Eliminating Duplicates
Under Interval and Fuzzy Uncertainty:
An Asymptotically Optimal Algorithm
and Its Geospatial Applications

Roberto Torres?, G. Randy Keller?,
Vladik Kreinovich!?, Luc Longpré'?, and Scott A. Starks?

!Department of Computer Science and
2Pan-American Center for Earth and
Environmental Studies (PACES)
University of Texas at El Paso
El Paso, TX 79968, USA
contact email vladik@cs.utep.edu

Abstract

Geospatial databases generally consist of measurements related to
points (or pixels in the case of raster data), lines, and polygons. In re-
cent years, the size and complexity of these databases have increased
significantly and they often contain duplicate records, i.e., two or more
close records representing the same measurement result. In this paper,
we address the problem of detecting duplicates in a database consisting
of point measurements. As a test case, we use a database of measure-
ments of anomalies in the Earth’s gravity field that we have compiled. In
this paper, we show that a natural duplicate deletion algorithm requires
(in the worst case) quadratic time, and we propose a new asymptotically
optimal O(n -log(n)) algorithm. These algorithms have been successfully
applied to gravity databases. We believe that they will prove to be useful
when dealing with many other types of point data.

Case Study: Geoinformatics Motivation for
the Problem

Geospatial databases: general description. In many application areas,
researchers and practitioners have collected a large amount of geospatial data.



For example, geophysicists measure values d of the gravity and magnetic fields,
elevation, and reflectivity of electromagnetic energy for a broad range of wave-
lengths (visible, infrared, and radar) at different geographical points (z,y); see,
e.g., [35]. Each type of data is usually stored in a large geospatial database
that contains corresponding records (x;,yi,d;). Based on these measurements,
geophysicists generate maps and images and derive geophysical models that fit
these measurements.

Gravity measurements: case study. In particular, gravity measurements
are one of the most important sources of information about subsurface structure
and physical conditions. There are two reasons for this importance. First, in
contrast to more widely used geophysical data like remote sensing images, that
mainly reflect the conditions of the Earth’s surface, gravitation comes from the
whole Earth (e.g., [19, 20]). Thus gravity data contain valuable information
about much deeper geophysical structures. Second, in contrast to many types
of geophysical data, which usually cover a reasonably local area, gravity mea-
surements cover broad areas and thus provide important regional information.

The accumulated gravity measurement data are stored at several research
centers around the world. One of these data storage centers is located at the
University of Texas at El Paso (UTEP). This center contains gravity measure-
ments collected throughout the United States and Mexico and parts of Africa.

The geophysical use of gravity database compiled at UTEP is illustrated for
a variety of scales in [1, 6, 13, 18, 22, 32, 36, 38].

Duplicates: where they come from. One of the main problems with the
existing geospatial databases is that they are known to contain many duplicate
points (e.g., [16, 28, 34]). The main reason why geospatial databases contain
duplicates is that the databases are rarely formed completely “from scratch”,
and instead are built by combining measurements from numerous sources. Since
some measurements are represented in the data from several of the sources, we
get duplicate records.

Why duplicates are a problem. Duplicate values can corrupt the results of
statistical data processing and analysis. For example, when instead of a single
(actual) measurement result, we see several measurement results confirming each
other, and we may get an erroneous impression that this measurement result
is more reliable than it actually is. Detecting and eliminating duplicates is
therefore an important part of assuring and improving the quality of geospatial
data, as recommended by the US Federal Standard [12].

Duplicates correspond to interval uncertainty. In the ideal case, when
measurement results are simply stored in their original form, duplicates are
identical records, so they are easy to detect and to delete. In reality, however,



different databases may use different formats and units to store the same data:
e.g., the latitude can be stored in degrees (as 32.1345) or in degrees, minutes,
and seconds. As a result, when a record (z;,y;,d;) is placed in a database,
it is transformed into this database’s format. When we combine databases,
we may need to transform these records into a new format — the format of
the resulting database. FEach transformation is approximate, so the records
representing the same measurement in different formats get transformed into
values which correspond to close but not identical points (x;,y:;) # (2;,y;).
Usually, geophysicists can produce a threshold € > 0 such that if the points
(zi,y:) and (z;,y,) are e-close — i.e., if |z; — ;| < ¢ and |y; — y;| < & — then
these two points are duplicates.

=]

In other words, if a new point (x;,y;) is within a 2D interval [x; — €, 2; + €] X
[y; — €,y; + €] centered at one of the existing points (z;,y;), then this new point
is a duplicate:

From the practical viewpoint, it usually does not matter which of
the duplicate points we delete. If the two points are duplicates, we should
delete one of these two points from the database. Since the difference between
the two points is small, it does not matter much which of the two points we
delete. In other words, we want to continue deleting duplicates until we arrive at
a “duplicate-free” database. There may be several such duplicate-free databases,
all we need is one of them.

To be more precise, we say that a subset of the original database is obtained
by a cleaning step if:

e it is obtained from the original database by selecting one or several differ-
ent pairs of duplicates and deleting one duplicate from each pair, and



o from each duplicate chain r; ~ r; ~ ... ~ ry, at least one record remains
in the database after deletion.

A sequence of cleaning steps after which the resulting subset is duplicate-free
(i.e., does not contain any duplicates) is called deleting duplicates.

The goal is to produce a (duplicate-free) subset of the original database
obtained by deleting duplicates.

Duplicates are not easy to detect and delete. At present, the detection
and deletion of duplicates is done mainly “by hand”, by a professional geophysi-
cist looking at the raw measurement results (and at the preliminary results of
processing these raw data). This manual cleaning is very time-consuming. It is
therefore necessary to design automated methods for detecting duplicates.

