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Many interdisciplinary design efforts require the involvement of computer scientists because of
the complexity of the problem solving tools available for the projects. This paper demonstrates
how appropriate language design can place high level languages in the hands of scientists and
engineers, thus providing a more automated approach to problem solving that may reduce the
amount of computer scientist involvement. The language Sequencel serves as an example of
this approach.

1. Introduction

Thereisan ongoing discussion at the highest level s of the United States government concerning “ data
morgues.” The concern hasto do with the current hardware capabilities that permit the acquisition and
storage of vast amounts of data and theinability of scientists armed with current software technology to
process and analyze the data. The current problem actually demonstrates that advances in computer
software have not kept pace with advances in computer hardware. If corresponding software advances
can be made, the data may be found to be comatose, rather than dead.

Among other root problems, the comatose data is symptomatic of the fact that currently available
software technology is not based upon abstractions that appropriately ssimplify approaches to complex
problems and data sets, especially when the data sets are distributed among multiple processing elements.
If large data sets containing, e.g., telemetry data, are to be analyzed, then exploratory or data mining
programsmust bewritten. Whenwrittenin traditional computer languages, these programsrequire scientists
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to work with computer specialists and, therefore, much time is needed to deploy application programs.
Higher level languages could well support thisactivity - particularly languages providing abstractionsthat
scientists could employ without the assistance of specialists. If more exploratory programs can bewritten
in areduced amount of time, more of the comatose data can be analyzed. Furthermore, new abstractions
may provide new pointsof view. The differing points of view may lead to new insightsinto how the data
can best be analyzed.

At theroot of any technical solution to the comatose data problem will be acomputer language. The
higher thelevel of the root language, the faster the technical solutionswill befound. The subject of this
paper is a language called Sequencel.. The Sequencel effort is part of a NASA University Research
Center at UTEP and has led to commercial interest in the language.

The remainder of this paper describes the need for abstraction improvement in general, and then
focuses on the abstraction afforded by SequenceL.

2. The Need for New Abstractions

Hardware improvements and the general spread of computing and computer applications have created
opportunities for scientists and engineers to solve ever more complicated problems. However, there are
concerns about whether scientists and engineers possess the software tools necessary to solve these
problems and what computer scientists can do to help the situation.

The fundamental software tool for problem solving is the programming language. A programming
language provides the abstraction employed in solving problems. In order to keep pace with hardware
improvements, computer scientists should continually address the problem of language abstraction
improvement. When advancesin hardware make problemstechnically feasible to solve, there should be
corresponding language abstraction improvements to make problems humanly feasible to solve.

In the recent past, most language studies have resulted in the addition of new features to existing
language abstractions. The most significant changes have resulted in additions to language facilities for
the definition of program and data structures. These changes have primarily taken place to accommodate
the needs for concurrent execution and software reuse. Although it is important to add to the existing
abstractionsto satisfy immediate technical problems, research also needsto be undertaken to simplify and
minimizeexisting abstractions.

There are application domainswhere the need for smpler language abstractionsisof vital importance.
There are estimates that less than 1% of the available satellite data has been analyzed. (Cooke, 1996)
There existsthe ability to acquire and store the data, but weaknessin the ability to determineinformation
content. Soon NASA will have satellitesin place that, in sum, will produce aterabyte of dataper day. A
major problem associated with the analysis of the data sets is the time needed to write the medium-to-
small programsto explorethe datafor segments containing information pertinent to particul ar earth science
problems. Software productivity gainsin developing exploratory programswill allow earth scientists to
better grapple with the complexity and enormity of satellite and seismic data sets. Software productivity
gains can be accrued through languages developed out of foundational research focusing on language
design. Thegoa of the Sequencel. language designisto allow scientists and engineersto solve complicated
problemsinamoreintuitiveway and to have the solutionsimply concurrent algorithmsthat solvethetarget
problems.

