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Abstract— Uncertainty is very important in risk
analysis. A natural way to describe this uncer-
tainty is to describe a set of possible values of
each unknown quantity (this set is usually an in-
terval), plus any additional information that we
may have about the probability of different values
within this set. Traditional statistical techniques
deal with the situations in which we have a com-
plete information about the probabilities; in real
life, however, we often have only partial informa-
tion about them. We therefore need to describe
methods of handling such partial information in
risk analysis. Several such techniques have been
presented, often on a heuristic basis. The main
goal of this paper is to provide a justification for
a general formalism for handling different types of
uncertainty, and to describe a new black-box tech-
nique for processing this type of uncertainty.

1. INTRODUCTION: UNCERTAINTY IN RISK ANALYSIS

Uncertainty in risk analysis: why. By definition, risk
analysis deals with situations with uncertainty, i.e., with
situations in which we do not have a complete and ac-
curate knowledge about the state of the system. It is
therefore very important that we be able to represent un-
certainty in risk analysis as adequately as possible.

First component of uncertainty description: in-
terval (set) uncertainty. In order to fully describe a
system, we must know the exact values of all the phys-
ical quantities characterizing this system. For example,
in environmental problems related to chemical pollution,
a polluted system (e.g., a lake) can be fully described if
we know the exact concentration of different pollutants in
different parts of the lake.

Thus, to describe the uncertainty of our knowledge
about a system, we must describe the uncertainty with
which we know the values of each of the quantities (pa-
rameters) describing the system. Uncertainty means that
we do not know the exact value of the quantity, several
different values may be possible. For example, we may
not know the exact value of the concentration but we may
know that this concentration is between, say, 107> and
10~3. In this case, any value from the interval [10?,1072]

is possible; see, e.g., [12, 13].

An important risk-related situation that leads to inter-
vals is when a measurement does not detect any presence
of a certain substance because its concentration z is below
the detection limit D. In this case, the only information
we have about z is that z belongs to the interval [0, D].

In general, we usually known an interval x of possible
values of the unknown quantity z — or, sometimes, a more
general set X of possible values of z (different from an
interval, e.g., the union of two intervals).

Second component of uncertainty description:
probabilistic uncertainty. The set X of possible val-
ues describes which values of the analyzed quantity are
possible and which values are not. In addition to this in-
formation, we often know which values are more probable
and which are less probable. In other words, we often have
some information about the probability of different values
z from the interval (set) x of possible values.

Probabilistic uncertainty: traditional techniques.
In some cases, we know the exact expression for this dis-
tribution. In these cases, we can use standard statistical
techniques to represent, elicit, and aggregate uncertainty.
A survey of the corresponding techniques as applied to
risk analysis is given, e.g., in [2].

The need for techniques corresponding to partial
information about probabilities. In many other real-
life situations, however, we have only partial information
about the probabilities. To handle such situations, it is
necessary to expand known statistical techniques of rep-
resenting, eliciting, and aggregating uncertainty to prob-
lems in which we only have partial information about the
probabilities.

What we are planning to do. The main objective
of this paper is to provide a justification for a general
formalism for handling different types of uncertainty, and
to describe a new black-box technique for processing this
type of uncertainty.

For a survey with a detailed description of our approach
see [8]; see also [4, 6, 7, 21, 18, 25].



2. WHAT IS A NATURAL WAY OF REPRESENTING
PARTIAL INFORMATION ABOUT PROBABILITIES?

Which representation of probability distribution
should we choose? In probability theory, there are
many different ways of representing a probability distribu-
tion. For example, one can use a probability density func-
tion (pdf), or a cumulative distribution function (CDF), or
a probability measure, i.e., a function which maps differ-
ent sets into a probability that the corresponding random
variable belongs to this set. The reason why there are
many different representations is that in different prob-
lems, different representations turned out to be the most
useful.

We would like to select a representation which is the
most useful for problems related to risk analysis. To make
this selection, we must recall where the information about
probabilities provided by risk analysis is normally used.

How is the partial information about probabilities
used in risk analysis? The main objective of risk anal-
ysis is to make decisions. A standard way of making a
decision is to select the action a for which the expected
utility (gain) is the largest possible. This is where proba-
bilities are used: in computing, for every possible action a,
the corresponding expected utility. To be more precise, we
usually know, for each action a and for each actual value
of the (unknown) quantity z, the corresponding value of
the utility u,(z). We must use the probability distribu-
tion for z to compute the expected value E[u,(z)] of this
utility.

In view of this application, the most useful characteris-
tics of a probability distribution would be the ones which
would enable us to compute the expected value Efu,(z)]
of different functions u, ().

Which representations are the most useful for this
intended usage? General idea. Which characteristics
of a probability distribution are the most useful for com-
puting mathematical expectations of different functions
uq(2)? The answer to this question depends on the type
of the function, i.e., on how the utility value v depends on
the value z of the analyzed parameter.

Smooth utility functions naturally lead to mo-
ments. One natural case is when the utility function
uq () is smooth. We have already mentioned, in Section I,
that we usually know a (reasonably narrow) interval of
possible values of z. So, to compute the expected value
of ug(z), all we need to know is how the function u,(z)
behaves on this narrow interval. Because the function is
smooth, we can expand it into Taylor series. Because the
interval is narrow, we can safely consider only linear and
quadratic terms in this expansion and ignore higher-order
terms:

() R co + 1 - (& — o) + ¢2 - (¢ — 20)?,

where o is a point inside the interval. Thus, we can

approximate the expectation of this function by the ex-
pectation of the corresponding quadratic expression:

Efu.(z)] = Eco + ¢1 - (x — m0) + ¢ - (x — 30)?],
i.e., by the following expression:
Elug(z)] = co +¢1 - Elx — x0] + c2 - E[(z — x0)2].

