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Abstract

Geospatial databases generally consist of measurements related to
points (or pixels in the case of raster data), lines, and polygons. In re-
cent years, the size and complexity of these databases have increased
significantly and they often contain duplicate records, i.e., two or more
close records representing the same measurement result. In this paper,
we address the problem of detecting duplicates in a database consisting
of point measurements. As a test case, we use a database of measure-
ments of anomalies in the Earth’s gravity field that we have compiled. In
this paper, we show that a natural duplicate deletion algorithm requires
(in the worst case) quadratic time, and we propose a new asymptotically
optimal O(n -log(n)) algorithm. These algorithms have been successfully
applied to gravity databases. We believe that they will prove to be useful
when dealing with many other types of point data.

1 Case Study: Geoinformatics Motivation for
the Problem

Geospatial databases: general description. In many application areas,
researchers and practitioners have collected a large amount of geospatial data.



For example, geophysicists measure values d of the gravity and magnetic fields,
elevation, and reflectivity of electromagnetic energy for a broad range of wave-
lengths (visible, infrared, and radar) at different geographical points (z,y); see,
e.g., [19]. Each type of data is usually stored in a large geospatial database
that contains corresponding records (x;, i, d;). Based on these measurements,
geophysicists generate maps and images and derive geophysical models that fit
these measurements.

Gravity measurements: case study. In particular, measuring gravity is one
of the most important sources of geophysical and geological information. There
are two reasons for this importance. First, in contrast to more widely used
geophysical data like remote sensing images, that mainly reflect the conditions
of the Earth’s surface, gravitation comes from the whole Earth (e.g., [9, 10]).
Thus gravity data contain valuable information about much deeper geophysical
structures. Second, in contrast to many types of geophysical data, which usually
cover a reasonably local area, gravity measurements cover broad areas and thus
provide important regional information.

The accumulated gravity measurement data are stored at several research
centers around the world. One of these data storage centers is located at the
University of Texas at El Paso (UTEP). This center contains gravity measure-
ments collected throughout the United States and Mexico and parts of Africa.

The geophysical use of gravity database compiled at UTEP is illustrated for
a variety of scales in [1, 3, 6, 8, 12, 17, 20, 21].

Duplicates: where they come from. One of the main problems with the
existing geospatial databases is that they are known to contain many duplicate
points (e.g., [7, 14, 18]). The main reason why geospatial databases contain
duplicates is that the databases are rarely formed completely “from scratch”,
by simply placing together the measurement results. These databases usually
combine measurement results with the data from the existing databases. Some
measurement results are represented in several of combined databases, so we
get duplicate records.

Why duplicates are a problem. Duplicate values can corrupt the results of
statistical data processing and analysis. For example, when instead of a single
(actual) measurement result, we see several measurement results confirming each
other, and we may get an erroneous impression that this measurement result
is more reliable that it actually is. Detecting and eliminating duplicates is
therefore an important part of assuring and improving the quality of geospatial
data, as recommended by the US Federal Standard [5].

Duplicates correspond to interval uncertainty. In the ideal case, when
measurement results are simply stored in their original form, duplicates are
identical records, so they are easy to detect and to delete. In reality, however,
different databases may use different formats and units to store the same data:
e.g., the latitude can be stored in degrees (as 32.1345) or in degrees, minutes,



and seconds. As a result, when a record (z;,y;,d;) is placed in a database,
it is transformed into this database’s format. When we combine databases,
we may need to transform these records into a new format — the format of
the resulting database. Each transformation is approximate, so the records
representing the same measurement in different formats get transformed into
values which correspond to close but not identical points (z;,y;) # (z;,Y;)-
Usually, geophysicists can produce a threshold € > 0 such that if the points
(xi,y:) and (zj,y;) are e-close — i.e., if |x; — ;| < € and |y; — y;| < € — then
these two points are duplicates.

N

In other words, if a new point (x;,y;) is within a 2D interval [x; — €, 2; + €] X
[y: — €,y; + €] centered at one of the existing points (z;,y;), then this new point
is a duplicate:

X €

3 3

If the two points are duplicates, we should delete one of these two points
from the database. Since the difference between the two points is small, it does
not matter much which of the two points we delete. In other words, we want
to continue deleting duplicates until we arrive at a “duplicate-free” database.
There may be several such duplicate-free databases, all we need is one of them.

