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Abstract-The paper considers the problem of measurement 

information fusion from different sources, when one of the 
sources is an information about approximate values of the 
measured variables or their combinations. The information is 
given with fuzzy models and is used in combination with the 
measurement results. The properties of the modified estimates 
are studied in comparison with the conventional ones.  The 
conditions when an expert’s information application can give a 
high gain are derived, the gain value is estimated, the 
recommendations to an expert on making predictions are given. 
The possible gain in measurement result efficiency in 
geophysical applications is analyzed. 

 

I. INTRODUCTION 

In many applications, often there is a need to fuse 
information coming from a variety of sources and having 
different uncertainties. In order to reach a high-quality 
decision in business, engineering and social applications 
nowadays one has to fuse information of different kinds (e.g. 
numerical, statistical, textual, visual, audio) from a variety of 
sources (e.g. engineering measurement systems, expert’s 
opinions, images, sound tracks).  Due to their nature, these 
sources differentiate in reliability and uncertainty of the 
information produced. Uncertainty also can be influenced by 
the characteristics of procedures and tools applied in 
information acquisition and processing.  

This situation is typical for geological and geophysical 
sciences. For example, in the past fifteen years earthquake 
studies have grown from the collection of seismic data on 
frequency-limited seismometers (often in analog form) and 
mapping of surface faulting using geodetic techniques, to 
routine collection of digital seismic data on seismometers 
with broad frequency responses and mapping of surface 
deformation using a combination of geodetic, GPS and radar 
interferometry. For more detailed introduction into 
measurement problems in geophysical applications and 
especially into uncertainty estimation in measurement see [1]. 

The goal of this paper is four-fold. It attempts    
- to develop the more or less general method allowing 

fusing the predictions of the values of the measured 
variables and their linear combinations with the 
measurement results,  

- to evaluate the uncertainty of the modified estimates, 
- to evaluate the possible gain, which a prediction 

application can give us, 
- to analyze conditions when the prediction application 

might produce the strongest benefits. 

II. SOFT COMPUTING METHODS IN MEASUREMENT 
INFORMATION FUSION 

During a last few years one can witness an explosive rise 
of publications reporting fusion methodologies whose 
operation is based upon an application of some fuzzy and 
neural techniques. The numbers allow an introduction of 
some classification. The categorization given below does not 
pretend to be complete or comprehensive. It classifies 
examples of the soft computing applications in multi-source 
measurement information fusion and multi-sensor system 
design according to the goals achieved with their 
introduction. 

1. Fuzzy logic and neural network approach to multi-
source data association and fusion. This group actually refers 
to multi-sensor systems and sensor arrays [2]. Within the 
group, one can find synergetic systems (mainly software, but 
some hardware could be included as in [3]), which intend to 
provide universally applicable solutions for fusion of the 
signals from different sources or for decision-making based 
on a variety of measurement results. Bloch [4] attempts to 
give a classification of numerical fusion operators which are 
applied to fuse imprecise, uncertain and incomplete 
information extracted from a variety of sensors with a degree 
of belief associated with each information source. 

In [5] an extra knowledge is applied for choosing 
between different decisions obtained from solving 
conventional problems. In [6] the comprehensive 
methodology called Extended Logical Sensor Architecture 
(ELSA) was developed for constructing industrial sensor 
integration systems. ELSA has been developed for industrial 
applications, particularly, on-line grading and classification 
of non-uniform food products. It addresses a number of 
issues specific to an industrial inspection. The system is 
modular and scalable to accommodate new processes and 
changing customer demands. It is easy to understand so that 
non-expert users can construct, modify, and maintain the 
system. The sensor design methodology is based upon the 
object model, which represents object classifications through 
combinations of primary features weighted by fuzzy 
variables. The features guide the selection of sensors and 
processing routines; the classifications determine the rule 
base used by the inference engine for process decisions. 
Although inspection was the focus of this design, it is 
intended to become applicable in a variety of automation 
tasks, which may benefit from a multi-source perception 
system.  