So, to compute the expectations of such utility functions,
it is sufficient to know the first and second moments of
the probability distribution.

In particular, if we use, as the point xg, the average
E[z], the second moment turns into the variance of the
original probability distribution. So, instead of the first
and the second moments, we can use the mean E and the
variance V.

From numerical moments to interval-valued mo-
ments. When we know the exact probability distribution,
we must use the exact values of the first and the second
moment (or mean and variance).

If we only have a partial information about the probabil-
ity distribution, then we cannot compute the exact value
of these moments; instead, we have intervals of possible
values of these moments. So, from this viewpoint, a nat-
ural representation of the partial information about the
probability distribution is given by intervals E and V of
possible values of mean E and variance V.

In risk analysis, non-smooth utility functions are
common. In engineering applications, most functions are
smooth, so usually the Taylor expansion works pretty well.
In risk analysis, however, not all dependencies are smooth.
There is often a threshold xg after which, say, a concen-
tration of a certain chemical becomes dangerous.

This threshold sometimes comes from the detailed
chemical and/or physical analysis. In this case, when we
increase the value of this parameter, we see the drastic
increase in effect and hence, the drastic change in utility
value. Sometimes, this threshold simply comes from reg-
ulations. In this case, when we increase the value of this
parameter past the threshold, there is no drastic increase
in effects, but there is a drastic decrease of utility due
to the necessity to pay fines, change technology, etc. In
both cases, we have a utility function which experiences
an abrupt decrease at a certain threshold value zg.

Non-smooth utility functions naturally lead to
CDFs. We want to be able to compute the expected
value Efu, ()] of a function u, () which changes smoothly
until a certain value xg, then drops it value and contin-
ues smoothly for z > z9. We usually know the (reason-
ably narrow) interval which contains all possible values
of x. Because the interval is narrow and the dependence
before and after the threshold is smooth, the resulting
change in u,(x) before o and after x¢ is much smaller
than the change at zy. Thus, with a reasonable accuracy,



we can ignore the small changes before and after xg, and
assume that the function u,(z) is equal to a constant ut
for z < xg, and to some other constant u~ < u™ for
T > xo.

The simplest case is when v+ = 1 and v~ = 0.
In this case, the desired expected value E[ugo) (2)] coin-
cides with the probability that x < xzg, i.e., with the
corresponding value F(zg) of the cumulative distribu-
tion function (CDF). A generic function wu,(z) of this
type, with arbitrary values u~ and ut, can be easily
reduced to this simplest case, because, as one can eas-
ily check, uq(z) = v~ + (ut —u™) - u®(z) and hence,
Elug(z)] =u™ + (ut —u™) - F(zo).

Thus, to be able to easily compute the expected values
of all possible non-smooth utility functions, it is sufficient
to know the values of the CDF F'(xg) for all possible xg.

From CDF to interval-valued CDF: the notion of
a p-bound. When we know the exact probability distri-
bution, we must use the exact values F(z) of the CDF.
If we only have a partial information about the probabil-
ity distribution, then we cannot compute the exact values
F(z) of the CDF. Instead, for every x, we have an interval
[F~(x), F*(z)] of possible values of the probability F(z).
Such a pair of two CDFs F~ (z) and F*(z) which bounds
the (unknown) actual CDF is called a probability bound,
or a p-bound, for short.

So, in risk analysis, a natural representation of the par-
tial information about the probability distribution is given
by a p-bound.

p-bounds or moments? We have shown that for de-
cision problems with smooth utility functions, the best
representation is by interval mean and interval variance,
and for decision problems with discontinuous utility func-
tions, the best representation of partial information is a
p-bound.

Of the two corresponding representations of a proba-
bility distribution, CDF is much more informative: if we
know CDF, we can compute the moments, but if we only
know the moments, we can have many different CDFs.
Thus, because we want to make our representation as in-
formative as possible, it makes sense to use CDFs and
their interval analogues — p-bounds.

Real numbers, intervals, and probability distribu-
tions are particular cases of p-bounds It is worth
mentioning that several other types of uncertainty can be
viewed as particular cases of p-bounds.

For example, the case of complete certainty, when we
know the exact value zo of the desired quantity, can be
represented as a p-bound in which

0 if z < xo,
1 otherwise

F(z) = F(z) = {

The case when our only information about z is that z
belongs to the interval [z~, ] can be represented by the

following p-bound:

_ 0 ifz<at,
F~(z) = { 1 otherwise
) = 0 ifz<z™,

1 1 otherwise

Finally, a probability distribution with a CDF F(z) can be
represented as a p-bound with F~(z) = F*(z) = F(z).

Information about moments can also be represented in
terms of p-bounds; see, e.g., [6, 25]. For example, if we
know the interval [z~,z%] on which the distribution is
located, and if we know its mean E, then we can conclude
that F(x) € [F~(z), F*(z)], where, e.g.,

T—-FE
FH(z)=min (1,2 "= ).
(z) m1n<,$+_$)

p-bounds have been successfully used in practice.
We have shown that in risk analysis, a natural way to
represent risk-related partial information about probabil-
ities is by using a second-order probability distribution,
namely, a p-bound — a pair of CDFs F~(z) and F*(x) for
which F~(z) < F*(z). In particular, a real number, an
interval, and a probability distribution are all particular
cases of p-bounds.

p-bounds have been successfully used in different risk
analysis problems ranging from problems related to pol-
lution and environment to risk analysis for nuclear engi-
neering; see, e.g., [6, 25].