3. The SequenceL Approach

Sequencel was introduced as an approach to software development that offers a different, and for
some, amoreintuitive approach to problem solving. (Cooke, 1993), (Cooke, Demirors, Demirors, Gates,
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Kraemer, and Tanik, 1996), (Cooke, 1996), (Cooke, 1998), (Cooke, Daniel, 1998), (Cooke and Urban,
1998), (Cooke and Andersen, 2000) The assumption underlying the design of Sequencel isthat the data
product, as produced by software, isthetrue product of the software developer. Using traditional languages,
programmers write explicit algorithms that imply data products. The goal of the Sequencel design
effort wasto provide alanguage in which specifiersmake an explicit statement of the data product, which
inturnimpliesthe agorithm. Algorithm-devel opers must cometo know and understand theimplied data
product. A data-product specifier need not know the implied algorithm. 1n Sequencel, focus turnsfrom
the process that produces the product to the product itself.

One of the main difficultiesin traditional programming is grasping the true nature of theimplied data
product. Implied items are elusive and often require alarge amount of concentration to fully grasp. The
effort to gain an understanding of the data product impedes productivity. Complex data products are
typically defined recursively or iteratively. Software engineers havelong realized that the construction of
loopsiscomplex and costly. (Millsand Linger, 1986) Bishop noted that “ Since Pratt’ s paper onthedesign
of loop control structures was published more than a decade ago, there has been continued interest in the
need to provide better language featuresfor iteration.” (Bishop, 1990)

Sequencel.  possesses no iterative constructs and accommodates a unique form of recursion where
functionsmay embed themselves among intermediate dataresults. Sequencel isalanguagefor describing
adata product in terms of both form and content.  The difference between the traditional approach to
programming and the Sequencel. approachis precisaly the difference between animplicit product and an
explicit statement of the product. Consider as an example asimple program to computethemean value
of an unknown number of datavalues. For example, if the values are (10,25,30,35,40), then the mean
isobtained by:

Mean = (10+ 25+ 30+ 35+ 40), 5

In the traditional approach one states an algorithm (i.e., a step-by-step sequence of instructions) that
will produce the desired result. In Sequencel., one declares the desired data product:

Traditional Approach - Pseudo Code

1. Read in the numbers, one at a time, counting them as they are read.
2. Add the values together (Sum them).

3. Divide the sum by the count obtained in step (1).

Sequencel. Approach - Pseudo Code
Divide the sum of the values by the number of values.

Computer languages of the future must provide abstractions that present more intuitive approachesto
problem solving. Thisfact becomeseven more profound when adding the complications that accompany
parallel and distributed sol utionsto problem solving.

4. Nested Parallelisms

Many conventional concurrent languages add constructs to specify parallel execution. (Gelernter,
1985) Thesenew constructstypically fit well into the procedural paradigm. For example, languageslike
Adaprovidefor concurrency through afork and join construct implemented through procedure calls and
returns. The Adaapproach isagood one because the fork/join fitswell into the notion of existing control
constructs and the task (nested as a concurrent control structure in the procedure) fitswell into the notion
of subprograms. The task and the fork/join are orthogonal to the existing procedure and control flow
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constructs, respectively. To provide for the sharing of information between procedures, languages like
Adaincluded the features needed for message passing.

Conventional approachesto concurrent programming add featuresto the existing procedural and object-
oriented approachesto programming. Adding features can complicate these paradigms. New approaches
to programming (Banatre, and LeMatayer, 1993), (Blelloch, 1996), (Breazu-Tannen, Buneman, and Naqgvi,
1991), (Gelernter, D., 1985), (Hankin, C., Le Metayer, D., and Sands, D., 1992), (Sipelstein and Blelloch,
1990), (Suciu, 1995), (Cooke, 1998) provide for more intuitive approaches to parallelisms, resulting in
programs that are easier to write and easier to understand. Sequencel provides alanguage platformin
which parallelismsarerealized in amore intuitive way; in effect, as abyproduct of the abstraction itself.
(Cooke and Andersen, 2000) In Sequencel concurrency isimplied and, like other control structures, need
not be designed by the Sequencel. programmer. Thus, at a high level, the problem solver declares data
productsthat imply the potentially concurrent algorithms needed to solve the problems.