Another multi-source fusion technique called Recurrent 
Fuzzy Inference (RFI) is presented in [7]. Here the 
membership functions of RFI are expressed by Radial Basis 
Function (RBF) with insensitive ranges. The shape of the 
membership functions can be adjusted by a learning 
algorithm. This algorithm is based on the steepest descent 
method and incremental learning, which can add new fuzzy 
rules. 

A very interesting subsection of this group is composed by 
the multi-sensor systems trying to reproduce human 
capabilities of taste, odor and vision analysis.  Besides 
improving accuracy, convenience and efficiency, the method 
allows realizing an engineering model of the sensing and 
recognizing systems of humans that combines all features of 
artificial olfactory and artificial taste. Rong et.al. [8] develop 
“electronic nose’ and “electronic tongue” for wine 
classification based on fuzzy logic fusion technique. Llobet 
et.al. [9] describe an electronic nose based system, which 
employs an array of inexpensive commercial tin-oxide odor 
sensors, which have been used to analyze the state of ripeness 
of bananas. Readings were taken from the headspace of three 
sets of bananas during ripening over a period of 8-14 days. 
Lazzerini et.al. [10] present a new method for the fuzzy 
classification of odor samples that are obtained from an array 
of conducting polymer sensors. Linguistic expressions 
describing the response of both individual sensors and the 
sensor array to each chemical are derived from a fuzzy model 
of the sensor data. 

2. Fuzzy logic and neural networks application for 
pattern recognition and classification. Here soft computing 
techniques are applied to make recognition more reliable as 
in [11], where a smart eddy-current sensor for locating and 
identifying metal tags used to recognize buried pipes or more 
accurate as in [12]. However, those systems should not be 
compulsory multi-source. 

3. Fuzzy and neural methodology application for 
improving metrological and reliability characteristics. In this 
group fuzzy and neural methodology is commonly applied 
alongside with some extra (sometimes a priori) information 
available [13,14]. Su and Komata [15] consider an in-vehicle-
type load indicator and propose an error correction technique 
to compensate the error contained in the load measurement, 
by using fuzzy logic for dealing with changes in the loading 
states with a diversity of uncertainties. In [16] and [13] the 
object under measurement model which could be presented 
with neuro-fuzzy methods is applied for a sensor fault 
detection and even correction. Healy et.al. [16] describe a 
sensor in-range fault accommodation, which is a fundamental 
challenge of dual channel control systems in modem aircraft 
gas turbine engines. An on-board, real-time engine model can 
be used to provide an analytical third sensor channel that may 
be used to detect and isolate sensor faults. A fuzzy-logic-
based accommodation approach is proposed that enhances 
the effectiveness of the analytical third channel in the control 
system's fault isolation and accommodation scheme. In [14] 
method the number of channels can be expanded and the 
sensor fault could be corrected. The similar approach [17] is 
applied for the validation of the measurement results in an 
ultrasonic sensor dedicated to mobile robot navigation 

4. Sensors, which design is based on fuzzy neural network 
application. Here one can find a sophisticated design, 
incorporating the advanced soft computing techniques based 
on fuzzy neural networks application. In [18] and [19] two 
different networks, a feedforward neural network with an 
error backpropagation learning algorithm and a 
counterpropagation neural network, are employed to 
recognize the extracted features and provide a comparison of 
these two networks based on accuracy and speed. The data 
from multiple sensors are integrated through the proposed 
fuzzy logic model. Such a model is self-organizing and self-
adjusting, learning from experience. Physical experiments of 
the metal cutting process are implemented to evaluate the 
proposed system.  

Another example is [14], which develops a cascaded 
architecture of neural fuzzy networks with feature mapping 
(CNFM) to help the clustering of satellite sensor images. In 
the CNFM, a Kohonen's self-organizing feature map (SOFM) 
is used as a preprocessing layer for the reduction of a feature 
domain, which combines original multi-spectral gray values, 
structural measurements from co-occurrence matrices, and 
spectrum features from wavelet decomposition. In addition to 
the benefit of the feature space dimensional reduction, 
Kohonen's SOFM can remove some noisy areas and prevent 
the following training process from being overoriented to the 
training patterns, The condensed measurements are then 
forwarded into a neural fuzzy network, which performs 
supervised learning for pattern classification. The proposed 
cascaded approach is an appropriate technique for handling 
the classification problem in areas that exhibit large spatial 
variation and interclass heterogeneity (e.g., urban-rural 
infringing areas). The CNFM is a general and useful structure 
that can give us favorable results in terms of classification 
accuracy and learning speed. 