3. ERROR ESTIMATION FOR INDIRECT MEASUREMENTS
— FORMULATION OF THE PROBLEM

What are indirect measurements. In many real-life
situations, it is difficult or even impossible to directly mea-
sure the quantity y in which we are interested. For ex-
ample, it is, at present, practically impossible to directly
measure a distance to a distant quasar, or the amount of
oil in a given area. Since we cannot measure such quanti-
ties directly, we have to measure them indirectly: Namely,
we measure some other quantities z1, ..., z, which are re-
lated to y by a known dependence y = f(z1,...,%,), and
then apply the known function f to the results z1,...,Z,
of measuring z;.

For example, to determine the amount of 0il y in a given
area, we measure the results z; of sending ultrasound sig-
nals between the two parallel wells, and then estimate y
by solving the appropriate system of partial differential
equations (in this example, f(z1,...,z,) is a program for
solving this system).

In general, such a two-stage procedure (measurement
followed by computations) is called an indirect measure-
ment, and the value §y = f(Z1,...,Z,) resulting from this
two-stage procedure is called the result of indirect mea-
surement.



Toy example. To make the exposition clearer, we will
illustrate these notions on the following toy example: Sup-
pose that we are interested in the voltage V', but we have
no voltmeter at hand. One possibility of measuring V' indi-
rectly follows from Ohm’s law: we can measure the current
I and the resistance R, and compute V' as I - R. In this
case, 1 is the current, 2 = R, and f(z1,z2) = o1 - Z2-

If the measured value T; of the current is 1.0, and the
measured value of the resistance is o = 2.0, then the
result of the corresponding indirect measurement is y =
1.0-2.0 = 2.0.

Error estimation for indirect measurements: a
real-life problem. Measurements are never 100% ac-
curate; hence, the result z; of each direct measurement
is, in general, somewhat different from the actual value
of the measured quantity. As a result of these measure-
ment errors Ax; = T; — x;, the result §y = f(Zy1,...,Z,) of
applying f to the measurement result will be, in general,
different from the actual value y = f(z1,...,2,) of the
desired quantity.

For example, in our toy problem, the actual value of
the current may be z; = 0.9 # 7; = 1.0, and the
actual value of the resistance is o = 2.05 # z =
2.0. In this case, the actual value of the voltage is
y=x1 -T2 =0.9-2.05 =1.845 # 2.0.

Since the result y of indirect measurement is, in general,
different from the actual value y, it is desirable to know
the characteristics of the error Ay = y — y of indirect
measurement. How can we estimate these characteristics?

Possible information available for estimating the
error of indirect measurements. First, we know the
function f(x1,...,%,). This function may be given as an
analytical expression, or, more frequently, as an algorithm.
It may be a program written in a high-level programming
language (i.e., a source code), which can be translated into
an executable file ready for computations, or it may be
only an executable file, with no source code provided.

Second, we know the results z1,...,Z, of direct mea-
surements.

Finally, we need some information about the errors of
the direct measurements. The errors Ax; come from the
imperfection of the corresponding measuring instruments.
For an instrument to be called measuring, its manufac-
turer must supply some (well-defined) information about

the measurement errors. Ideally, this information must
include the probability distribution of different measure-
ment errors.

The knowledge of these probabilities is desirable but
not always required and not always possible. In many
practical cases, we only know the upper bounds A; for
the possible measurement errors, i.e., we only know that
|Az;| < A;. In such cases, after each direct measurement,
the only information that have about the actual value z;
of the measured quantity is that this value belongs to the
interval [T; — A, T; + A;].

For example, in our toy case, the manufacturer of
the measuring instruments may guarantee that the
measurement error Az; of measuring current cannot
exceed A; = 0.1, and the measurement error Azs of
measuring resistance cannot exceed Ay = 0.05. If no
other information about the measurement accuracy
is given, then, after we got the measurement results
Z1 = 1.0 and Z» = 2.0, the only information we have
about the actual value of the current x; is that z; €
[1.0 - 0.1,1.0 + 0.1] = [0.9,1.1]. Similarly, the only
information we have about the actual value of the
resistance z, is that z5 € [2.0 — 0.05,2.0 + 0.05] =
[1.95,2.05]. (The actual values z; = 0.9 and z3 =
1.05, of course, belong to these intervals; if they did
not, this would mean that the manufacturer’s bounds
are incorrect.)

In the situations when we only know the upper bounds
on the measurement errors, the problem of estimating the
error of indirect measurement is called the problem of in-
terval computations; for details and examples of practical
applications, see, e.g., [12, 13]. The setting when we only
know intervals will be one of the settings considered in
this paper.

Another setting which we will consider is a setting de-
scribed in standard engineering textbooks on measure-
ment (see, e.g., [9, 24]; see also [3, 11]). In this setting,
the measurement error Az; of each direct measurement is
normally distributed with 0 average and known standard
deviation ¢;, and measurement errors of different direct
measurements are independent random variables.

4. HOwW ENGINEERS SOLVE THESE PROBLEMS?

In this paper, we will only consider situations
when the measurements are reasonably accurate.
In this paper, we will only consider situations in which
the direct measurements are accurate enough, so that the
resulting measurement errors Az; are small, and terms
which are quadratic (or of higher order) in Az; can be
safely neglected, and so, the dependence of the desired
value y = f(x1,...,2,) = f(T1 — Az1,...,T, — Ax,) On
Az; can be safely assumed to be linear.

