � � 7 ) N 7 � ��� for � ��	� ), then

� � : 
 � % �
#

) � � �



� � � �

� 6 ) � 7 � %
!
� � : % $

!
� � � % �

where for arbitrary two intervals 6 and
7

,

�
� 6 � 7 % -

�0/
�

,
� $ � 
�� � + ���	� � � 6 � 7!% 0 � 
�� � 6 �87 %'% � 	

� 7 0 7 % $ � 
�� � + � 6 0 7�% 	 � 670 6 % $ � 
�� � + � 6 0 7 %��

For details, one can see [29].

VI. PROBLEMS WITH THE ABOVE FORMULAS FOR

SUBJECTIVE PROBABILITY

It is not immediately clear how to generalize this approach
to the case when instead of a finite interval, we have an infinite
(or at least very large) interval, i.e., a semi-line. Let us give an
example. Suppose that the condition that we want to satisfy is
6 � 62� , and that we know that 68
 ,

. What is the “subjective
probability” that the condition 6 � 6 � is satisfied? I.e, if we
use the above notation, what is the probability >�? � B ��
 � * ,�� 6�� -M% ?

An infinite interval * ,2� � %
is a limit case of a finite

interval * ,���� -
when

� � � . So, a natural idea is to
apply the above-described approach to compute the probability
> ���.% � > ? � B � E � * ,�� 6�� -�% and then tend to the limit

� � � .
Unfortunately, this idea does not work: due to Proposition
1, > ��� % � � 6��70 ,5%�� ��� 0 G % , and so, in the limit, we get
probability 0.

This mathematical argument can be easily reformulated
in common-sense terms. Let us assume that we live in an
infinite Universe that starts at time 0 and goes on and on. If
the Universe is 1 billion years old, then according to Gott’s
argument, with probability 95%, we are not in its first 50
million year. If the Universe is 100 billion years old, then
with the same probability, we cannot be in its first 5 billion
years. As we increase the lifetime, these first 5% spread to
the entire Universe. We therefore arrive at a counter-intuitive
conclusion that with a probability 95%, we cannot be in any
time of the Universe. The same conclusion can be made if
instead of 95%, we take 99.9%, etc.

This problem with the lifetime of the Universe may look
somewhat theoretical: after all, according to modern physics,
the Universe is finite. However, there is another example when
the above approach does not work well: the problem of dirty
pages of logarithm tables. In 1881, Simon Newcomb, a well-
known astronomer, noticed that the first pages of logarithm
tables (that contain numbers starting with 1) are more used
than the last ones (that contain numbers starting with 9) (for

a detailed description and references, see [12]). To check
why, he took all physical constants from a reference book,
and counted how many of them start with 1. If real numbers
representing physical constants were distributed uniformly, we
would expect all 9 possible first digits appear with the same
probability of � ,�,��

. In reality, instead of 11%, about 30% of
these constants turned out to be starting with 1. In general, the
fraction of constants that start with a digit

H
can be described

as
8 �
� H 	 ,C% 0 8 �@�FH % .
This empirical fact was later rediscovered by F. Benford [1]

and is therefore known as Benford’s law.

A similar law describes not only physical constants, it also
describes different types of data ranging from stock exchange
to census data to accounting-related numbers. Benford’s law
is not simply a curious empirical phenomenon, it has been
successfully used to, e.g., uncover accounting fraud: actual
numbers satisfy this law, while the cooked up data usually
follow the uniform distribution. It is therefore important to
figure out why this law is so frequent in real life.

This problem is more difficult that one might think be-
cause not only the corresponding distribution is different from
the seemingly natural uniform distribution, it is difficult to
figure out what distribution we have at all. Several authors
(see, e.g., [24], [8], [25]) deduced this formula from the
requirement similar to our unit-invariance (which they call
scale-invariance). Crudely speaking, they deduce the formula
> � * 6 � 6 -�% ��� : � � � $��.8 � � 6 % 0 8 � � 6 %"%�� We say “crudely speaking”
because

8 �
�F��% � � as
� � � , so the above formula

cannot describe an actual probability distribution; in reality,
the authors use some tricks:

- In [24], only the invariance of the digit distribution is
required.- In [8], > is defined as a limit of probability measures, and
invariance is formulated for this limit – which is not a
probability measure.- In [25], > is defined as a finitely additive measure that is
not � 0 additive.- In [5], [10], the logarithmic distribution is deduced from
the following fact: the values of the physical constants
are usually obtained by processing data, i.e., by applying
several (usually, many) arithmetic operations to the initial
data. It turned out that if we start with some random
numbers, and apply many ( ! ) arithmetic operations, then
as ! � � , the distribution of the first digit of the
result approaches the logarithmic distribution. Therefore,
the logarithmic distribution is a good approximation for
large ! .- Probably the most mathematically satisfying derivation
comes from considering a collection of different proba-
bility distributions instead of a single one [11], [12].

In this paper, we describe a new interval computations-related
explanation for Benford’s law, and we show how this law
is related to the general problem of determining subjective
probabilities on finite and infinite intervals.



VII. SUBJECTIVE PROBABILITY ON INFINITE INTERVALS

It turns out that a natural way to avoid the above problems in
the infinite case is not to require some of the conditions that
we had for finite case. Let’s do it for our problem. Namely,
we will skip shift-invariance:

Definition 4. By a 1-dimensional subjective probability on
infinite intervals, we mean a function > that to every interval
* 6 � � %�� 6 & + , puts into correspondence a probability measure
> ? ACB � 
 with the following properties:- For each interval * 6 � � %

, the value >@? A5B � 
 � * G �"H�-�% is de-
fined for all (finite and infinite) intervals * G �"H�- .- For each interval * 6 � � %

, the probability measure >@? ACB � 

is localized on the interval * 6 � � %

(i.e., >@? A5B � 
 � * 6 � � %'% �,
).- Measures >
? ACB � 
 that correspond to different intervals
* 6 � � %

are consistent, i.e.,

>
? � B ��
 ���.% � > ? ACB � 
 ��� N * G � � %'%
>
? ACB � 
 � * G � � %'%

for arbitrary 6 �87 / /
, and for an arbitrary

> ? ACB ��
�0 measurable set
� ; / .- The measures >
? ACB � 
 are unit-invariant, i.e.,

>
? A5B � 
 �.�.% �	> ? (�) ACB � 
 ��"1$,�.%
for an arbitrary set

�
.

Proposition 8. For every subjective 1-dimensional probability
> on infinite intervals, there exists a real number � & + such
that for G 
 6 ,

>
? ACB � 
 � * G �"H�-�% � � G6�� ��� 0�� H 6	� �
� �
and in general,

>
? ACB � 
 � * G �9H�-�% � >
? ACB � 
 � * G �9H�- N * 6 � � %'%��

Comment
,
. At first glance, it may seem that there is an

inconsistency between this result and Proposition 1. Let
us briefly explain why in reality, there is no inconsistency
here. The main result of Proposition 1 is that under certain
reasonable assumptions, two subregions of equal size have
equal probabilities. For infinite regions, in which we can have
infinitely many subregions of equal length, these subregions
cannot have equal probabilities: otherwise, the sum of these
probabilities – which should be bounded by 1 – will instead
be infinite.

Therefore, when we deal with infinite regions, we have to
abandon some seemingly natural assumptions. Without these
assumptions, we get a more general expression characterized
by a parameter � . When � � 0 , , we get the expression from
Proposition 1, an expression that works well for finite intervals
but for which, for infinite regions, the overall probability
becomes infinite. If we want the overall probability to be finite,
we must have � & + – in which case subregions of equal length
have different probabilities.

Comment
�
. According to Proposition 8, we have a 1-

parametric family of probability distributions, that depends on
a parameter � . For a finite subinterval, the distribution should
be approximately uniform, so we expect the value of � to
be small. When � is small, we can simplify the expression
for probabilities by expanding this expression into Taylor
series and keeping only linear terms in this expression. For
an exponential function, this leads to 6 �
� � , 0 � $ 8 �
� 6 % and,
therefore,

> ? ACB ��
 � * G �"H�-M% � � , 0 � $,8 �
� G � 6 %'% 0 � , 0 � $,8 �@�FH>� 6 %'% �� $��.8 �
�FH % 0 8 � � G %"%��
This formula is very similar to Benford’s law. Indeed,

Benford’s law can be thus explained:

Proposition 9. Assume that > is a subjective 1-dimensional
probability > on infinite intervals, and that we know that

�J/
* ,�� � %

. Then, the probability that the first digit in the decimal
representation of

�
is

H
is equal toH �
� 0 � H 	 ,C% �
�
, 0 , + ��� �

When � � + , this probability tends to
8 :�< � � �FH 	.,C% 0 8 :�< � � �FH % .