 

III. MATHEMATICAL PROBLEM FORMULATION 

A conventional way of solving the problem of measurement 
result estimation assumes its definition as a mathematical 
programming problem and search for the parameter X’ 
estimates by maximizing some criteria 
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whose shape is determined by the estimation methods, 
Yi (i=1,n) is a set of mi measurement results of the ith 
variable. 

Let us consider a priori expert’s information as a fuzzy 
constraint for the parameter vector X and given by the set of 
membership functions µ(f(X)). The methods of an expert’s 
information acquisition and its propagation through are 
discussed in [20]. In this case the estimation problem with a 
priori information application can be considered as an 
optimization problem with fuzzy constraints. By now 
research of fuzzy constraints has accumulated different 
methodologies of solving such problems. One of the simplest 
and the most obvious way is a unification of both functional 
criteria and constraints into one synergetic criterion and 
looking for a global solution as the optimization of such 



criterion. So the problem can be re-formulated as search for 
the estimate minimizing the synergetic criterion 
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This problem could be tried with conventional or intelligent 
methods. We will call the solution of this optimization 
problem a modified estimate and apply it as an estimate of 
the measured value modified with the help of expert’s 
information. The method choice should depend on the 
estimation techniques applied as well as on the membership 
function shapes.(see [21,22] for more detail). 

 

IV. INVESTIGATION OF THE MODIFIED ESTIMATES IN 
COMPARISON TO THE CONVENTIONAL ONES 

A. Properties 

Let us start our research from the most widely applied in 
practice the normally distributed measurement results 
(equation (1)) and the prediction, when the approximate 
value of a linear combination of a few variables is given 
(equation (2)), 
(1) Y = AX + εy   
(2) BXb ≈   
where Y is a n×1 vector (under the condition of n > 1) of 
measurement results, 
X is a k×1 vector (under the condition of k > 1) of true values 
of the measurable variables, 
εy is a n×1 vector (under the condition of n > 1) of 
measurement errors, 
b is is a m×1 vector (under the condition of m > 1) of the 
forecast values, 
A, B are matrices giving the structures of measurement and 
forecast schemes.  

(1)  could be considered as a standard measurement 
equation. Let us consider measurement results 
normally distributed with no bias and the 
covariation matrix Σy. 

(2)  describes the forecast made that m linear 
combinations of the measured variables (the 
combinations are given with the matrix B) 
approximately have values given by the vector b 
components. The forecast is described 
mathematically by using the membership functions 
(see table 1) with the parameters of fuzziness given 
with the matrix Σb, which is a diagonal matrix with 
elements calculated as squares of the forecast 
fuzziness parameters. 

With the direct measurements and predictions, matrices A 
and B become unit matrices and the equations (1) and (2) 
become simpler as 
Y = X + εy   

Xb ≈   
or in a case of one variable it would mean the prediction of 
an approximate value with the membership function of 
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Under general conditions, a conventional maximum 
likelihood estimate will be calculated as 
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and a modified estimate should be calculated as 
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or in one variable case 
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where σδ /=g  is the ratio of prediction uncertainty to 
measurement error, which is called later a prediction 
uncertainty factor. 

The bias and the generalized dispersion of these estimates 
are equal correspondingly: 
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where M() serves as a mean operator. 
The dependence of a modified estimate’s bias on the 

prediction uncertainty factor under different prediction errors 
in the case of one measured variable and one prediction made 
is given in fig.1. The enlarged section of this graph, which 
demonstrates the region where the bias becomes comparable 
or less than a measurement error is given in fig. 2. One may 
see that the bias becomes pretty small when the prediction 
error is still about 10 times higher than the prediction 
uncertainty. It means that the forecaster should be able to 
make reliable, practically unbiased predictions 

B. Bias of the modified estimates 

Statement 1. The modified estimate coincides with a 
conventional one if and only if the prediction value coincides 
with the conventional estimate. 