If the database was small, we could simply compare every record with every
other record. This comparison would require n(n — 1)/2 ~ n?/2 steps. Alas,
real-life geospatial databases are often large, they may contain up to 10 or more
records; for such databases, n?/2 steps is too long. We need faster methods for
deleting duplicates.

From interval to fuzzy uncertainty. Sometimes, instead of a single thresh-
old value €, geophysicists provide us with several possible threshold values
€1 < €2 < ... < gy that correspond to decreasing levels of their certainty:

e if two measurements are within e; from each other, then we are 100%
certain that they are duplicates;

¢ if two measurements are within €5 from each other, then with some degree
of certainty, we can claim them to be duplicates,

¢ if two measurements are within 5 from each other, then with an even
smaller degree of certainty, we can claim them to be duplicates,

e etc.

In this case, we must eliminate certain duplicates, and mark possible duplicates
(about which are not 100% certain) with the corresponding degree of certainty.

In this case, for each of the coordinates x and y, instead of a single interval
[x; —€, x;+€], we have a nested family of intervals [z; —e;, z; +¢;] corresponding
to different degrees of certainty. Such a nested family of intervals is also called a
fuzzy set, because it turns out to be equivalent to a more traditional definition of
fuzzy set [3, 23, 29, 30] (if a traditional fuzzy set is given, then different intervals
from the nested family can be viewed as a-cuts corresponding to different levels
of uncertainty «).

In these terms, in addition to detecting and deleting duplicates under interval
uncertainty, we must also detect and delete them under fuzzy uncertainty.



Comment. In our specific problem of detecting and deleting duplicates in
geospatial databases, the only fuzziness that is important to us is the simple
fuzziness of the threshold, when the threshold is a fuzzy number — or, equiva-
lently, when we have several different threshold values corresponding to different
levels of certainty.

It is worth mentioning that in other important geospatial applications, other
— more sophisticated — fuzzy models and algorithms turned out to be very useful.
There are numerous papers on this topic, let us just give a few relevant examples:

e fuzzy numbers can be used to describe the uncertainty of measurement
results, e.g., the results of measuring elevation; in this case, we face an in-
teresting (and technically difficult) interpolation problem of reconstructing
the (fuzzy) surface from individual fuzzy measurement results; see, e.g.,
[27, 33];

o fuzzy sets are much more adequate than crisp sets in describing geographic
entities such as biological species habitats, forest regions, etc.; see, e.g.,
[14, 15];

o fuzzy sets are also useful in describing to what extent the results of data
processing are sensitive to the uncertainties in raw data; see, e.g., [25, 26].

What we are planning to do. In this paper, we propose methods for de-

tecting and deleting duplicates under interval and fuzzy uncertainty, and test

these methods on our database of measurements of the Earth’s gravity field.
Some of our results have been announced in [4].

2 Relation to Computational Geometry

Intersection of rectangles. The problem of deleting duplicates is closely
related to several problems that are solved in Computational Geometry.

One of such problems if the problem of intersection of rectangles. Namely,
if around each point (z;,y;), we build a rectangle

_ € € € €
R, = [wz - §;$i+§] X [yz - §;yi+ 5] ;
then, as one can easily see, the points (z;,y;) and (z;,y;) are duplicates if and
only if the corresponding rectangles R; and R; intersect.

Problems related to intersection of rectangles are well known — and well
understood — in Computational Geometry; see, e.g., [2, 8, 17, 24, 31]. Among
these problems, the closest to deleting duplicates is the reporting problem: given
n rectangles, list all intersecting pairs. Once the reporting problem is solved,
i.e., once we have a list of intersecting pairs, then we can easily delete all the



duplicates: e.g., we can simply delete, from each intersecting pair R; N R; # 0,
a record with the larger index.
There exist algorithms that solve the reporting problem in time

O(n -log(n) + k),

where k is the total number of intersecting pairs; see, e.g., [31]. Readers of
Reliable Computing may be interested to know that some of these algorithms
use a special data structure — interval tree introduced first in [9]; a detailed
description of how interval trees can be used to solve the reporting problem is
given in [31].

It is easy to conclude that since we actually need to list all k£ pairs, we cannot
solve this problem in time smaller than O(k). In the cases when there are few
intersecting pairs — i.e., when k is small — we thus have a fast algorithm for
deleting duplicates.

However, in principle, the number of intersecting pairs can be large. For
example, if all the records are duplicates of the same record, then all the pairs
intersect, so we have k = n-(n—1)/2 ~ n? intersecting pairs. This is an extreme
case, but we can have large numbers of intersecting pairs in more realistic situ-
ations as well. So, in the worst case, duplicate detection methods based on the
solution to the reporting problem still require n?/2 steps — which is too long.

Another Computational Geometry problem related to intersection of rectan-
gles is the counting problem: given n rectangles, count the total number of inter-
secting pairs. It is known that this problem can be solved in time O(n -log(n)),
i.e., much faster than n?. In other words, we can compute the total number of
intersecting pairs reasonably fast. However, since we do not know which pairs
intersect, it is not clear how to detect and delete duplicates if all we know is the
total number of intersecting pairs.

In other words, to detect and delete duplicates in time < n?, we cannot
simply use known rectangle intersection algorithms from Computational Geom-
etry, we must first modify these algorithms. This is what we will, in effect, do
in this paper.

Before we explain how this is done, let us describe other possible connec-
tions to Computational Geometry problems and explain why neither of these
connections immediately leads to a desired fast algorithm.

Range searching. Another related Computational Geometry problem is a
range searching problem: given a rectangular range, find all the points within
this range. The relation between this problem and the duplicate elimination is
straightforward: a point (z;,y;) is a duplicate of another point (x;, y;) if the first
point (z;,y;) belongs to the rectangular range R; def [xi—e, zi+e] X [y;—e, yite].
In other words, duplicates of a point (z;,y;) are exactly the points that belong
to the corresponding rectangular range R;. Thus, to find all the duplicates, it
is sufficient to list all the points in all such ranges.