As afurther simplification, in a uniform abstraction Sequencel provides a platform for a full host,
guery, schema, and integrity constraint language. Sequencel is a small language consisting of three
constructs for nonscalar processing combined with a data dependency execution strategy. Through the
interaction of the Sequencel. constructs, a specifier can describe complicated problem solutions. The
problem solutions are given strictly in terms of descriptions of datastructureswhich areto hold the desired
results.

5. The Nonscalar Constructs

Since the focus of Sequencel turns aspecifier away from the algorithm, the traditional programming
language constructs, e.g., input/output, selective, iterative, and arithmetic, are not asrel evant asin traditional
languages. To reverse the approach of the programmer requires new and different constructs. These
new constructs are defined with reference to the sequence - the single data object of Sequencel.

A sequence is distinguished from a set because an element may occur more than one time in the
sequence. The sequence differs from the multiset, because the ordinal positions in the sequence are
significant. The examplerelationsbelow hel p distinguish multisets and sequences:

RELATION MULTISET SEQUENCE
{abafsa = {bafasa TRUE FALSE
{abafsa ={abafsa TRUE TRUE
{abaf.a = {abafsa FALSE FALSE

The equality relation for the sequenceis a proper subset of the equality relation for the multiset.

A Sequencel data object may be singleton (e.g., [99]), or nonsingleton (e.g., [[1].[2].[3]] or
[1121.[2].[3]]1.[1210],[20],[30]]] ). Complex structuresof sequences containing sequences can be described.
Likethelist of LISP (McCarthy, 1960) and the array of APL (Iverson, 1962) and J (Iverson, 1994), the
sequence of Sequencel can be used to build any data structure. (McCarthy, 1960)

For the sake of readability, the[]’ saround the singletons of nonsingleton structuresare eliminated (i.e.,
stand-alone singletonswill continueto be written as, e.g., [99], but singletons comprising anonsingleton
structurewill bewritten as, e.g., [1,2,3] or inthe case of anested sequence structure, [[1,2,3],[10,20,30]]).

The Sequencel. paradigm results in a language that replaces the traditional iterative and recursive
constructswith three constructs that provide one with the ability to apply operationsto input (or domain)
sequences. When an operation is applied to a domain sequence, arange sequence is produced.

Theregular construct is used when an operation isto apply to all elements of the domain sequence.
Indoing so, the construct resultsin the application of an operator to corresponding el ements of the constituent
operands. For example,
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3 6 10 3 3+10 6+3 13 9
+[4 7 20 2 |[]|=[4+20 7+2[ =|24 9
5 8 30 4 5+30 8+4 35 12
6 9 40 5 6+40 9+5 46 14

If the operands are not of the same cardinality and/or levels of nesting, they are normalized according
to the semantics given in (Cooke, Daniel, 1998). In producing the range, aregular operation reducesthe
domainintermsof levelsof nesting. Theregular operation resultsin anintuitive specification of concurrency,
similar to that performed in avector processor. This solution isdepicted by the eight addition operations
above. These operations can be performed simultaneously.

Theirregular construct isused when an operation isto be applied in aselective manner. Selection can
occur based upon the position of an element, e.g., select al elements whose subscript in the domain
sequenceisan odd number. Selection can also occur based upon the value of an element, e.g., select all
odd valued elementsin the domain sequence. Intheirregular processing, sequences can be combinedin
awide variety of ways. In the example function below, the desireisto produce theith number when the
ith number isevenly divisible by 2:

Evens{ CONSUME(numbers)
PRODUCE(Next) } WHERE Next =

numbers(i) when numbers(i) mod 2= 0
dse

[l

Using i from numbers

Theirregular construct typically reducesthe domain in terms of cardinality when producing the range
sequence.