Duplicates are not easy to detect and delete. At present, the detection
and deletion of duplicates is done mainly “by hand”, by a professional geophysi-
cist looking at the raw measurement results (and at the preliminary results of
processing these raw data). This manual cleaning is very time-consuming. It is
therefore necessary to design automated methods for detecting duplicates.

If the database was small, we could simply compare every record with every
other record. This comparison would require n(n — 1)/2 ~ n?/2 steps. Alas,



real-life geospatial databases are often large, they may contain up to 108 or more
records; for such databases, n?/2 steps is too long. We need faster methods for
deleting duplicates.

From interval to fuzzy uncertainty. Sometimes, instead of a single threshold
value €, geophysicists provide us with several possible threshold values g; < g2 <
... < &, that correspond to decreasing levels of their certainty:

e if two measurements are within &; from each other, then we are 100%
certain that they are duplicates;

¢ if two measurements are within £, from each other, then with some degree
of certainty, we can claim them to be duplicates,

e if two measurements are within e from each other, then with an even
smaller degree of certainty, we can claim them to be duplicates,

e etc.

In this case, we must eliminate certain duplicates, and mark possible duplicates
(about which are not 100% certain) with the corresponding degree of certainty.

In this case, for each of the coordinates x and y, instead of a single interval
[z; —e, z;+€], we have a nested family of intervals [z; —¢;, z; +¢;] corresponding
to different degrees of certainty. Such a nested family of intervals is also called a
fuzzy set, because it turns out to be equivalent to a more traditional definition of
fuzzy set [2, 13, 15, 16] (if a traditional fuzzy set is given, then different intervals
from the nested family can be viewed as a-cuts corresponding to different levels
of uncertainty a).

In these terms, in addition to detecting and deleting duplicates under interval
uncertainty, we must also detect and delete them under fuzzy uncertainty.

What we are planning to do. In this paper, we propose methods for detect-
ing and deleting duplicates under interval and fuzzy uncertainty, and test these
methods on our database of measurements of the Earth’s gravity field.

2 (Geospatial Databases: Brief Introduction

Geospatial databases: formal description. In accordance with our descrip-
tion, a geospatial database can be described as a finite set of records r1,...,ry,
each of which is a triple r; = (x;,¥;,d;) consisting of two rational numbers z;
and y; that describe coordinates and some additional data d;.

The need for sorting. One of the main objectives of a geospatial database is
to make it easy to find the information corresponding to a given geographical
area. In other words, we must be able, given one or two coordinates (z and/or
y) of a geographical point (center of the area of interest), to easily find the data
corresponding to this point and its vicinity.



It is well known that if the records in a database are not sorted by a pa-
rameter a, then in order to find a record with a given value of a, there is no
faster way than linear (exhaustive) search, in which we check the records one
by one until we find the desired one. In the worst case, linear search requires
searching over all n records; on average, we need to search through n/2 records.
For a large database with thousands and millions of record, this takes too much
times.

To speed up search, it is therefore desirable to sort the records by the values
of a, i.e., to reorder the records in such a way that the corresponding values of
a are increasing: a1 < az < ... < a,.

Once the records are sorted, instead of the time-consuming linear search, we
can use a much faster binary search (also known as bisection). At each step of
the binary search, we have an interval a; < a < a,. We start with [ = 1 and
u = n. On each step, we take a midpoint m = | (! + v)/2| and check whether
a < am. If a < an,, then we have a new half-size interval [a;, a,, 1]; otherwise,
we have a half-size interval [a,,, a,] containing a. In log,(n) steps, we can thus
locates the record corresponding to the desired value of a.

How to Sort: Mergesort Algorithm. Sorting can be done, e.g., by merge-
sort — an asymptotically optimal sorting algorithm that sorts in O(n - log(n))
computational steps (see, e.g., [4]).

Since the algorithms that we use for deleting duplicates are similar to merge-
sort, let us briefly describe how mergesort works. This algorithm is recursive
in the sense that, as part of applying this algorithm to the databases, we apply
this same algorithm to its sub-databases. According to this algorithm, in order
to sort a list consisting of n records r1,...,7,, we do the following;:

o first, we apply the same mergesort algorithm to sort the first half of the
list, i.e., the records (ry,...,7|n/2]) (if we only have one record in this
half-list, then this record is already sorted);

e second, we apply the same mergesort algorithm to sort the remaining half
of the list, i.e., the records (r|,/2|+1,---,n) (if we only have one record
in this half-list, then this record is already sorted);

e finally, we merge the two sorted half-lists into a single sorted list; we start
with an empty sorted list; then, at each step, we compare the smallest two
elements of the remaining half-lists, and move the smaller of them to the
next position on the merged list.