In our toy example, f(x1,22) = x1 - T2, SO

Yy = f(?il — A.Z']_,:’EQ — A.TL‘Q) =



T1-To —To-Axy — 21 - Azy + Azq - Axs.

In our case, ; = 1.0, o = 2.0, so y = 2.0 — 2Ax; —
Azs + Axzy - Azs. The only non-linear term in this
expansion is the quadratic term Az - Az,.

Here, Azy =77 — 21 =1.0-0.9= 0.1, Azy = 2.0 —
2.05 = —0.05, and Ay = 2.0 — 1.845 = 0.155. If we
ignore the quadratic term, we get approximate values
Yapprox = 2.0—2Az1 —Azy = 1.85 and Ayapprox = J—
Yapprox = 0.15. The error of this linear approximation
is 0.005 <« 0.15.

Comments.

e To avoid possible confusion, we must emphasize the
following. We are not talking about functions f which
are linear for all possible values of input data. In this
paper, we are considering data processing functions f
which can be approximated by linear ones in the close
vicinity of every measurement result 7 = (ZT1,...yZp)-
These linear approximations, however, are different
for different measurement results.

e There are practical situations when the accuracy of
the direct measurements is not high enough, and
hence, quadratic terms cannot be safely neglected
(see, e.g., [13] and references therein). In this case,
the problem of error estimation for indirect measure-
ments becomes computationally difficult (NP-hard)
even when the function f(z1,...,z,) is quadratic
[17, 27]. However, in most real-life situations, the pos-
sibility to ignore quadratic terms is a reasonable as-
sumption, because, e.g., for an error of 1% its square
is a negligible 0.01%.

With the above restriction in place, we can easily de-
duce the explicit expression for the error Ay of indirect
measurement.

Indirect measurement error: derivation and the
resulting formula. Due to the accuracy requirement,

we can simplify the expression for Ay = y —y =
f@1,...,%,) — f(x1,...,2z,) if we expand the function
f in Taylor series around the point (Zi,...,Z,) and re-

strict ourselves only to linear terms in this expansion. As
a result, we get the expression

Ay=27% ¢, Azi+ ... +cn- Ay, (1)

where by ¢;, we denoted the value of the partial derivative
O0f [0x; at the point (Z1,...,Tp):

of

OTi|(71,....2n)

(2)

Ci

Probability distribution of the indirect measure-
ment error: derivation and the resulting formula.
In the statistical setting, the desired measurement error

Ay is a linear combination of independent Gaussian vari-
ables Ax;, and hence, Ay is also normally distributed,
with 0 average and the standard deviation

o=/ -0?+...+c2 02. (3)

Comment. A similar formula holds if we do not assume
that Ax; are normally distributed: it is sufficient to as-
sume that they are independent variables with 0 average
and known standard deviations o;.

Interval of possible values of the indirect measure-
ment error: derivation and the resulting formula.
In the interval setting, we do not know the probabil-
ity of different errors Ax;; instead, we only know that
|Az;| < A;. In this case, the sum (1) attains its largest
possible value if each term ¢; - Az; in this sum attains the
largest possible value:

o If ¢; > 0, then this term is a monotonically non-
decreasing function of Az;, so it attains its largest
value at the largest possible value Az; = A;; the cor-
responding largest value of this term is ¢; - A;.

o If ¢; < 0, then this term is a decreasing function of
Ax;, so it attains its largest value at the smallest
possible value Axz; = —A;; the corresponding largest
value of this term is —¢; - A; = |¢;] - A,

In both cases, the largest possible value of this term is
lei| - As, so, the largest possible value of the sum Ay is

A=let|-Ar+...+|en| - An. (4)

Similarly, the smallest possible value of Ay is —A.
Hence, the interval of possible values of Ay is [-A, A,
with A defined by the formula (4).

Comment. In our toy problem, it is easy to compute the
actual interval of possible values of y = x; - 2 when
x1 € [0.9,1.1] and z, € [1.95,2.05]: Indeed, the func-
tion f(x1,%2) = z1 - T2 is monotonically increasing as a
function of each of its variables (for z; > 0 and z2 > 0).
Thus, the largest possible value of y = f(z1,z2) is at-
tained when both input variables take their largest pos-
sible values, i.e., when z; = 1.1 and z, = 2.05, and is
equal to 1.1-2.05 = 2.255. Similarly, the smallest possi-
ble value of y = f(z1,22) is attained when both input
variables take their smallest possible values, i.e., when
21 = 0.9 and 25 = 1.95; this smallest value of y is equal
to 0.9-1.95 = 1.755. So, the interval of possible values of
y is equal to [1.755,2.255]. Hence, the interval of possible
values for Ay =y —y = 2 —y is [-0.255,0.245].

On the other hand, applying formula (4), we get A =
2.0-0.1+1.0-0.05 = 0.25 and the interval [-0.25,0.25].
(We can see that this is indeed a good approximation to
the actual interval.)



Error estimation for indirect measurement: a pre-
cise computational formulation of the problem.
As a result of the above analysis, we get the follow-
ing explicit formulation of the problem: given a function
f(z1,...,2,), n numbers Zy,...,T,, and n positive num-
bers o1,...,0, (or Ay,...,A,), compute the correspond-
ing expression (3) or (4).
Let us describe how this problem is solved now.

Textbook case: the function f is given by its an-
alytical expression. If the function f is given by its
analytical expression, then we can simply explicitly differ-
entiate it, and get an explicit expression for (3) and (4).
This is the case which is typically analyzed in textbooks
on measurement theory (see, e.g., [9, 24]).