The generative construct expands the domain sequence when producing the range. The simplest
form of thisconstruct allowsfor the expansion of integerswithin somerange and isdenoted by theellipse.
For example [ 10.,...,20] = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. An expression between two
setsof elipses can be employed to provide additiona conditionsfor membership in the expanded sequence:
[10....,*(pred,10), ...,100] = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100].

Within aSequencel function, each construct can be combined in any conceivableway with any other
construct. SequenceL functions execute based upon a data dependency execution strategy. The
denotational semanticsof Sequencel are givenin (Cooke, Daniel, 1998). In Friesen (1995) Sequencel
was shown to be capable of representing the Universal Turing Machine. The implementation strategy is
defined by the Sequencel. computational model presented in the next section.

6. The Computational Model

The Sequencel. computational model can be viewed as a modification of the Petri net computational
model. This model can be described asa 4-tuple (O, F, i , 0) where:

O: isaset of objects;
F: isaset of function symbols.
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In order to describei and o, we must first describe the set S of all sequences and the set T of all
possibleterms. Theset S of all sequencesisdefined using the following inductive definition:

- foreveryn3 Q,if 0,,...,0, are objects, then the expression [o,,...,0,] is asequence (in particular,
when n=0, the empty sequence [ ] is a sequence);

- forevery n2 0, if each element s ,...,s, isasequence or an object, then the expression [s,,...,S |
is a sequence; and

- No other expressions are sequences.

For example, if 2, 3, and 4 are objects, then[2], [3,4], and [[3,4],[2]] are sequences. Concatenation can
be defined in the usual way: [s,....s] + [S',,...S ] = [S,..S, S .8 ]
Similarly, theset T of all terms can be defined by the following inductive definition:

- foreveryn3 0, if each elementt,,....t iseither asequence, afunction symbol, or an object, then
the expression [t ,....t ] isaterm; and
- No other expressions are terms.

Thedifferencebetween S and T isthat in Sonly objectsareallowed, whilein T function symbolsare
asoalowed. Intermsof Sand T, i and o are defined as:

i: isamapping that assigns, to every function symbol fT F aseti(ffi S~ S of pairsof sets of
sequences. The set i(f) defines the possible inputs of the function f; and

0. isamapping that assigns, to every function symbol f1 F, afunction o(f) fromi(f) to T. The set
o(f) defines the possible outputs of the function f.

This model provides a means to compute aterm tl T from an expression that contains function
symbols, into asequencesi S that containsno function symbols. Informally, thiscomputation isperformed
asfollows:

- mark one-to-many function symbolsin term t wherei(f)i T: and
- apply of) to al marked function symbolsto eliminate the marked function symbols; then:

- if theresulting expression has no remaining function symbols, thisexpressionisreturned
asthe result of the computation; otherwise

- if theresulting expression till contains function symbols, then mark those elementsf of T,
wherei(f) I T, and repeat the above procedure.

Toformally describe this computation requires anotion of marking and the notion of applying marked
functions.

Notion of Marking. Let F* be aset with the same number of elementsasF, and let f ® f* beaone-
to-one correspondence between F and F*. Elements of the set F* are called marked function symbols.
Inthe definition of aterm, marked function symbolsare allowed in addition to un-marked symbols, which
resultsin the definition of marked terms. Formally, the set T* of marked terms can be defined asfollows:

- forevery n3 O, if each elementt ,...,t isan object, afunction symbol, amarked function symbol, or a

marked term, then the expression [t,,...,t ] isamarked term;
- no other expressions are marked terms.
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Concatenation of marked termsis defined in amanner similar to the concatenation of sequences.
An un-marking functionu: OE F E F*E T*® OE F E T, which erases all the markings is
defined asfollows:

. for an arbitrary object oT O, the un-marking function returns the object: u(o) = o;

. for an arbitrary un-marked function symbol object f1 F, the un-marking function returns the
function symbol: u(f) = f;

- for an arbitrary marked function symbol object f* T F*, the un-marking function returns the
function symbol: u(f*) = f ; and

- the application of the un-marking function to an expression means applying each element of this
expression: u([t,,...t]) =[u(t),...ut)].