It is known (see, e.g., [8]) that, based on n data points, we can construct a
special data structure called layered range tree in time O(n-log(n)), after which,
for each rectangular range R;, we can list all the points from this range in time
O(log(n) + ki), where k; is the total number of points in the range R;. If we
repeat this procedure for all n points, then we get the list of all duplicates in
time O(n - log(n) + k), where k = ) k; is the total number of pairs that are
duplicates to each other. In other words, we get the same asymptotic time as
for the rectangle intersection algorithm.

This coincidence is not accidental: it is known that one of the ways to get a
list of intersecting pairs fast is by using range searching; see, e.g., [17].

Voronoi diagrams and nearest points. If each record could have only one
duplicate, then we could find all the duplicates by finding, for each point, the
nearest one, and checking how close they are. The fastest algorithms for finding
the nearest point are based on first building a Voronoi diagram which takes
time O(n - log(n)); after this, for each of n points, it takes time O(log(n)) to
find its nearest neighbor; see, e.g., [8, 17, 31]. Overall, it therefore takes time
O(n -log(n)).

Alas, in reality, a point may have several duplicates, so after eliminating
nearest duplicates, we will have to run this algorithm again and again until we
eliminate them all. In the worst case, it takes at least n? steps.

Summary. To detect and delete duplicates in time < n?, we cannot simply
use known algorithms from Computational Geometry, we must first modify these
algorithms. This is what we will do.

3 Geospatial Databases: Brief Introduction

Geospatial databases: formal description. In accordance with our de-
scription, a geospatial database can be described as a finite set of records
T1,...,Tn, €ach of which is a triple r; = (z;,y;,d;) consisting of two rational
numbers x; and y; that describe coordinates and some additional data d;.

The need for sorting. One of the main objectives of a geospatial database
is to make it easy to find the information corresponding to a given geographical
area. In other words, we must be able, given one or two coordinates (z and/or
y) of a geographical point (center of the area of interest), to easily find the data
corresponding to this point and its vicinity.

It is well known that if the records in a database are not sorted by a param-
eter a, then in order to find a record with a given value of a, there is no faster
way than linear (exhaustive) search, in which we check the records one by one
until we find the desired one. In the worst case, linear search requires searching



over all n records; on average, we need to search through n/2 records. For a
large database with thousands and millions of records, this takes too much time.

To speed up the search, it is therefore desirable to sort the records by the
values of a, i.e., to reorder the records in such a way that the corresponding
values of a are increasing: a1 < a2 < ... < ap.

Once the records are sorted, instead of the time-consuming linear search, we
can use a much faster binary search (also known as bisection). At each step of
the binary search, we have an interval a; < a < a,. We start with [ = 1 and
u = n. On each step, we take a midpoint m = | (! + uv)/2| and check whether
a < ap- If a < an,, then we have a new half-size interval [a;, a,, 1]; otherwise,
we have a half-size interval [a,,, a,] containing a. In log,(n) steps, we can thus
locates the record corresponding to the desired value of a.

How to sort: mergesort algorithm. Sorting can be done, e.g., by merge-
sort — an asymptotically optimal sorting algorithm that sorts in O(n - log(n))
computational steps (see, e.g., [7]).

Since the algorithms that we use for deleting duplicates are similar to merge-
sort, let us briefly describe how mergesort works. This algorithm is recursive
in the sense that, as part of applying this algorithm to the databases, we apply
this same algorithm to its sub-databases. According to this algorithm, in order
to sort a list consisting of n records r1,...,7,, we do the following;:

o first, we apply the same mergesort algorithm to sort the first half of the
list, i.e., the records (ri,...,7|/2|) (if we only have one record in this
half-list, then this record is already sorted);

e second, we apply the same mergesort algorithm to sort the remaining half
of the list, i.e., the records (r|n/2|+1,---,n) (if we only have one record
in this half-list, then this record is already sorted);

¢ finally, we merge the two sorted half-lists into a single sorted list; we start
with an empty sorted list; then, at each step, we compare the smallest two
elements of the remaining half-lists, and move the smaller of them to the
next position on the merged list.

For example, if we start with sorted half-lists (10,30) and (20, 40), then we do
the following;:

e First, we compare 10 and 20, and place the smaller element 10 as the first
element of the originally empty sorted list.

e Then, we compare the first elements 30 and 20 of the remaining half-lists
(30) and (20,40) and place 20 as the second element into the sorted list —
so that the sorted list now becomes (10, 20).



e Third, we compare the first elements 30 and 40 of the remaining half-lists
(30) and (40), and place 30 as the next element into the sorted list — which
is now (10, 20, 30).

o After that, we have only one remaining element, so we place it at the end
of the sorted list — making it the desired (10, 20, 30, 40).

How many computational steps does this algorithm take? Let us start counting
with the merge stage. In the merge stage, we need (at most) one comparison
to get each element of the resulting sorted list. So, to get a sorted list of n
elements, we need < n steps. If by t(n), we denote the number of steps that
mergesort takes on lists of size n, then, from the structure of the algorithm, we
can conclude that t(n) < 2-t(n/2) + n. If n/2 > 1, we can similarly conclude
that t(n/2) < 2-t(n/4) + n/2 and therefore, that

tn) <2-t(n/2)+n<2-(2-t(n/2)+n/2)+n <

4-t(n/4)+2-(n/2)+n=4-t(n/4)+ 2n.
Similarly, for every k, we can conclude that t(n) < 2% - t(n/2%) + k-n. In
particular, when n = 2* then we can choose k = log,(n) and get t(n) <
0

n-y(1)+k-n. A list consisting of a single element is already sorted, so t(1) =
hence t(n) < k- n, i.e., t(n) < n-logy(n).