A more complicated case: analytical differentia-
tion. In many practical cases, we do not have an explicit
analytical expression, we only have an algorithm for com-
puting the function f(z1,...,z,), an algorithm which is
too complicated to be expressed as an analytical expres-
sion.

When this algorithm is presented in one of the standard
programming languages such as Fortran or C, we can ap-
ply one of the existing analytical differentiation tools (see,
e.g., [1, 10]), and automatically produce a program which
computes the partial derivatives ¢;. These tools analyze
the code and produce the differentiation code as they go.

In many practical applications, we must treat
the function f(z1,...,z,) as a black box. In many
other real-life applications, an algorithm for computing
f(z1,...,2,) may be written in a language for which an
automatic differentiation tool is not available, or a pro-
gram is only available as an executable file, with no source
code at hand. In such situations, when we have no easy
way to analyze the code, the only thing we can do is to take
this program as a black box: i.e., to apply it to different
inputs and use the results of this application to compute
the desired value o.

In this paper, we will analyze such black-box situations,
and describe the optimal algorithm for computing o, and a
new algorithm for computing A. Before we describe these
algorithms, we must describe known black-box-oriented
algorithms.

A straightforward method of solving this prob-
lem: numerical differentiation. The most straightfor-
ward algorithm for solving this problem is to compute the
derivatives ¢; one-by-one, and then use the corresponding
formula (3) or (4) to compute the desired o. To compute
the i-th partial derivative, we change the i-th input z; to
Z; + h; for some h;, and leave other inputs unchanged, i.e.,
we take §; = h; for this ¢ and J; = O for all j # 7. Then,
we estimate c; as
1 ~

¢ = F'(f(rfla---:%ifl;%i+hi7§i+17---;wn)_17)-
K3

This algorithm is called numerical differentiation.

We want the change h; to be small (so that quadratic
terms can be neglected); we already know that changes of
the order o; are small. So, it is natural to take h; = o; (or,
correspondingly, h; = A;). In other words, to compute c;,

we use the following values: §; = ... = §;_1 =0, §; = 0y
(OI' (5, :Ai), 6i+1 =... :(Sn =0.

Problem: sometimes, numerical differentiation
takes too long. If a function f(z1,...,z,) is simple and

fast-to-compute (e.g., if it is given by an explicit analytical
expression), then we do not need the black-box-oriented
algorithms at all. We only need these algorithms when
the program f is itself time-consuming (e.g., computing
f may involve solving an inverse problem). In this case,
applying the function f is the most time-consuming part
of this algorithm. So, the total time 7" that it takes us to
compute ¢ is (approximately) equal to the running time
Ty for the program f multiplied by the number of times
Ny that we call the program f.

For numerical differentiation, Ny = n (we call f n times
to compute n partial derivatives). Hence, if the program
f takes a long time to compute, and n is huge, then the
resulting time 7" may be too long. For example, if we
are determining some parameters of an oil well from the
geophysical measurements, we may get n in the thousands,
and T in minutes. In this case, T' = Ty-n may take several
weeks. This may be OK for a single measurement, but too
long if we want more on-line results.

Known solution for statistical setting: Monte-
Carlo simulation. In statistical setting, it is known that
a straightforward simulation (Monte-Carlo type) saves
time drastically. In this algorithm, we use a computer-
based random number generator to simulate the normally
distributed error. A standard normal random number
generator usually produces a normal distribution with 0
average and standard deviation 1. So, to simulate a dis-
tribution with a standard deviation ¢;, we multiply the
result a; of the standard random number generator by o;.
In other words, we take §; = o; - «;.

As a result of N Monte-Carlo simulations, we get N
values ¢V = .60 ... ™) = & 5™ which are normally
distributed with the desired standard deviation o. So, we
can determine o by using the standard statistical estimate

1 i (c(k))2
N-1 &

The relative error of this estimate depends only on N (as ~
1/v/N), and not on the number of variables nn. Therefore,
the number of steps IV needed to achieve a given accuracy
does not depend on the number of variables at all.

The error of the above algorithm is asymptotically
normally distributed, with a standard deviation o, ~
o/ V2N. Thus, if we use a “two sigma” bound, we con-
clude that with probability 95%, this algorithm leads to

g =



an estimate for o which differs from the actual value of o
by < 20, = 20/V/2N.

This is an error with which we estimate the error of in-
direct measurement; we do not need too much accuracy
in this estimation, because, e.g., in real life, we say that
an error is £10% or £20%, but not that the error is, say,
+11.8%. Therefore, in estimating the error of indirect
measurements, it is sufficient to estimate the characteris-
tics of this error with a relative accuracy of, say, 20%.

For the above “two sigma” estimate, this means that we
need to select the smallest N for which 20, = 20/ V2N <
0.2-0,1i.e., to select Ny = N = 50.

In many practical situations, it is sufficient to have a
standard deviation of 20% (i.e., to have a “two sigma”
guarantee of 40%). In this case, we need only N = 13
calls to f.

On the other hand, if we want to guarantee 20% accu-
racy in 99.9% cases, which correspond to “three sigma”,
we must use N for which 30, = 3-0/v2N < 0.2-0, i.e.,
we must select Ny = N = 113, etc.

For n = 103, all these values of Ny are much smaller
than Ny = n required for numerical differentiation.