Ifu(t)=t,i.e,ift" isobtained fromt by an un-marking, then it can also be said that t is obtained from
t' by marking.

Application of marked functions. Applying marked functions, t'® t, obtains an object, afunction
symbol, or atermt from a corresponding object, function symbol, or marked term t’:

. if ol Oisanobject,0 ® 0;

- if fT F isanun-marked function symbol, thenf ® f ;

- if apair of sequences(s,;s’), wheres=[s,....s] ands=[s,,...,s ], belongstoi(f), then[s,....s,
f*,s,...s ] ® off)(s;s’) - where o(f)(s,s') is the result of applying a function off) to the pair
(ss);

Cift,® t,.,t, ®¢t then[t,,.,t]® [t,.,t]; ad

- no other pairs (t't) arerelated by ® .

Final definition for a computation process. A computation processis afinite sequencet,,t’ , ...,
t t' .t inwhich:

m”= m el
- t, ...t areterms;
-t .., U are marked terms;

- foreveryi fromltom,
-t isamarking of t., and
t.,, isobtained fromt’, by applying marked functions(i.e, t',® t
- t_ . isaseguence.

m+1

); and

i+ 1

A process begins with t, and endswitht .. A sequence s isthe result of computing the term t, if
there exists a computation process that starts with t and ends with s.

Consider thefollowing example:

[ bbcbb]
match{ CONSUME(pred(n)),PRODUCE(next)} =
where next =
[ [success] when =(n,1)
else
[pred(2..n-1),match] when =(pred(1),pred(n))
else
[failure] ]
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Theargument, pred(n), consumesthefunction’ spredecessor from the databaseand n obtainsthe cardinality
of the predecessor. The second when-clause (highlighted above) succeeds, resulting in the next state of
the database being produced:

[ bcb]
match{ CONSUME(pred(n)),PRODUCE(next)} where next =
[ [success] when =(n,1)
else
[pred(2..n-1),match]  when =(pred(1),pred(n))
else
[failure] ]

The second when-clause succeeds for the final time, resulting in the next state of the database being
produced:

[c]
match{ CONSUME(pred(n)),PRODUCE(next)} where next =

[ [success] when =(n,1)
else
[pred(2..n-1),match]  when =(pred(1),pred(n))
else
[failure] ]

The first when-clause succeeds, resulting in the final state of the database:

[success]

The next section demonstrates the computational model through a data mining example.

7. Distribution of Functions

The computational model can be extended through theintroduction of aVector Random AccessMachine
(VRAM) introduced in (Blelloch, 1996). TheVRAM providesavirtua model for computation consisting
of an unlimited number of processing elements that have simultaneous access to a shared memory. The
expression t is the shared memory in the computational model of Sequencel.. The VRAM requires the
introduction of an infinite set of processors, P = {p,, p,,p.,...} and the introduction of an operator to
indicate smultaneous execution ||, e.g., @l|b indicatesthat processesa and b take place simultaneously.
Now, given all marked functions F* = {f* , f*_,..., f* } based upon expression t, one can distribute the
computationsto processorswith:

p,(0( ,)(s,.8,)) Il p,(o( £,)(s,.8,)) I ..l p,(o( f*,)(s,.S,))

When combined with the irregular and the embedded data dependent strategy for execution one can,
for example, establish powerful divide and conquer solutionsfor datamining that do not requiretherecursion
(and resulting depth in complexity) (Blelloch, 1996) required by NESL:
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[ [simple text search for sinister]
search(CONSUME((pred(n),succ(m)), PRODUCE(pred, succ, next))where next =