For example, if we start with sorted half-lists (10,30) and (20, 40), then we do
the following:

e First, we compare 10 and 20, and place the smaller element 10 as the first
element of the originally empty sorted list.



e Then, we compare the first elements 30 and 20 of the remaining half-lists
(30) and (20,40) and place 20 as the second element into the sorted list —
so that the sorted list now becomes (10, 20).

e Third, we compare the first elements 30 and 40 of the remaining half-lists
(30) and (40), and place 30 as the next element into the sorted list — which
is now (10, 20, 30).

e After that, we have only one remaining element, so we place it at the end
of the sorted list — making it the desired (10, 20, 30, 40).

How many computational steps does this algorithm take? Let us start counting
with the merge stage. In the merge stage, we need (at most) one comparison
to get each element of the resulting sorted list. So, to get a sorted list of n
elements, we need < n steps. If by t(n), we denote the number of steps that
mergesort requires on lists of size n, then, from the structure of the algorithm,
we can conclude that t(n) < 2-t(n/2)+n. If n/2 > 1, we can similarly conclude
that t(n/2) < 2-t(n/4) + n/2 and therefore, that

t(n) <2-t(n/2) +n<2-(2-t(n/2) +n/2)+n <

4-t(n/4) +2- (n)2) +n=4-t(n/4) + 2n.

Similarly, for every k, we can conclude that t(n) < 2¥ - ¢(n/2%¥) + k-n. In
particular, when n = 2*, then we can choose k = log,(n) and get t(n) <
n-y(1)+k-n. A list consisting of a single element is already sorted, so (1) = 0
hence t(n) < k- n, i.e., t(n) < n-logy(n).

Specifics of geospatial databases. In a geospatial database, we have two
coordinates by which we may want to search: x and y. If we sort the records
by x, then search by x becomes fast, but search by y may still require a linear
search — and may thus take a lot of computation time.

To speed up search by y, a natural idea is to sort the record by y as well —
with the only difference that we do not physically reorder the records, we just
memorize where each record should be when sorted by y. In other words, to
speed up search by z and y, we do the following:

e First, we sort the records by x, so that ;1 < z3 < ... < z,.

e Then, we sort these same records by y, i.e., produce n different values
i1,-- .,y such that y;, <wy;, <...<uy;, (and n values j(1),...,j(n) such
that j(ix) = k).

For example, if we start with the records corresponding to the points (20, 10),
(10,40), and (30, 30), then we:

e first, sort them by z, ending in (z1,y1) = (10,40), (z2,y2) = (20,10), and
(z2,92) = (30, 30);



e then, sort the values of y; we end up with 4; = 2, i = 3 and i3 = 1 (and,
correspondingly, j(1) = 3, j(2) =1, and j(3) = 2), so that

Yi, = y2 =10 <y, =y3 =30 < y;;, = y1 = 40.

The resulting “double-sorted” database enables us to search fast both by = and
by y.

3 The Problem of Deleting Duplicates: Ideal
Case of No Uncertainty

To come up with a good algorithm for detecting and eliminating duplicates in
case of interval uncertainty, let us first consider an ideal case when there is no
uncertainty, i.e., when duplicate records r; = (z;,y;,d;) and r; = (z;,y;,d;)
mean that the corresponding coordinates are equal: z; = x; and y; = y;.

In this case, to eliminate duplicates, we can do the following. We first sort
the records in lexicographic order, so that r; goes before r; if either z; < z;, or
z; = z; and y; < y;. In this order, duplicates are next to each other.

So, we first compare r; with r. If coordinates in ro are identical to coordi-
nates in 71, we eliminate r, as a duplicate, and compare r; with r3, etc. After
the next element is no longer a duplicate, we take the next record after r1 and
do the same for it, etc.

After each comparison, we either eliminate a record as a duplicate, or move
to a next record. Since we only have n records in the original database, we
can move only n steps to the right, and we can eliminate no more than n
records. Thus, totally, we need no more than 2n comparison steps to complete
our procedure.

Since 2n is asymptotically smaller than the time n - log(n) needed to sort
the record, the total time for sorting and deleting duplicates is n -log(n) + 2n ~
n - log(n). Since we want a sorted database as a result, and sorting requires at
least n - log(n) steps, this algorithm is asymptotically optimal.