Corollary 1. Modified estimate generally is biased against 
the conventional one. 

Statement 2. Modified estimate lies between the 
conventional estimate and the forecast value. 

Corollary 2. The modified estimate is shifted against the 
conventional one towards the forecast value. 
However, the properties characterizing the accuracy of the 
modified estimate need to be investigated in order to evaluate 
a possible gain/lose. 
1.Analyzing the formulae above one may see that a modified 
estimate’s bias is proportional to the forecast error (b-BX)  
2. One also can see that when a prediction is absolutely 
correct (b-BX=0) the modified estimate becomes unbiased.  
3.On the other hand, the same result can be achieved when 
the fuzziness of the forecast is very big.  

The modified estimate becomes unbiased when the 
forecaster makes a correct prediction or refuses to make any 



prediction at all. Actually, the bias of the modified estimate 
mainly depends on the ratio between the forecast error and 
the forecast fuzziness parameter or in other words on the ratio 
between the forecaster correctness and the forecaster 
confidence in the prediction made. 

 
Fig.1 Relationship between the modified estimate’s bias and the prediction 
uncertainty factor 

 

Fig.2 Relationship between the modified estimate’s bias and the prediction 
uncertainty factor (enlarged section). The bold horizontal line marks the 
border where a bias becomes equal to a measurement error. 

C. Efficiency of the modified estimates 

Estimate’s accuracy traditionally is taken as its dispersion. 
Comparing values (3) and (4) one may conclude that 

1. when the forecast fuzziness is very big (practically the 
forecast is not given) the dispersions of estimates 
almost coincide with each other, 

2. generally speaking the modified estimate’s dispersion 
is smaller than the conventional one’s, which means 
that the modified estimate is more efficient than the 
conventional one. It can be explained by the fact that 
the modified estimate is “pulled over” towards the 
forecast value. 

However, despite this pleasant result the dispersion can not 
be taken as a good comparison base as the modified estimate 
could be biased due to the wrong forecast. 

We have to consider another accuracy indicator, the mean 
square error (MSE), which is the mean of squares of 
deviations between the estimate and the true value. This 
indicator takes into account both the estimate’s bias and its 
dispersion. MSE of the considered estimates will equal to: 
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The problem of this gain evaluation deserves a special 
consideration. To evaluate the gain provided by an expert’s 
information application, let us choose the projection of the 
estimate’s MSE, which can be written as 
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The gain depends on the measurement system and errors as 
well as prediction errors and its fuzziness (actually the ratio 
between the prediction error to the fuzziness). Figure 3 
demonstrates the change in the gain value depending on the 
uncertainty prediction factor or actually on the prediction 
fuzziness when the mean measurement error is fixed. The 
maximum gain could be achieved when the prediction is 
absolutely accurate (prediction error is zero), that 
corresponds to the top line in fig 3. Other lines show the 
relationship under the condition of some prediction error. 
This dependence on the prediction error is clearer in Figure 4, 
which demonstrates the gain change depending on it under 
different uncertainty prediction factors. One can see that with 
the increase in prediction errors the gain goes down and 
transforms into lose when the error in prediction becomes 
considerably bigger than its fuzziness. 

Fig.3. Relationship between the gain received by a modified estimate 
application and uncertainty prediction factor and prediction errors 



In a case of one measured value and one prediction the gain 
can be expressed as 
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Fig.4. Relationship between the gain received by a modified estimate 
application and prediction errors and uncertainty prediction factor. Note: 
everything is measured in measurement error units 

The biggest gain can be achieved with the correct 
predictions, i.e. b=BX, when 
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or in the case of direct measurements and predictions 
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that the maximum gain value depends on the ratio of the 
measurement errors to the prediction fuzziness. In another 
notation the maximum gain could be written as 
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One may see that in order to increase the maximum gain, 

the prediction fuzziness should be decreased in comparison 
with the measurement errors. One may also conclude that if 
the prediction fuzziness is higher than 100 times 
measurement errors, the use of a priori information becomes 
doubtful as any possible gain value could be just a few 
percent. It means that one has to try to decrease the prediction 
fuzziness parameter. However, this strategy might be risky as 
it may result in loosing any gain at all. 
 