[ [pred(x), leave, succ |
] Using x from [[1,...,m],[2,...,m+1],....,[n-m+1,...,n]]
[sinister] ]
where
leave(CONSUME(pred,succ), PRODUCE(next)) where next =
[ [true] when pred = succ

else
(11

Inthe exampleabove, i will produce non-null resultsasit rangesfrom1 to (n-m)+1= (31-8)+1
which isequal to 24. Since search* ismarked, a processor is applied to search:

p,( [ [smple text search for sinister]
search* (CONSUME ((pred(n),succ(m)), PRODUCE(pred, succ, next)) where next =

[ [pred(x), leave, succ |
] Using x from [[1,...,m],[2,...,m+1],...,[n-m+1,...,n]]
[sinister] ]

The application of a processor to search results in the next state of t, where al occurrences of leave
are marked:

[ [simple text search for the word sinister], [sinister],

[simplet], leave*, [sinister]
[implete], leave*, [sinister]
[mpletex], leave*, [sinister]
[pletext], leave*, [sinister]
[letext], leave*, [sinister]
[etext 5], leave*, [sinister]
[ text se], leave*, [sinister]
[text sea], leave*, [sSinister]
[ext sear], leave*, [sinister]
[xt searc], leave*, [sinister]
[t search], leave*, [sinister]
[ search], leave*, [sinister]
[searchf], leaver, [sinister]
[earchfo], leave*,[sinister]
[archfor], leave*, [sinister]
[rchfor], leave*,[sinister]
[chfor g], leave*, [sinister]
[hfor si], leave*, [sinister]
[ for sin], leave*, [sinister]
[for sini], leave*, [sinister]
[or sinig], leave*, [sinister]
[rsinist], leave*, [sinister]
[ siniste], leave*, [sinister]
[sinister], leave*, [sinister]

]
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The marked occurrences of leave will each have a processor assigned, resulting in 24 concurrent
computations of the leave function.

[ [simple text search for the word sinister], [sinister],

p,([simplet], leave, [sinister] ) ||
p,([implete], leave, [sinister] ) ||
p,([mpletex], leave, [sinister] ) ||
p,([pletext], leave, [sinister] ) ||
p,([letext], leave, [sinister] ) [|
p,([etexts], leave, [sinister] ) ||
p,([ text se], leave, [sinister] ) ||
py( [text sea], leave, [sinister] ) ||
p,( [ext sear], leave, [sinister] ) ||
p,( [xt searc], leave, [sinister] ) ||
p,([tsearch], leave, [sinister] ) [|
p,,([ search], leave, [sinister] ) ||
p,,([searchf], leave, [sinister] ) [|
p,.([earchfo], leave, [sinister] ) ||
p,.([archfor], leave, [sinister] ) ||
p,([rchfor ], leave, [sinister] ) ||
p,,([chfor 5], leave, [sinister] ) ||
p,( [hfor si], leave, [sinister] ) ||
p,o( [ for sin], leave, [sinister] ) ||
p,o( [for sini], leave, [sinister] ) ||
p,,([or sinig], leave, [sinister] ) ||
p,,( [r sinist], leave, [sinister] ) ||
p,,( [ siniste], leave, [sinister] ) ||
p,,([sinister], leave, [sinister]

The 24 occurrences of the function leave, combined with associated arguments can exist in shared
memory and producethefinal result:

[ [simple text search for the word sinister], [sinister],
[true] ]

Lacking the ability to combine features similar to the irregular and generative constructs, it would
appear that a series of recursive calls are necessary in order to produce a divide and conquer solution to
this search problem in NESL.

Although the computational model appearsto duplicate much datain shared memory, the duplication of
dataisnot necessary since all inputs areread-only. Optimizationswill result in no duplication.