It is important to mention that this process does not have to be sequential:
if we have several processors, then we can eliminate records in parallel, we just
need to make sure that if two record are duplicates, e.g., r; = rg, then when
one processor eliminates r; the other one does not eliminate rj.

Formally, we say that a subset of the database is obtained by a cleaning step
if:

¢ it is obtained from the original database by selecting one or several differ-
ent pairs of duplicates and deleting one duplicate from each pair, and

o from each duplicate chain r; = r; = ... = r}, at least record remains in
the database after deletion.



A sequence of cleaning steps after which the resulting subset is duplicate-free
(i-e., does not contain any duplicates) is called deleting duplicates.

The goal is to produce a (duplicate-free) subset of the original database
obtained by deleting duplicates — and to produce it sorted by x;.

4 Interval Modification of the Above Algorithm:
Description, Practicality, Worst-Case Com-
plexity

In the previous section, we described how to eliminate duplicates in the ideal
case when there is no uncertainty.

In real life, as we have mentioned, there is an interval uncertainty. A natural
idea is therefore to modify the above algorithm so that it detects not only exact
duplicate records but also records that are within e of each other.

In precise terms, we have a geospatial database (ry,...,7r,), where r; =
(zi,vi,d;), and we are also given a positive rational number €. We say that
records r; = (24,Yi,d;) and r; = (z;,y;,d;) are duplicates (and denote it by
ri ~r;) if |z — x| <eand |y; —y;| <e.

We say that a subset of the database is obtained by a cleaning step if:

e it is obtained from the original database by selecting one or several differ-
ent pairs of duplicates and deleting one duplicate from each pair, and

e from each duplicate chain r; ~ r; ~ ... ~ 1y, at least record remains in
the database after deletion.

A sequence of cleaning steps after which the resulting subset is duplicate-free
(i-e., does not contain any duplicates) is called deleting duplicates.

The goal is to produce a (duplicate-free) subset of the original database
obtained by deleting duplicates — and to produce it sorted by z; (and double-
sorted by ).

Similarly to the ideal case of no uncertainty, to avoid comparing all pairs
(ri,rj) — and since we need to sort by x; anyway — we first sort the records by
z, so that 1 < 9 < ... < x,. Then, first we detect and delete all duplicates
of r1, then we detect and delete all duplicates of r» (r; is no longer considered
since its duplicates have already been deleted), then duplicates of r3 (ry and ry
are no longer considered), etc.

For each i, to detect all duplicates of r;, we check r; for the values j =
i+ 1,9+ 2,... while 2; < 2; + €. Once we have reached the value j for which
z; > z; + €, then we can be sure (since the sequence z; is sorted by z) that
xr > x; + € for all kK > j and hence, none of the corresponding records r; can
be duplicates of r;.



While z; < z;+¢, we have 2; < x; < z;+¢ hence |z; —z;| < e. So, for these
J, to check whether r; and r; are duplicates, it is sufficient to check whether
lyi —y;] <e.

Thus, the following algorithm solves the problem of deleting duplicates:
Algorithm 1.

1. Sort the records by z;, so that z; < x5 < ... < z,.
2. For i from 1 to n — 1, do the following:

for j=i+1,i+2,..., whilez; <z;+e
if [y; — yi| < e, delete r;.

For the gravity database, this algorithm works reasonably well, but we cannot
be sure that it will always work well, because its worst-case complexity is still
n(n —1)/2. Indeed, if all n records have the same value of z;, and all the values
y; are drastically different: e.g., y; = y1 +2- (¢ — 1) - € — then the database is
duplicate-free, but the above algorithm requires that we compare all the pairs.

For gravity measurements, this is, alas, a very realistic situation, because
measurements are sometimes made when a researcher travels along a road and
makes measurements along the way — and if the road happens to be vertical
(z = const), we end up with a lot of measurements corresponding to very close
values of z.

We therefore need a faster algorithm for deleting duplicates.

5 New Algorithm: Motivations, Description,
Complexity

How can we speed up the above algorithm? The above example of when the

above algorithm does not work well shows that it is not enough to sort by = —

we also need to sort by y. In other words, it makes sense to have an algorithm
with the following structure:

Algorithm 2.
1. Sort the records by z, so that z; < x5 < ... < z,,.

2. Sort these same records by v, i.e., produce n different values iy, ...,%, such
that y;; <wyi, <...<w;, (and n values j(1),...,j(n) such that j(ix) = k).