So, if we have to choose between the (deterministic)
numerical differentiation and the randomized Monte-Carlo
algorithm, we must select:

e a deterministic algorithm when the number of vari-
ables n satisfies the inequality n < Ny (where Ny =~
50), and

e 3 randomized method if n > Nj.

Additional advantage: parallelization. In Monte-
Carlo algorithm, we need 50 calls to f. If each call requires
a minute, the resulting time takes about an hour, which
may be too long for on-line results. Fortunately, different
calls to the function f are independent on each other, so
we can run all the simulations in parallel.

The more processors we have, the less time the result-
ing computation will take. If we have as many processors
as the required number of calls, then the time needed to
estimate the error of indirect measurement becomes equal
to the time of a single call, i.e., to the time necessary to
compute the result ¥ of this indirect measurement. Thus,
if we have enough processors working in parallel, we can
compute the result of the indirect measurement and esti-
mate its error during the same time that it normally takes
just to compute the result.

In particular, if the result y of indirect measurement
can be computed in real time, we can estimate the error
of this result in real time as well.

5. NEW METHOD BASED ON CAUCHY DISTRIBUTION

Can we use a similar idea in the interval setting?
Since Monte-Carlo simulation speeds up computations, it
is desirable to use a similar technique in interval setting
as well.

There is a problem here. In the interval setting, we
do not know the exact distribution, we may have differ-
ent probability distributions — as long as they are located
within the corresponding intervals. If we only use one of
these distributions for simulations, there is no guarantee
that the results will be valid for other distributions as well.

In principle, we could repeat simulations for several dif-
ferent distributions, but this repetition would drastically
increase the simulation time and thus, eliminate the ad-
vantages of simulation as opposed to numerical differenti-
ation.

Yes, we can. Luckily, there is a mathematical trick that
enables us to use Monte-Carlo simulation in interval set-
ting as well. This trick is based on using Cauchy distribu-
tion — i.e., probability distributions with the probability

density
A

p(z) - - (22 +A2)7
the value A is called the scale parameter of this distribu-
tion, or simply a parameter, for short.

Cauchy distribution has the following property that we
will use: if zy,..., 2, are independent random variables,
and each of z; is distributed according to the Cauchy law
with parameter A;, then their linear combination z = ¢; -
21+ ...+ ¢y - 2, is also distributed according to a Cauchy
law, with a scale parameter A = |¢1]- Ay + ...+ |en| - Ap.

Therefore, if we take random variables §; which are
Cauchy distributed with parameters A;, then the value

c=f(Z1 +01,.-..,Tn +0n) — f(T1,...,Tp)
=c1-01+...+cp-0p
is Cauchy distributed with the desired parameter (4).
So, repeating this experiment N times, we get N values
... ™) which are Cauchy distributed with the un-
known parameter, and from them we can estimate A.

The bigger N, the better estimates we get.
There are two questions to be solved:

¢ how to simulate the Cauchy distribution;
e how to estimate the parameter A of this distribution
from a finite sample.

Simulation can be based on the functional transformation
of uniformly distributed sample values:

0; = A - tan(ﬂ . (Tz' — 0.5)),

where r; is uniformly distributed on the interval [0, 1].

In order to estimate o, we can apply the Maximum
Likelihood Method p(d!) - p(d?)-...- p(d") — max, where
p(z) is a Cauchy distribution density with the unknown
A. When we substitute the above-given formula for p(z)
and equate the derivative of the product with respect to
A to 0 (since it is a maximum), we get an equation

1 1 N
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The left-hand side of (5) is an increasing function that
is equal to 0(< N/2) for A = 0 and > N/2 for A =
max |c(’“) |; therefore the solution to the equation (5) can
be found by applying a bisection method to the interval
[O,max|c(k)|].

It is important to mention that we assumed that the
function f is reasonably linear within the box

[3}71 —Al,il —|—A1] X ... X [:'En —An,in—{—An]

However, the simulated values d; may be outside the box.
When we get such values, we do not use the function f
for them, we use a normalized function that is equal to f
within the box, and that is extended linearly for all other
values (we will see, in the description of an algorithm, how
this is done).

As a result, we arrive at the following algorithm (first
described in [15, 16, 19, 26]):

Algorithm.

e Apply f to the results of direct measurements:

U:=f(T1,...,%,);
e For k =1,2,...,N, repeat the following:
e use the standard random number generator to
compute n numbers rgk), i =1,2,...,n, that
are uniformly distributed on the interval [0, 1];

e compute Cauchy distributed values
cgk) := tan(7 - (rz(k) —0.5));

e compute the largest value of |c£k) | so that we will
be able to normalize the simulated measurement
errors and apply f to the values that are within

the box of possible values: K := max; |c£k) l;

e compute the simulated measurement errors
(5§k) = A -cgk)/K;

e compute the simulated measurement results
:L'Ek) =I; + Jgk);

e apply the program f to the simulated measure-

ment results and compute the simulated error of
the indirect measurement:

W = K- (f (o9,.aP) - 7)

e Compute A by applying the bisection method to solve
the equation (5).

Philosophical comment: sometimes, distortion of
simulated phenomenon makes simulation more ef-
ficient. The use of Cauchy distribution in the above al-
gorithm may seem somewhat counter-intuitive (see, e.g.,
[14, 22]). Indeed, in the interval setting, we do not know
the exact probability distribution of each error A;, but we
do know that each error A; belongs to the corresponding
interval [—A;, A;], so the actual (unknown) probability
distribution for A; must be located on this interval with

probability 1. So, at first glance, if we want to design
a simulation-type technique for computing A, we should
use one of such possible distributions in our simulations.
Instead, we use a Cauchy distribution for which the prob-
ability to be outside the interval [—A;, A;] is non-zero. In
other words, in order to make the simulations work, in
these simulations, we distort the actual distributions.