Specifics of geospatial databases. In a geospatial database, we have two
coordinates by which we may want to search: x and y. If we sort the records
by z, then search by z becomes fast, but search by y may still require a linear
search — and may thus take a lot of computation time.

To speed up search by y, a natural idea is to sort the record by y as well —
with the only difference that we do not physically reorder the records, we just
memorize where each record should be when sorted by y. In other words, to
speed up search by z and y, we do the following:

e First, we sort the records by x, so that ;1 < z3 < ... < z,.

e Then, we sort these same records by y, i.e., produce n different values
i1,...,0n such that y;; <y, <...<uy;, (and n values j(1),...,j(n) such
that j(ix) = k).

For example, if we start with the records corresponding to the points (20, 10),
(10,40), and (30, 30), then we:

e first, sort them by z, ending in (z1,y:1) = (10,40), (x2,y2) = (20, 10), and
(z2,92) = (30,30);

e then, sort the values of y; we end up with 4; = 2, i = 3 and i3 = 1 (and,
correspondingly, j(1) = 3, j(2) =1, and j(3) = 2), so that

Vi, =y2 =10 < y;, =y3 =30 <y, = y1 = 40.



The resulting “double-sorted” database enables us to search fast both by x and
by y.

4 The Problem of Deleting Duplicates: Ideal
Case of No Uncertainty

To come up with a good algorithm for detecting and eliminating duplicates in
case of interval uncertainty, let us first consider an ideal case when there is no
uncertainty, i.e., when duplicate records r; = (z;,y;,d;) and r; = (zj,y;,d;)
mean that the corresponding coordinates are equal: z; = z; and y; = y;.

In this case, to eliminate duplicates, we can do the following. We first sort
the records in lexicographic order, so that r; goes before r; if either z; < z;, or
(x; = z; and y; < y;). In this order, duplicates are next to each other.

So, we first compare r; with r5. If coordinates in r5 are identical to coordi-
nates in 7y, we eliminate 75 as a duplicate, and compare r; with r3, etc. After
the next element is no longer a duplicate, we take the next record after r; and
do the same for it, etc.

After each comparison, we either eliminate a record as a duplicate, or move
to a next record. Since we only have n records in the original database, we
can move only n steps to the right, and we can eliminate no more than n
records. Thus, totally, we need no more than 2n comparison steps to complete
our procedure.

Since 2n is asymptotically smaller than the time n - log(n) needed to sort
the record, the total time for sorting and deleting duplicates is n -log(n) + 2n ~
n - log(n). Since we want a sorted database as a result, and sorting requires at
least n - log(n) steps, this algorithm is asymptotically optimal.

It is important to mention that this process does not have to be sequential:
if we have several processors, then we can eliminate records in parallel, we just
need to make sure that if two record are duplicates, e.g., r; = rg, then when
one processor eliminates r; the other one does not eliminate r;.

Formally, we say that a subset of the database is obtained by a cleaning step
if:

e it is obtained from the original database by selecting one or several differ-

ent pairs of duplicates and deleting one duplicate from each pair, and

o from each duplicate chain r; = r; = ... = rj, at least record remains in
the database after deletion.

A sequence of cleaning steps after which the resulting subset is duplicate-free
(i-e., does not contain any duplicates) is called deleting duplicates.

The goal is to produce a (duplicate-free) subset of the original database
obtained by deleting duplicates — and to produce it sorted by x;.

10



5 Interval Modification of the Above Algorithm:
Description, Practicality, Worst-Case Com-
plexity

Definitions: reminder. In the previous section, we described how to elimi-
nate duplicates in the ideal case when there is no uncertainty.

In real life, as we have mentioned, there is an interval uncertainty. A natural
idea is therefore to modify the above algorithm so that it detects not only exact
duplicate records but also records that are within € of each other.

In precise terms, we have a geospatial database (ry,...,r,), where r; =
(i, 9i,d;), and we are also given a positive rational number €. We say that
records r; = (24, Yi,d;) and r; = (z;,y;,d;) are duplicates (and denote it by
ri ~1;) if |@; — ;] <e and |y; —y;| <e.

We say that a subset of the database is obtained by a cleaning step if:

e it is obtained from the original database by selecting one or several differ-
ent pairs of duplicates and deleting one duplicate from each pair, and

o from each duplicate chain r; ~ r; ~ ... ~ 1}, at least one record remains
in the database after deletion.

A sequence of cleaning steps after which the resulting subset is duplicate-free
(i.e., does not contain any duplicates) is called deleting duplicates.

The goal is to produce a (duplicate-free) subset of the original database
obtained by deleting duplicates — and to produce it sorted by z; (and double-
sorted by ).

Motivations and description of the resulting algorithm. Similarly to
the ideal case of no uncertainty, to avoid comparing all pairs (r;,r;) — and
since we need to sort by z; anyway — we first sort the records by z, so that
z1 < x93 <...< z,. Then, first we detect and delete all duplicates of r;, then
we detect and delete all duplicates of 7o (r; is no longer considered since its
duplicates have already been deleted), then duplicates of r3 (r1 and r are no
longer considered), etc.

For each i, to detect all duplicates of r;, we check r; for the values j =
i+ 1,44+ 2,... while z; < z; + €. Once we have reached the value j for which
x; > x; + €, then we can be sure (since the sequence z; is sorted by z) that
x> x; + € for all k£ > j and hence, none of the corresponding records ry can
be duplicates of r;.