Let us give an intuitive explanation for this result. Namely,
let’s compute the conditional probability of

�
having a leading

digit
H

under the condition that
,�� ��� , + � . Numbers with

leading digit
H

belong to the intervals

* H$�"H 	 ,5%�� * H $�, + �C�FH 	 ,C% $�, + %�� � ���
The total probability of belonging to these intervals is equal
to the sum of the probabilities of belonging to * H&�9H 	 ,C%

, to
* H $�, + � �FH 	 ,C% $�, + % , etc. Each of these probabilities is equal
to � $$�.8 �
� H 	I,C% 0 8 � �FH %'% , and there are

�
of them, so we

get % $ � $ �.8 � �FH 	 ,C% 0 8 �
� H�%"% . To get the desired conditional
probability, we must divide this probability by the probability
that

� � , + � , which is � $�8 �@� , + � % � � $ � $�8 � � , + % . After
division, we get the desired formula.

VIII. APPLICATIONS: CASE OF INFINITE INTERVALS

In addition to above mentioned accounting applications,
Benford’s law is used:- in the design of (pseudo-)random number generators (see,

e.g., [16]);- for comparing different roundings in computer arithmetic,
so that we can choose the rounding algorithm for which
the average error (in the sense of the empirical distribu-
tion) is the smallest [7];- a new computer representation of real numbers has
been designed, that decreases the average rounding errors
(“average” in the sense of this empirical distribution) [5],
[27], [28]. This representation is called a sli (symmetric
level index) arithmetic, and it is defined as follows:
for integers

�
, we define � ����% as follows: � � + % � + ,� �F�%	 ,C% �
� � � � � ����%'% (so that � �',C% ��� , � ����% ��� � ,



etc). This function � is extended to a function that is
defined for all real numbers and maps

/
to * ,�� � %

. So,
a number 
 ,

can be represented as � � � % for some � .
Then, an arbitrary real number

�
is represented as a triple

consisting of a rational number � and two signs, for which� � � � � � %�� � . An interval is represented as by its upper
and lower endpoints.

IX. MULTI-DIMENSIONAL CASE: INFINITE INTERVALS

Definition 5. By an ! -dimensional subjective probability for
infinite intervals, we mean a function > that to every infinite box� �I* 6 �5� � % � � ��� � * 6 #�� � %!� 6 ) & + , puts into correspondence
a probability measure > � on

/ #
that satisfies the following

properties:- For each box
�

, the value > � � $ %
is defined for every box$ �I* G � �9H � - ����� � � * G # �9H # - (finite or infinite).- For every box

�
, the measure >#� is localized on the box�

(i.e., >&� � � % � ,
).- The measures >&� that correspond to different sets

�
are

consistent, i.e.,

>�' �.�.% � >�� ��� N�$ %
> � � $ %

for arbitrary boxes
� ��$

, and for an arbitrary set
�

.- The measures are unit-invariant, i.e.,

> � �.�.% �	> )(�) � � +"1$2�.%
for an arbitrary vector

+" � �*"�� � ��� ����"$# %
with
" ) & + .

Here, as in the case of finite intervals, unit-invariance means
changing ! measuring units.

Proposition 10. If > is a subjective ! -dimensional probability,
then there exist positive real numbers � � ��� ����� � # such that
when

� �I* 6 � � � % �������:� * 6 # � � %
,

>�� � * G � �9H � -���������� * G # �9H # -�% �� � G �6 � � �
��� 0 � H �6 � � �
����� $8� ���
$
� � G #6 # � ���
	 0 � H #6 # � ���
	�� �
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