8. Simplified Problem Solutions in SequenceL

In this section, two example problems are specified in Sequencel, and are programmed in JAVA.
Thus the reader can compare the Sequencel and JAVA solutions to the same problems. The goal hereis
for the reader to see that much of the language-based complexity introduced even by modern languages
like JAVA, isimplied by the simpler Sequencel solutions. Thus, Sequencel providesalanguage base that
may reducethe need for theinvol vement of sophisticated computer scientistsin the solution of interdisciplinary
problems.
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8.1. Data Parallelisms in SequencelL

Data paralelismsin Sequencel are definable in a straightforward manner through the use of the data
dependent execution strategy of Sequencel functions. Given the following database configuration, a
wor d-search exampleis represented in an intuitive manner:

Hereisatest string I

Search(Consume(pred(n),succ(m)), Produce(next)) where next =

pred(x) = succ

In thisexample, the cardinalities of the predecessor and the successor are obtained inidentifiersnand m,
respectively. Based upon the using clause, the predecessor’s subscript x obtains values (in order) from
the generated sequences:

[[1,2,3,4],[2.3,4,5].[3,4,5,6],[4,56,7].[56,7.8][6,7,8,9],[7.8,9,10] [8,9,10,11] ,[9,10,11,12],
[10,11,12,13] [11,12,13,14] [ 12,13,14,15] [ 13,14,15,16] ,[ 14,15,16,17] [ 15,16,17,18]
[16,17,18,19] [17,18,19,20],[ 18,19,20,21]]

Theusing clause helps subdivide the larger dataset into 18 smaller sets—much like the parceling of data
accomplished in lines35-39 and 7-12 in the JAVA version presented in Exhibit 1. Thefunction resultsin
the following set of relations being added to the Sequencel. program:

[[here] = [test], [ere] = [test], [rei] = [test], [eis] = [test], [ is] = [test], [isa] = [test],
[sa] = [test], [ at] = [test], [ate] = [test], [ tes] = [test], [test] = [test], [est] = [test],
[stg = [test], [t ] = [test], [ str] = [test], [stri] = [test], [trin] = [test], [ring] = [tes{]]

The concurrent evaluation of theresulting conditionsis now clearly implied dueto the computational model
of Sequencel - amodel that allows the execution of any function or operator as soon as the data required
for the operator or functionisavailable:

[[here] = [test] || [ere] = [test] || [rei] = [test] || [eis] = [test] || [ is] = [test] || [isa] = [test] ||

[sa] = [test] ||[at] = [test] || [ate] = [test] || [ tes] = [test] || [test] = [test] || [est] = [tes(] ||
[sts] = [test] |[[tst] = [test] ||[str] = [test] ||[stri] = [test] || [trin] = [test] || [ring] = [test]]

After concurrent evaluation, the vector of boolean results remains in the database:

[ false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false]
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The parallelismsin Sequencel. are moreintuitivein that the parallelisms do not result in the separation
of elements of functionality and, since parallelisms are implied, the solution does not require the use of
additional constructs asis seen in the thread, run(), try, etc. required in the JAVA concurrent solution.

8.2. Data Paralle Data Mining of Images in SequencelL

Although the example data parallel problem solution devel oped so far in thispaper israther simple, the
example scales up to many real-world data mining problems involving image processing and security-
based text searches. The searching of image databases follows the same parceling and scatter/gather
approach to programming. Thedifferenceisthat the aobjectsfor which oneis searching are characterized
mathematically. These mathematically defined objects serve as a kernel, which drives the search much
like the string Here is a test string served as the object for which the text string search was done in this
paper. Anexampleof animage-based kernel isthe following Gaussian-L aplacian operator often employed
for edge detection:

1 (x +y%)6.0 (x2 +y?)6.0
GL = :
X)) 003" 0 ] 27183[ P

The operator is applied for values from 1 to n for x and y. The Sequencel function corresponds
directly to the mathematical formula:

L aplace(Consume(succ(n)) Produce(Next)) wher e next(n,n)=

1
31403

X2y 60
2-0.3"2

X2y 60
2032

27183

Using x,y Form[1,...,n]*[1,...,n]

In JAVA (see Exhibit 2), the programmer must decompose the formula and construct loops to perform the
appropriate computations. Furthermore, to perform concurrent processing of theimagein JAVA requires sophisticated
design typically involving acomputer scientist. Aswith the other solutions, aconcurrent solution to apply the mask
toalarger imagefor edge detectionisimplied by the SequenceL solution and requires no additional effort on the part
of the programmer.