3. Delete duplicates from the resulting “double-sorted” database.
To describe the main part — Part 3 — of this algorithm, we will use the same
recursion that underlies mergesort:

Part 3 of Algorithm 2. To delete duplicates from the double-sorted database
{r1,...,rn), we do the following:



1. We apply the same Part 3 of Algorithm 2 to delete duplicates from the left half
(r1,...,7|n/2)) of the database (if we only have one record in this half-list,
then this half-list is free of duplicates, so we do not need to delete anything);

2. We apply the same Part 3 of Algorithm 2 to delete duplicates from the right
half (r|,/2)41,---,7n) of the database (similarly, if we only have one record
in this half-list, then this half-list is free of duplicates, so we do not need to
delete anything);

3. We merge and clean the resulting duplicate-free subsets by using an appro-
priate merge-and-clean algorithm.

How can we merge and clean? Since both merged databases are duplicate-
free, the only possible duplicates in their union is when r; is from the first half-
database, and r; is from the second half-database. Since the records are sorted

by z, for the first database, z; < x¢ dof T|n/2), and for the second database,
zo < zj, 50 z; < zo < x;. If r; and r; are duplicates, then the distance |z; — x|
between z; and z; does not exceed €, hence the distance between each of these
values z;, 2; and the intermediate point zy also cannot exceed €. Thus, to detect
duplicates, it is sufficient to consider records for which z;,z; € [zo —€,20 + €]
—1i.e., for which x; belongs to the narrow interval centered in z;.

- >

€ €

It turns out that for these points, the above Algorithm 1 (but based on
sorting by y) runs fast. Indeed, since we have already sorted the values y;, we
can sort all k records for which z is within the above narrow interval by y, into
a sequence (i), . .., ) for which y1y <y@) < ... < yr). Then, according to
Algorithm 1, we should take each record r(;), 1 = 1,2,..., and check whether
any of the following records 7(;11),7(i+2), - - - is a duplicate of the record r(;).

For each record r(;y = (2(;),y(s), d(i)), desired duplicates (x, y, d) must satisfy
the condition y; < y < y(;) + &; the corresponding value z is, as we have
mentioned, between zo —e and xg +¢; thus, for duplicates, the coordinates (x,y)
must come either from the square [zo —¢, 2o] X [y(;), y(;) +€] (corresponding to the
first half-database) or from the square 2o, zo +€] X [y(), ¥(i) + €] (corresponding
to the second half-database).

10
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Each of these two squares is of size € x ¢, therefore, within each square, every
two points are duplicates. Since we have already deleted duplicates within each
of the two half-databases, this means that within each square, there is no more
than one record. The original record r;) is within one of these squares, so this
square cannot have any more records 7(;); thus, only the other square can have
another record z(;) inside. Since the records are sorted by y, and ry;) is the only
possible record with y;)) < y(;) < @) + ¢, this possible duplicate record (if it
exists) is the next one to r;), i.e., it is r(;;1y. Therefore, to check whether there
is a duplicate to r(;; among the records records r(;j11),7(iy2),- - -, it is sufficient
to check whether the record 7(; ;1) is a duplicate for r(;). As a result, we arrive
at the following “merge and clean” algorithm:

Merge and Clean Algorithm.

1. Select all the records r; from both merged half-databases for which z; €
[zo — €, g + €], where zg def T|n/2|-

2. Since we have already sorted the values y;, we can sort the all the selected
records by y into a sequence 7(1), ..., (k) for which y1) <y < ... <yu)-

3. Fori from 1 to k — 1, if |yq1) — ¥l < € and |z(iq1) — 2(5)| < €, delete
T(i+1).

This completes the description of Algorithm 2. In the process of designing
this algorithm, we have already proven that this algorithm always returns the
solution to a problem of deleting duplicates. The following result show that this
algorithm is indeed asymptotically optimal:

Proposition 1. Algorithm 2 requires O(n -log(n)) steps in the worst case, and
no algorithm with asymptotically smaller worst-case complexity is possible.

Proof. Algorithm 2 consists of two sortings — each of which requires O(n-log(n))
steps — and the main part. Application of the main part to n records consist of
two applications of the main part to n/2 records plus merge. Merging, as we
have seen, requires no more than n steps; therefore, the worst-case complexity
of applying the main part to a list of n elements can be bounded by 2t(n/2) +n:

11



t(n) < 2t(n/2) + n. From the functional inequality, we can conclude (see, e.g.,
[4]) that the main part requires t(n) = O(n -log(n)) steps. Thus, the total time
of Algorithm 2 is also < O(n - log(n)).