At first glance, it may therefore seem natural to use,
in our simulations, instead of n independent variables dis-
tributed according to Cauchy distribution, n independent
variables §; distributed according to some distributions
which are actually located on the interval [-A;, A;]. Tt is
sufficient to select a distribution corresponding to A; = 1;
let a and o denote the average and standard deviation of
this variable. Then, by scaling (namely, by multiplying
by A;), we can get a distribution corresponding to an ar-
bitrary A;. In this case, for each variable §;, its average
is equal to A; - a, and its standard deviation is equal to
Az' -g.

As a result of each simulation, we get the value ¢; - §1 +
...+ ¢y - 0,. For large n, we can apply the limit theorem
to this sum and conclude that this value is approximately
normally distributed, with an average > ¢; - A; and the
standard deviation /) ¢Z - A?. The larger n, the closer
this resulting distribution to normal. It is known that
a normal distribution is uniquely determined by its first
two moments; hence, for large n, the only information
that we will be able to extract from the simulation results
are the average and the standard deviation of the resulting
distribution. From these two sums Y ¢;-A; and Y ¢Z- A2,
we cannot uniquely determine the desired value
> |eil - Ay Thus, we cannot use un-distorted simulation,
and distortion is inevitable.

A general conclusion is: In simulation, sometimes dis-
torting the simulated process leads to a faster simulation-
based algorithm.

At a more general level, the advantages of simulations
with distortions over accurate simulations may explain:

e why an artistic (somewhat geometrically distorted)
portrait often captures our impression of a person
much better than a (geometrically correct) photo, and

e why, in spite of humans’ high optical abilities, we
sometimes (as in optical illusions) distort the image
that we are trying to reproduce.

When is this randomized algorithm better than
deterministic numerical differentiation? To deter-
mine the parameter A, we use the maximum likelihood
method. It is known that the error of this method is
asymptotically normally distributed, with 0 average and
standard deviation 1/v/ N - I, where [ is Fisher’s informa-

tion: \
(™1 Op
= [ (a)

For Cauchy probability density p(z), we have I =



1/(2A%), so the error of the above randomized algorithm
is asymptotically normally distributed, with a standard
deviation o, ~ A - 1/2/N. Thus, if we use a “two sigma”
bound, we conclude that with probability 95%, this algo-
rithm leads to an estimate for A which differs from the
actual value of A by < 20, = 2A-/2/N. So, if we want
to achieve a 20% accuracy in the error estimation, we must
use the smallest N for which 20, = 2A-/2/N <0.2- A,
i.e., to select Ny = N = 200.

When it is sufficient to have a standard deviation of
20% (i.e., to have a “two sigma” guarantee of 40%), we
need only N = 50 calls to f. For n =~ 103, both values
Ny are much smaller than Ny = n required for numerical
differentiation.

So, if we have to choose between the (deterministic)
numerical differentiation and the randomized Monte-Carlo
algorithm, we must select:

e a deterministic algorithm when the number of vari-
ables n satisfies the inequality n < Ny (where Ny =~
200), and

e a randomized algorithm if n > Nj.

Comment. If we use fewer than Ny simulations, then we
still get an approximate value of the range, but with worse
accuracy — and the accuracy can be easily computed by
using the above formulas.

This algorithm is naturally parallelizable. Similarly
to the Monte-Carlo algorithm for statistical setting, we
can run all N simulations in parallel and thus, speed up
the computations.

6. REMARK: THE PROBLEM OF NON-LINEARITY

Problem: In the above text, we assumed that the in-
tervals x; are narrow. In this case, terms quadratic in
Az; are negligible, and so, we can safely assume that the
desired function f(z1,...,2,) is linear on the box

X1 X ... X Xp,.

In practice, some intervals x; may be wide, so even when
restricted to the box, the function f(z1,...,2,) is non-
linear.

Solution. Usually, experts (e.g., designers of the corre-
sponding technical system) know for which variables z;,
the dependence is non-linear. For each of these variables,
we can bisect the corresponding interval [z;,T;] into two
smaller subintervals — for which the dependence is approxi-
mately linear. Then, we estimate the range of the function
f separately on each of the resulting subboxes, and take
the union of these two ranges as the range over the entire
box.

If one bisection is not enough and the dependence of f
on z; is non-linear over one or several subboxes, we can
bisect these boxes again, etc.

This bisection idea has been successfully used in interval
computations; see, e.g., [13].

7. TESTING OUR METHOD ON A VARIANT OF A
CHALLENGE PROBLEM

The original challenge problem. The original chal-
lenge [23] included two problems: the simpler one, with
only two variables, and a more sophisticated oscillator
problem.

In the oscillator problem, we are interested in the pa-
rameter y that is connected with the mass m, spring con-
stant k, damping coefficient ¢, and the frequency w by a
formula

k
y= VE—m-?)? + - w?

Here, we have four input variable: 1 = m, z» = k, 3 = ¢,
and z4 = w.

Since we are interested in interval estimates, for each of
these four variables z;, we consider the interval of possible
values. These intervals are: x; = [10,12], xo = [60, 230],
x3 = [5,25], and x4 = [2.0,3.5].

According to expert estimates, the most “non-linear”
variable is the frequency w = z4.

Why cannot we use the original challenge prob-
lem? The authors of [23] presented simplified problems
with few variables, so that it would be easy to test relative
advantages of different techniques before applying them to
more realistic and more sophisticated problems.