9. Summary

Language constructs for iteration and concurrency are abstracted out of the Sequencel language
abstraction, freeing the problem solver from much of the difficult effort required to produce al gorithmsthat
imply the data products they desire. Thus, scientists and engineers are more apt to employ SequenceL in
solving complex problemswith greater ease, freeing them from the need to consult with Computer Scientists
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as much as they would if they were solving problems using traditional computer languages. One of the
scarcest resourcesfor any largeinterdisciplinary project team isthe computer scientist who is sophisticated
enough to be capable of producing complex, concurrent problem solutions. Sequencel isalanguage for
which the goal has been to free problem solving teams from much of the technical detail that requiresthe
attention of computer scientists.
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class wrdsrch2 extends Thread{
String text;

String target;

boolean found;

int i

wrdsrch2(String in, String targ, int k) {
target=targ;
text=in;
found=false;
i=k;
}

public void run() {
if(text.equal s(target))
{found = true;}

}

public static void main (String args[]) {
inti,j, k, n,nl;

String s = “here is a test string”;
String sl = “test”;

char[] sample = s.toCharArray();
char[] find = sl.toCharArray();

System.out.printin(sample);

n = sample.length;
nl = find.length;
String send;

wrdsrch2 w[] = new wrdsrch2[(n-n1)+1];

for(i=0;i<=n-n1;i++)
{send = s.substring(i,i+n1);
w[i] = new wrdsrch2(send,sL,i);

}
System.out.printin(“*To Run “);
for(i=0;i<=n-nl;i++)

{w[i].start();}
for(i=0;i<=n-nl;i++)

{try {w[i].join();

catch (InterruptedException ignored) { }
}

System.out.printin(* The answer is. “);

for(i=0;i<=n-nl;i++)
{ System.out.printin(w[i].found);}

1

Exhibit 1. DataParallelisminaWord Search Problem.
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import java.io.*;

class Lapl{

public static void main (String [] args) throws |OException {
PrintStream f = new PrintStream(new FileOutputStream(“lapl.out”));

float kernel[][] = new float[13][13];

float sigma=(float)0.3, r_factor=(float)6.0, sigmad, sigma2,x2;
float r2,deltax,deltay,sum,sigma2x2,sigmadxpi;

float r2sigma2x2, sum_mask;

int i,x,y,centerxy;

/I Computation is
/I Upi*sigma**4 [1 - x**2 + y**2/2*sigma**2] e** (x**2+y**2/2*sigma**2)
1
/I Compute sigma**2

sigma2 = (float) Math.pow((float)0.3,(float)2.0);
/I Compute 2*sigma**2

sigma2x2 = sigma2 * 2;
/I Compute sigma**4

sigmad=(float) Math.pow((float)0.3,(float)4.0);
/I Compute Upi * sigma**4

sigmadxpi = 1/(sigma4* (float)3.1416);

centerxy = (int) 13/2;

for (x=0;x<13;x++)
for (y=0,y<13;y++)
{ deltax
deltay

= x-centerxy;
= y-centerxy;
/I Compute x**2 + y**2
r2 = (float) Math.pow(deltax,(float)2)+
(float)Math.pow(deltay,(float)2);
r2 = r2 * r_factor;
/I Compute x**2 + y**2/2*sigma**2
r2sigma2x2 = - r2/sigma2x2;
/I Final Computation for formula above for x,y
kernel[x][y]=sigmadxpi *
(1+r2sigma2x2) *
(float)Math.pow((float)2.7183,(fl oat)sigma2x2);

}

for (x=0;x<13;x++)
{f.printIn(“row “+ x);
for (y=0y<13;y++)
f.print(kernel[x][y]);
f.printin(* “);
b

1
Exhibit 2. Gaussian-L aPlacian Operator in JAVA.
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