While z; < z;+¢, we have z; < x; < z;+¢ hence |z; —z;| < . So, for these
J, to check whether r; and r; are duplicates, it is sufficient to check whether

lyi — y;| <e.
Thus, the following algorithm solves the problem of deleting duplicates:

11



Algorithm 1.
1. Sort the records by z;, so that z; < 2 < ... < z,.
2. For i from 1 to n — 1, do the following:

for j=i+1,i+2,..., whilez; <z;+e¢
if [y; — yi| < e, delete r;.

How practical is this algorithm. For the gravity database, this algorithm
works reasonably well. We have implemented it in Java, as part of our gravity
data processing system, and it deleted duplicates from thousands of records in
a few second, and from a few millions of records in a few minutes.

Limitations of the algorithm. Although this algorithm works well in most
practical cases, we cannot be sure that it will always work well, because its
worst-case complexity is still n(n — 1)/2.

Indeed, if all n records have the same value of xz;, and all the values y;
are drastically different: e.g., y; = y1 + 2 (¢ — 1) - £ — then the database is
duplicate-free, but the above algorithm requires that we compare all the pairs.

For gravity measurements, this is, alas, a very realistic situation, because
measurements are sometimes made when a researcher travels along a road and
makes measurements along the way — and if the road happens to be vertical
(z = const), we end up with a lot of measurements corresponding to very close
values of z.

We therefore need a faster algorithm for deleting duplicates.

6 New Algorithm: Motivations, Description,
Complexity

How can we speed up the above algorithm? The above example of when the
above algorithm does not work well shows that it is not enough to sort by = —

we also need to sort by y. In other words, it makes sense to have an algorithm
with the following structure:

Algorithm 2.
1. Sort the records by z, so that x; < zs < ... < zy,.

2. Sort these same records by v, i.e., produce n different values iy, .. .,4, such
that y;, <wi, <...<w;, (and n values j(1),...,j(n) such that j(ix) = k)
and delete duplicates from the resulting “double-sorted” database.

12



To describe the main part — Part 2 — of this algorithm, we will use the same
recursion that underlies mergesort:

Part 2 of Algorithm 2. To sort the (z-sorted) database {(r1,...,r,) by y and delete
duplicates from the resulting double-sorted database, we do the following:

2.1. We apply the same Part 2 of Algorithm 2 to sort by y and delete duplicates
from the left half (ry,...,r|,/2]) of the database (if we only have one record
in this half-list, then this half-list is already sorted by y and free of duplicates,
so we do not need to sort or delete anything);

2.2. We apply the same Part 2 of Algorithm 2 to sort by y and delete duplicates
from the right half (r|,/2/41,...,7s) of the database (similarly, if we only
have one record in this half-list, then this half-list is already sorted by y and
free of duplicates, so we do not need to sort or delete anything);

2.3. We merge the y-orders of the resulting duplicate-free subsets so that the
merged database becomes sorted by y.

2.4. Finally, we clean the merged database to eliminate all possible duplicates
introduced by merging.

Let us describe Step 2.3 (merging and sorting by y) and Step 2.4 (cleaning)
in detail. Let us start with Step 2.3. We have two half-databases (r1,...,7n/2])
and (7|n/2]41,---,7n), €ach of which is already sorted by y. In other words:

e we have [n/2| values i'l,...,i’Ln/QJ € {1,2,...,|n/2]} such that y; <
Yi, < ..., and

e we have n — [n/2] values if,..., iy |, 5 € {|n/2] +1,...,n} such that
Yir Sy <.

The result (rq,...,r,) of merging these two databases is already sorted by x;
so to complete the merger, we must sort it by y as well, i.e., we must find the
values i1,...,in € {1,...,n} for which y;, <wy;, <...<wy;,.

In other words, we want to merge the y-orders of half-databases into a single
y-order. This can be done similarly to the way mergesort merges the two orders
of half-lists into a single oder, the only difference is that in mergesort, we actually
move the elements around when we sort them, while here, we only move indices
ij but not the original records.

Specifically, we start with the two arrays 4{,15,... and 4{,4},... Based on
these two arrays, we want to fill a new array iy, ...,4,. For each of these three
index arrays, we set up a pointer. A pointer p’ will be an index of an element of
the array },i5,...: if p’ = 1, this means that we are currently considering the
element 4} of this array; if p’ +2, this means that we are currently considering the
element ¢4, etc. Once we have processed the last element z’Ln /2] of this array, we

move the pointer one more step to the right, and set p’ to ian 2t 1. Similarly,
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a pointer p" will be pointing to an element of the array i{,45, ..., and a pointer
p will be pointing to an element of the array 1,42, ...
In the beginning, we have p’ = p'’ = p = 1. At each step, we do the following;:

o If neither of the two arrays i’ and 7" are exhausted, i.e., if both p’ and p”
point to actual elements of these arrays, then we compare the correspond-
ing y-values yy and y;» .

P P

— If y#, <y , this means that the element iy, is first in y-order, so
P P

we set ip := i}, and — since we have already placed the element i), —
we move the pointer p’ to its next position p' := p' + 1.

— If yy, > y;» , this means that the element z';,’,, is first in y-order, so
P P

we set i, 1= iz,, and — since we have already placed the element izu
— we move the pointer p" to its next position p" := p" + 1.

In both cases, since we have filled the value i), we move the pointer p to
the next position p := p + 1.

e If one of two arrays i’ and i"” — e.g., i"" — is already exhausted, we simply
copy the remaining elements of the non-exhausted array into the array 4
that we are filling; specifically, we take ip := i3, ipy1 1= iy, ..., until
we exhaust both arrays.

e If both arrays i’ and " are exhausted, we stop.