On the other hand, since our problem requires sorting, we cannot solve it
faster than in O(n - log(n)) steps that are needed for sorting [4]. Proposition is
proven.

6 Deleting Duplicates Under Fuzzy Uncertainty

As we have mentioned, in some real-life situations, in addition to the threshold
€ that guarantees that ve-close data are duplicates, the experts also provide
us with additional threshold values e; > ¢ for which ¢;-closeness of two data
points means that we can only conclude with a certain degree of certainty that
one of these data points is a duplicate. The corresponding degree of certainty
decreases as the value ¢; increases.

In this case, in addition to deleting records that are absolutely certainly
duplicates, it is desirable to mark possible duplicates — so that a professional
geophysicist can make the final decision on whether these records are indeed
duplicates.

A natural way to do this is as follows:

e First, we use the above algorithm to delete all the certain duplicates (cor-
responding to ¢).

e Then, we use the same algorithm to the remaining records and mark (but
not actually delete) all the duplicates corresponding to the next value e5.
The resulting marked records are duplicates with the degree of confidence
corrsponding to €.

o After that, we apply the same algorithm with the value £3 to all unmarked
records, and mark those which the algorithm detects as duplicates with
the degree of certainty corresponding to €3,

e etc.

In other words, to solve a fuzzy problem, we solve several interval problems
corresponding to different levels of uncertainty. It is worth mentioning that
this “interval” approach to solving a fuzzy problem is in line with many other
algorithms for processing fuzzy data; see, e.g., [2, 13, 15, 16].

7 Possibility of Parallelization

If we have several processors that can work in parallel, we can speed up com-
putations:

12



Proposition 2. If we have an unlimited number of processors (at least n?/2),
then we can delete duplicates in O(n - log(n)) steps.

Proof. It is known that we can sort a list in parallel in O(log(n)) steps; see,
e.g., [11]. Let us show that after sorting by z, deleting duplicates can actually
be done in a single additional step. For n records, we have n - (n — 1)/2 pairs
to compare. We can let each of > n?/2 processors handle a different pair, and,
if elements of the pair turn out to be duplicates, delete one of them. Thus, we
indeed delete all duplicates in a single step. The proposition is proven.

In the proof of Proposition 2, we have actually proven the following result:

Proposition 3. If we have an unlimited number of processors (at least n?/2),
and the records are already sorted by x, then we can delete duplicates in o single
step.

If we have fewer than n?/2 processors, we also get a speed up:

Proposition 4. If we have at least n processors, then we can delete duplicates
in O(log?(n)) time.

Proof. Let us show how Algorithm 2 can be implemented in parallel. As we
have mentioned in the proof of Proposition 2, sorting can be done in O(log(n))
steps.

In the main step, we can clean both half-databases in parallel, thus, the
total time t(n) for cleaning the database with n records is equal to the time
t(n/2) of cleaning a database with n/2 records plus the time t,,(n) for merg-
ing (and cleaning) the cleaned half-databases. This merging and cleaning can
also be done in parallel: one group of processors merges and cleans records
T(1),--->T(|k/2]), While the other group of processors merges and cleans records
T(lk/2)+1),---»T(k)- After that, the only remaining duplicates can be in the

2¢ X 2¢ square S ef [To —&,20 + €] X [yo — €,y0 + €], where yg ef Y(lk/2)):

te
te

o
o
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Similarly to the proof of Proposition 2, it is easy to show that each of the
four € x £ squares that form S can contain at most one record, so the number
of steps required to detect and delete the corresponding duplicates is bounded
by a constant C. Thus, tm(n) < tm(n/2) + C, hence t,,(n) < C -log(n). Due
to t(n) < t(n/2) + tm(n) < t(n/2) + C - log(n), we can now conclude that
t(n) = O(log®(n)). The proposition is proven.

If we have a smaller number p < n processors, then parallelization of Algorithm
2 leads to the following result:

Proposition 5. If we have p < n processors, then we can delete duplicates in
0 (% -log(n) + log(n) + log® (p)) time.

Proof. It is known that sorting can be done in time O (% -log(n) + log(n))
[11].