V. IS THERE ANY SENSE IN USE OF EXPERT’S INFORMATION 
AND UNDER WHICH CONDITIONS? 

A. Mathematical point of view 

Let us try to clarify conditions when the modified estimate 
superiors a conventional one against the MSE indicator or 
becomes more accurate. Mathematically the condition 
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The left side of this inequality constitutes the prediction 
error square, the right side combines the prediction fuzziness 
with measurement errors in squares also. One may see that in 
order to improve the accuracy of the estimate, the prediction 
error should be not bigger than its fuzziness. Actually, it may 
be even larger a bit, by some value, which depends on the 
measurement errors. This relationship becomes clearer in the 
case of direct measurements and predictions when the 
matrices A and B are unit matrices, and matrices bΣ  and yΣ  
are diagonals.  In this case the condition (5) becomes more 
transparent as  
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where K is the number of measured variables,  
σi, i=1, K is the root mean square error (RMSE) of the i-th 
variable measurement errors, and δi, i=1, K is the fuzziness 
of the ith prediction. 
Use of a priori information improves accuracy if the mean 
prediction error is less than the sum of the mean prediction 
fuzziness and the mean measurement error. 
 

B. Practical point of view 

Or in other words what gain could be achieved with a 
rather inaccurate prediction? 

The typical measurement accuracy for the modern 
measurement instruments could be in the vicinity of 1-2%. In 
this case, of say 2% measurement error, with the prediction 
fuzziness of say 20%, which is rather high (for example, it 
might mean the prediction like “the measured variable has a 
value of around 10 units or actually somewhere roughly 
between 8 and 12 units”, which in practical cases sounds like 
a very reasonable suggestion) could achieve the gain up to 
44%. 

In complex geological measurements, accuracy is actually 
much lower. In a case of around 10% measurement errors, 
the same predictions as in the previous example could 
achieve 400% gain. One should understand that such values 
of gain could be achieved when the forecaster makes a 
correct prediction. 

However, even in a case when a forecaster makes an error 
in his/her prediction, there could still be some gain. Speaking 
very roughly, in order to get any gain the error value should 
be smaller than a sum of the prediction fuzziness and the 
measurement error. This allows a forecaster to develop a 
strategy to avoid any lose. If a forecaster is confident about 
the prediction value, he/she may low prediction fuzziness and 
achieve a higher gain. However, when the confidence level 



decreases, the prediction fuzziness could be increased, which 
might lower the gain value but allow avoiding loses. 

 

VI. CONCLUSION 

The problem of a priori expert’s information use for 
improvement the measurement procedures quality and the 
estimates received may be considered as a fusion of 
information from different sources, which are characterized 
by different uncertainty degrees. This area attracts a 
particular attention over a last few years. The neuro-fuzzy 
methods and their applications in measurement information 
fusion, reported in the literature, have been classified into 
four groups according with the goal achieved with their 
introduction. 

The problem has been formalized mathematically as an 
optimization problem with fuzzy  constraints and the solution 
has been found for the normally distributed measurement 
results and a specific expert’s information.  

The properties of the modified estimates have been studied 
in comparison with the conventional ones. The modified 
estimates have been found more efficient under the condition 
when the prediction error does not overcome the sum of the 
average measurement error and the prediction fuzziness.  The 
possible efficiency gain in geological applications was 
estimated. The procedures improving reliability of the 
modified estimates have been offered, which include 
recommendations to an expert on making predictions: when 
an expert’s confidence in predicted value is high, a prediction 
fuzziness should be made low in order to achieve a high gain; 
however, with a decrease in confidence a fuzziness could be 
made wider in order to avoid the estimate corruption. 
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