Let us now describe the cleaning Step 2.4. (This step is similar to divide-
and-conquer algorithm for finding the closest pairs of points; see, e.g., [24].)
How can we clean? Since both merged databases are duplicate-free, the only
possible duplicates in their union is when r; is from the first half-database, and
r; is from the second half-database. Since the records are sorted by =z, for the
first database,

def T|n/2] T T|n/2]+1
0 — 2 )
and for the second database, zg < =z, so z; < 9 < ;. If r; and 7; are
duplicates, then the distance |z; — z;| between z; and z; does not exceed ¢,
hence the distance between each of these values z;, z; and the intermediate
point zy also cannot exceed . Thus, to detect duplicates, it is sufficient to
consider records for which z;, z; € [xo —€,2¢ + €] — L.e., for which z; belongs to
the narrow interval centered in xg.

T; <z
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It turns out that for these points, the above Algorithm 1 (but based on
sorting by y) runs fast. Indeed, since we have already sorted the values y;, we
can sort all k£ records for which z is within the above narrow interval by ¥, into
a sequence r(y), ..., 7 ) for which yy <y@) < ... < yr). Then, according to
Algorithm 1, we should take each record r(;), i = 1,2,..., and check whether
any of the following records 7(;11),7(i42), - - - is a duplicate of the record r;).

For each record r(;y = (2(;), (), d(i)), desired duplicates (,y, d) must satisfy
the condition y; < y < y(;) + &; the corresponding value z is, as we have
mentioned, between zo —e and x +¢; thus, for duplicates, the coordinates (x,y)
must come either from the square [zq —¢, zo] X [y(i), y(i) +€] (corresponding to the
first half-database) or from the square [2o, To +€] X [y(;), Y(i) + €] (corresponding
to the second half-database).

Zo

: . ‘ y(@

3 3

Each of these two squares is of size € x g, therefore, within each square, every
two points are duplicates. Since we have already deleted duplicates within each
of the two half-databases, this means that within each square, there is no more
than one record. The original record r(;) is within one of these squares, so this
square cannot, have any more records r(;); thus, only the other square can have
another record z(; inside. Since the records are sorted by y, and r(; is the
only possible record with y;yy < y(;) < y) + €, this possible duplicate record
(if it exists) is the next one to r;), i.e., it is r(;;1). Therefore, to check whether
there is a duplicate to r(;) among the records r(;11),7(it2), - - -, it is sufficient to
check whether the record r(;;1) is a duplicate for r;. As a result, we arrive at
the following “cleaning” algorithm:
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Part 2.4 of Algorithm 2.

1. Select all the records r; from both merged half-databases for which z; €
[zo — €,z + €], where

z; < o def Tin/2) + Tln/2)41
2
2. Since we have already sorted the values y;, we can sort all the selected records
by y into a sequence r(y), ..., ) for which yq) <yi) < ... <ypy-

3. Fori from 1 to k — 1, if |yqiq1) — y)| < € and |zgiq1) — 25| < €, delete
T(i+1).

This completes the description of Algorithm 2. In the process of designing
this algorithm, we have already proven that this algorithm always returns the
solution to a problem of deleting duplicates. The following result show that this
algorithm is indeed asymptotically optimal:

Proposition 1. Algorithm 2 performs in O(n-log(n)) steps in the worst case,
and no algorithm with asymptotically smaller worst-case complexity is possible.

Proof. Algorithm 2 consists of a sorting — that takes O(n - log(n)) steps —
and the main part. Application of the main part to n records consist of two
applications of the main part to n/2 records plus merge. Merging, as we have
seen, takes no more than n steps; therefore, the worst-case complexity of ap-
plying the main part to a list of n elements can be bounded by 2t(n/2) + n:
t(n) < 2t(n/2) + n. From the functional inequality, we can conclude (see, e.g.,
[7]) that the main part takes t(n) = O(n -log(n)) steps. Thus, the total time of
Algorithm 2 is also < O(n -log(n)).

On the other hand, since our problem requires sorting, we cannot solve it
faster than in O(n - log(n)) steps that are needed for sorting [7]. Proposition is
proven.

Comment: how practical is this algorithm. It is well known that the fact that
an algorithm is asymptotically optimal does not necessarily mean that it is good
for reasonable values of n. To see how good our algorithm is, we implemented it
in C, and tested it both on real data, with n in thousands, and on the artificial
worst-case data when all the z-values are almost the same. In both cases, this
algorithm performed well — ran a few seconds on a PC, and for the artificial
worst case, it ran much faster than Algorithm 1.
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Comment: an alternative )(n - log(n)) algorithm. As we have mentioned, the
above Algorithm 2 is, in effect, a modification (and simplification) of the known
algorithms from Computational Geometry.

It is worth mentioning that the above algorithm is not the only such modifi-
cation: other O(n-log(n)) modifications are possible. For example, it is possible
to use a range searching algorithm and still keep the computation time within
O(n - log(n)).

To explain how we can do it let us recall that (see, e.g., [8]), based on n data
points, we can arrange them into a layered range tree in time O(n-log(n)), after
which, for each rectangular range R; = [z; — &,2; + €] X [y; — €, y; + €], we can
list all the points from this range in time O(log(n) + k;), where k; is the total
number of points in the range R;.

We have already mentioned that if we simply repeat this procedure for all
n points, then, in the worst case, we will need ~ n? computational steps. To
decrease the number of computational steps, we can do the following;:

e we start with the record # ¢ = 1, and use the range searching algorithm
to find (and delete) all its duplicates;

e at each step, we take the first un-visited un-deleted record, and use the
range searching algorithms find (and delete) all its duplicates;

e we stop when all the un-deleted records have already been visited.
How much time does this algorithm take?
e The original arrangement into a tree takes O(n - log(n)) steps.

e Each step of the iterative part takes O(log(n)) + k;) steps. The overall
sum of n (or fewer) O(log(n)) parts is O(n - log(n)). As for ) k;, once a
point is in the range, it is deleted as a duplicate; thus, the overall number
> k; of such points cannot exceed the total number n of original points.
Hence, the iterative part takes O(n -log(n)) + O(n) = O(n - log(n)) steps.