In the main step — actually deleting duplicates — we divide n records, in
the order of z;, into p segments of size n/p each, so the first segment contains
records T1,T2,...,T|n/p|, €tc. Then, each of p processors uses Algorithm 2 to
delete duplicates from the corresponding segment; according to Proposition 1,

this deletion requires time O (% -log (%))
After that, we do the merging as follows:

e We divide p processors into p/2 pairs: #1 with # 2, # 3 with # 4, etc.,
and use each pair to merge the corresponding segments with each other.
To clean the result of merging the two segments, we divide (as in the proof
of Proposition 4) all < 2n/p records in the narrow border zone into two
halves, clean both halves in parallel — which takes < n/p time, and then
clean the 2e x 2¢ square — which requires a constant number of steps C.
As a result of this merging, we get p/2 cleaned segments of size 2n/p.

e Now, we divide processors into p/4 groups of 4: #1 through # 4, #
5 through # 8, etc., and use each group to merge and clean the two
neighboring segments of size 2n/p. In cleaning the narrow zone, we divide
the records within this zone (there are < 4n/p of them) into 4 subgroups
of size < n/p, and merge then in parallel; this takes < n/p time. Then,
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we must merge these subgroups. First, we merge, in parallel, the 1st and
the 2nd subgroup, and the 3rd and the 4th subgroup; after that, we merge
them together. Each merging requires a constant time C, so we need a
total time of 2C. As a result of this merging, we get p/4 cleaned segments
of size 4n/p.

e In general, after k merger steps, we get p/2* cleaned segments of size
2% . n/p. We divide processors into p/2*¥+1 groups of 2!  and and use
each group to merge and clean two neighboring segments of size 2% -n/p. In
cleaning the narrow zone, we divide the records within this zone (there are
< 2k . /p of them) into 28+ subgroups of size < n/p, and merge then
in parallel; this takes < n/p time. Then, we must merge these subgroups.
First, we merge, in parallel, the 1st and the 2nd subgroup, and the 3rd
and the 4th subgroup; after that, we merge these subgroups into groups
of twice larger size, etc. There are < 2F*!.n/p records in each narrow
zone, so we need at most k + 1 sequential mergers. Each merging requires
C steps, so we need a total time of (k + 1) - C to merge.

Overall, we continue until we get a single cleaned database, i.e., until 2%-n/p = n.
In other words, we need k = log(p) iterations. During each iteration, we need
time < n/p + k - C to merge, so the total time is < (n/p) - log(p) + C - log*(p).
Since p < n, this time is < (n/p) - log(n) + C - log?(p).

Adding up the times necessary for sorting, for cleaning p segments, and for
merging them into a single cleaned database, we get the desired estimate. The
proposition is proven.

8 The Problem of Deleting Duplicates: Multi-D
Version

At present, the most important case of duplicate detection is a 2-D case, when
record are 2-dimensional, i.e., of the type r = (x,y, d). What is we have multi-D
records of the type r = (z1,...,Zm,d), and we define r = (x1,...,Zm,d) and
' = (z4,...,2,,,d") to be duplicates if |z; — z}| < e for all i? For example,
we may have measurements of geospatial data not only at different locations
(21,%2), but also at different depths x3 within each location.

In this case, we can still use an O(n?) Algorithm 1, but we can also use a
faster algorithm modeled along the lines of Algorithm 2:

Proposition 6. For every m > 2, there exists an algorithm A,, that solves the
duplicate deletion problem in time O(n -log™ ' (n)).

Proof. The main idea of these algorithms is similar to the main idea behind
Algorithm 2: we divide the database into two halves, delete duplicates from
each half, and then merge and clean the resulting half-databases. When both
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halves are cleaned, we only need to clean the values for which one of m variables
—e.g., x1 — lies within a narrow interval of width 2e. For that, we can use the
algorithm A,,_; for cleaning (m — 1)-dimensional databases.

Let us prove, by induction over m, that the worst-case complexity t,,(n) of
algorithm A,, is O(n - log™ " (n)).

e Base. We have already proven this for m = 2.

o Induction step. In general, t,,(n) < 2t,,(n/2)+tm—1(n), so if we know that
tm_1(n) = O(n -log™ *(n)), we can conclude — using known techniques
(see, e.g., [4]) — that t,(n) = O(n - log™ ' (n)).

The proposition is proven.

For m = 2, the above algorithm is — as we have shown — asymptotically optimal.
Whether it is asymptotically optimal for m > 2 is an open question.
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