Thus, overall, this algorithm takes O(n - log(n)) + O(n - log(n)) = O(n - log(n))
steps — asymptotically the same as Algorithm 2.

This new algorithm takes fewer lines to explain, so why did not we use it?
Well, it takes only a few lines to explain only because we relied on the range
searching algorithm, and that algorithm actually requires quite a few pages
to explain (see [8]). If we had to explain it from scratch (and program from
scratch), it would take much longer than the simple algorithm described above
— and our preliminary experiments showed that our Algorithm 2, while having
the same asymptotics, is indeed much faster.

17



7 Deleting Duplicates Under Fuzzy Uncertainty

As we have mentioned, in some real-life situations, in addition to the threshold
€ that guarantees that e-close data are duplicates, the experts also provide us
with additional threshold values ¢; > ¢ for which £;-closeness of two data points
means that we can only conclude with a certain degree of certainty that one of
these data points is a duplicate. The corresponding degree of certainty decreases
as the value ¢; increases.

In this case, in addition to deleting records that are absolutely certainly
duplicates, it is desirable to mark possible duplicates — so that a professional
geophysicist can make the final decision on whether these records are indeed
duplicates.

A natural way to do this is as follows:

e First, we use the above algorithm to delete all the certain duplicates (cor-
responding to €).

e Then, we use the same algorithm to the remaining records and mark (but
not actually delete) all the duplicates corresponding to the next value e5.
The resulting marked records are duplicates with the degree of confidence
corresponding to &3.

o After that, we apply the same algorithm with the value £3 to all unmarked
records, and mark those which the algorithm detects as duplicates with
the degree of certainty corresponding to €3,

e etc.

In other words, to solve a fuzzy problem, we solve several interval problems
corresponding to different levels of uncertainty. It is worth mentioning that
this “interval” approach to solving a fuzzy problem is in line with many other
algorithms for processing fuzzy data; see, e.g., [3, 23, 29, 30].

8 The Problem of Deleting Duplicates: Multi-
Dimensional Case

Formulation of the problem. At present, the most important case of du-
plicate detection is a 2-D case, when record are 2-dimensional, i.e., of the type
r = (z,y,d). What if we have multi-D records of the type r = (z,...,y,d),
and we define r; = (x;,...,y;,d;) and r; = (2;,...,y;,d;) to be duplicates if
|z;—z;| <e,...,and |y; —y;| < e? For example, we may have measurements of
geospatial data not only at different locations (z,y), but also at different depths
z within each location.
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Related problems of Computational Geometry: intersection of hyper-
rectangles. Similar to the 2-D case, in m-dimensional case (m > 2), the
problem of deleting duplicates is closely related to the problem of intersection
of hyper-rectangles. Namely, if around each point r; = (z;,. . .,¥:, d;), we build
a hyper-rectangle

€

R; = [ﬂvi — 5 Tit

I3 &€ e
9 _]X"'x[yi__ayi+_]7

2 2 2
then, as one can easily see, the points r; and r; are duplicates if and only if the
corresponding hyper-rectangles R; and R; intersect.

In Computational Geometry, it is known that we can list all the intersecting
pairs in time O(n -log™ %(n) + k) [5, 10, 11, 31]. It is also know how to solve
the corresponding counting problem in time O(n - log™ *(n)) [37, 31].

Related problems of Computational Geometry: range searching. An-
other related Computational Geometry problem is the range searching problem:
given a hyper-rectangular range, find all the points within this range. The re-
lation between this problem and the duplicate elimination is straightforward: a
record r; = (z;,...,¥;,d;) is a duplicate of another record r; = (zj,...,y;,d;)
if the point point (z;,...,y;) belongs to the hyper-rectangular range
def
Ri=[zi—¢e,zi+e]X...X[y; —€,y; + €]

In other words, duplicates of a record r; are exactly the points that belong to
this hyper-rectangular range R;. Thus, to find all the duplicates, it is sufficient
to list all the points in all such ranges.

It is known (see, e.g., [8]) that, based on n data points in m-dimensional
space, we can construct a layered range tree in time O(n-log™ ' (n)); after this,
for each hyper-rectangular range R;, we can list all the points from this range
in time O(log™ " (n) + k;), where k; is the total number of points in the range
Ri-

If we repeat this procedure for all n points, then we get the list of all du-
plicates in time O(n - log™ ™ (n) + k), where k = Y k; is the total number of
pairs that are duplicates to each other. In other words, we get an even worse
asymptotic time than for the hyper-rectangle intersection algorithm.

If we use a speed-up trick that we explained in 2-dimensional case, then we
can delete all the duplicates in time O(n - log™ *(n)).

Related problems of Computational Geometry: Voronoi diagrams
and nearest points. Even when each record has only one duplicate, and
we can thus find them all by looking for the nearest neighbors of each point, we
still need time O(n/™/21) to build a Voronoi diagram [8, 17, 31]. Thus, even in
this ideal case, the Voronoi diagram techniques would require much more time
than search ranging.
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What we will do. In this paper, we show that for all possible dimensions m,
the duplicate elimination problem can be solved in the same time O(n -log(n))
as in the 2-dimensional case — much faster than for all known Computational
Geometry algorithms.

Proposition 2. For every m > 2, there exists an algorithm that solves the
duplicate deletion problem in time O(n - log(n)).

Proof. This new algorithm starts with a database of records r; =
(zi,---,¥i,d;) and a number € > 0.

Algorithm 3.
1. For each record, compute the indices p; = |z;/e],..., ¢ = |vi/e].

2. Sort the records in lexicographic order < by their index vector p; =
(piy.-.,qi). If several records have the same index vector, keep only one
of these records and delete others as duplicates. As a result, we get an index-
lexicographically ordered list of records: r(;) < ... < 7(n,), where ng < n.

3. For i from 1 to n, we compare the record r(;) with its immediate neighbors;
if one of the immediate neighbors is a duplicate to r(;), then we delete this
neighbor.

Let us describe Part 3 in more detail. By an immediate neighbor to a record
r; with an index vector (p;,...,q;), we mean a record r; for which the index
vector p; # p; has the following two properties:

e 7; < Pj, and
e for each index, p; € {p; — 1,pi,pi +1}, ..., and ¢; € {¢; — 1,¢;,¢; + 1}.

It is easy to check that if two records are duplicates, then indeed their indices

can differ by no more than 1, i.e., the differences Ap def Dj —Di,. .-, Ag def q; —qi
between the indices can only take values —1, 0, and 1. To guarantee that p; > p5;
in lexicographic order, we must make sure that the first non-zero term of the
sequence (Ap,...,Aq) is 1.

Overall, there are 3™ sequences of —1, 0, and 1, where m denotes the di-
mension of the vector (z, . ..,y). Out of these vectors, one is (0,...,0), and half

of the rest — to be more precise, Ny, def (3™ —1)/2 of them — correspond to
immediate neighbors.

To describe all immediate neighbors, during Step 3, for each i and for each
of N, difference vectors d = (Ap,...,Aq), we keep the index ](J: i) of the first
record r(;) for which F; > ps) + d (here, > means lexicographic order). Then:
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o If 5j) = Pu +d_: then the corresponding record r ;) is indeed an immediate
neighbor of r(;), so must check whether it is a duplicate.

o If 5y > Pl + CZ then the corresponding record r(; is not an immediate
neighbor of r(;), so no duplicate check is needed.

We start with ](CZ: 0) = 1 corresponding to i = 0. When we move from i-
th iteration to the next (i 4+ 1)-th iteration, then, since the records r( are
lexicographically ordered, for each of N, vectors d, we have ](d: i+1)> J(d: i).
Therefore, to find j (CZ:z +1), it is sufficient to start with j (ci: i) and add 1 until
we get the first record r(;) for which pi;) > pip1) + d.

To complete the proof, we need to show that Algorithm 3 produces the
results in time O(n - log(n)). Indeed, Algorithm 3 consists of a sorting — which
takes O(n - log(n)) steps — and the main Part 3. During the Part 3, for each of
Ny, vectors cz we move the corresponding index j one by one from 1 to ng < n;
for each value of the index, we make one or two comparisons. Thus, for each
vector d, we need O(n) comparisons.

For a given dimension m, there is a fixed number N,, of vectors J: so we need
the total of N, - O(n) = O(n) computational steps. Thus, the total running
time of Algorithm 3 is O(n) + O(n -log(n)) = O(n - log(n)). The proposition is
proven.

Comment. Since our problem requires sorting, we cannot solve it faster than
in O(n - log(n)) steps that are needed for sorting [7]. Thus, Algorithm 3 is
asymptotically optimal.

9 Possibility of Parallelization

If we have several processors that can work in parallel, we can speed up com-
putations:

Proposition 3. If we have at least n?/2 processors, then, if we simply want
to delete duplicates (and we do not want sorting), we can delete duplicates in a
single step.

Proof. For n records, we have n - (n —1)/2 pairs to compare. We can let each
of > n?/2 processors handle a different pair, and, if elements of the pair (r;,r;)
(i < j) turn out to be duplicates, delete one of them — the one with the largest
number (i.e., r;). Thus, we indeed delete all duplicates in a single step. The
proposition is proven.
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Comments.

e If we also want sorting, then we need to also spend time O(log(n)) on
sorting [21].

e If we have fewer than n?/2 processors, we also get a speed up:

Proposition 4. If we have at least n processors, then we can delete duplicates
in O(log(n)) time.

Proof. Let us show how Algorithm 3 can be implemented in parallel. Its first
stage is sorting, and we have already mentioned that we can sort a list in parallel
in time O(log(n)).

Then, we assign a processor to each of n points. For each point, we find each
of N, = (3™ — 1)/2 indices by binary search (it takes log(n) time), and check
whether the corresponding record is a duplicate.

As a result, with n processors, we get duplicate elimination in time
O(log(n)). The proposition is proven.

Proposition 5. If we have p < n processors, then we can delete duplicates in
O((n/p) - log(n) + log(n)) time.

Proof. It is known that we can sort a list in parallel in time

O((n/p) - log(n) + log(n));

see, e.g., [21].

Then, we divide n points between p processors, i.e., we assign, to each of p
processors, n/p points. For each of these points, we check whether each of its
N,, immediate neighbors is a duplicate — which takes O(log(n)) time for each of
these points. Thus, overall, checking for duplicates is done in time (n/p)-log(n)).

Hence, the overall time for this algorithm is

O((n/p) - log(n) + log(n)) + O((n/p) - log(n)) = O((n/p) - log(n) + log(n))

— the same as for sorting. The proposition is proven.

Comment: relation to Computational Geometry. Similarly to the sequential
multi-dimensional case, we can solve the duplicate deletion problem much faster
than a similar problem of listing all duplicate pairs (i.e., equivalently, all pairs
of intersecting hyper-rectangles R;). Indeed, according to [2, 17], even on the
plane, such listing requires time O(log®(n) + k).
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