For many uncertainty processing techniques, starting
with such a simplified problem makes perfect sense. How-
ever, as we have mentioned earlier, the main advantage
of Cauchy method is that it works faster when we have
a large number of inputs — at least 50 or 200. For that
many variables, Cauchy method has an advantage because
in numerical differentiation, we need as many calls for the
function f as there are variables (n), while in the Cauchy
method, the number of calls N does not depend on the
number of variables at all. So, when n > N, the use of
Cauchy methods drastically decreases the running time —
but when n <« N, Cauchy method actually require longer
time than numerical differentiation and therefore, it does
not make sense to use it. Thus, it does not make sense
to use Cauchy method in the original challenge problem.
We do get the correct result — but after a lot of computa-
tions. This does not mean that Cauchy method is useless,
because the challenge problem is an oversimplification of
a real problem where the number of inputs is large.

So, to test the efficiency of Cauchy approach, we de-
cided, instead of the original challenge problem, to use a
more complex variant of this problem.

Multiple oscillator problem. Specifically, instead of a
single oscillator, we decided to consider a multiple oscilla-
tor problem, in which, instead of a coefficient y of a single
oscillator, we are interested in the sum of the values of
this parameter corresponding to different oscillators. In
precise terms, we have Ny oscillators. Each oscillator
i (1 < 4 < Nyge) is characterized by three parameters:



its mass my;, its spring constant k;, and its damping co-
efficient ¢;. The same frequency w is applied to all the
oscillators. The resulting value y is equal to:

Nose
k;

=1 \/(kz —my (.()2)2 + czz ’ w2 .

y:

So, we have a problem with 3Ny + 1 inputs. In our
simulation, we used Nys. = 400 oscillators, with 3 - 400 +
1 =1,201 inputs.

For each of the parameters k;, m;, and c¢;, we selected
the corresponding range by dividing the original range into
Nosc equal subintervals. For example, we divide the origi-
nal interval [m,m] = [10,12] for m into Nys. equal subin-
tervals:

e the interval m; of possible values of m; is

1
NOSC

[m,m+

-(m—m)];

the interval my of possible values of ms is

1 2
[m+ (M —-m),m+ -(m—m)];
osc osc
e ...
e the interval m; of possible values of m; is
1—1 i __
[m+ -(m—m),m + -(m—m)];
0scC 0SC
e ...
o the interval mpy__ of possible values of my__ is
AR
m— -(m—m),m| ;
NOSC o

For the frequency w, we used the same interval [2.0, 3.5]
as in the original oscillator problem.

With that many variables, how can we check that
our results are correct? To check that our results are
correct, we must be able to compute the correct values.
It turns out that it is possible to compute the smallest
possible value y of y; it is much more difficult to compute
7. We therefore compared the actual value of y with the
estimate § — A generated by the Cauchy method.

For a fixed w, the sum y attains the smallest possible
value if and only if each of the terms in this sum is the
smallest possible. It is easy to see that this expression
decrease when ¢ increases, so the smallest possible value
of y is attained when each ¢; attains its largest possible
value ;.

With respect to m;, each term is the smallest if and only
if the expression (k — mw?)? + ¢? - w? is the largest. This
expression is quadratic in terms of m and is increasing
when m — —oo and m — oo. Well known properties
of a quadratic function enable us to conclude that that

this maximum can be attained only at the endpoints of
the corresponding interval. Thus, with respect to m;, the
minimum o i-th term is attained when either m; = m; or
m; = m;.

With respect to k;, the i-th term is the smallest if and

only if its square P/Q, where P % k? and Q &'

(k —m-w?)? + % - w? attains the smallest possible value.
The local maxima and minima of P/ can be determined
if we equate the derivative of this expression to 0, i.e.,
if we solve the equation P' - Q = P - Q'. If we perform
the differentiation, open the parentheses, and delete equal
terms on both sides, we end up with a single value kexy, =
m - w? + ¢2/m. Is it local minimum or local maximum?
For k£ = 0, we have y = 0; when &k — oo, we have y — 1.
Since y > 0, we cannot have local minimum, so it is a
local maximum. Thus, the minimum at each interval is
attained at one of its endpoints.

So, to find the minimum of 4-th terms, it is sufficient to
consider four different combinations of m;, k;, and ¢;: in
all four combinations, ¢; = ¢;, k; is equal to either k; to ki,
and m; is equal to either m; to m;. The smallest of these
values of the desired minimum of i-th term. The minimum
of the entire sum is the sum of these Nys. minima.

Thus, we compute the minimum for a given w. To com-
pute the minimum over all possible w, we repeat these
computations for the frequencies w, w+ h, w+2h, ..., @
for some small step h.

We also compared the results of Cauchy method with
the results of numerical differentiation.

Results of testing. Since the function is non-linear rela-
tive to w, we divided (“bisected”) the interval [2.0, 3.5] of
possible values of w into two equal subintervals [2.0, 2.75]
and [2.75,3.5].

For the first subinterval [2.0,2.75], the actual value of
y —y is 161, the value obtained by Cauchy method is 184
— pretty close. Numerical differentiation leads to 151.

For the second subinterval [2.75,3.5], the actual value
of y — y is 54, the value obtained by Cauchy method is
36. This is too far away from the actual value, which
means that the function is still non-linear over this subbox.
Therefore, we bisected the interval [2.75,3.5] once again:
into the third quarter [2.75,3.125] and the fourth quarter
[3.125,3.5].

As we can see from the table, for both quarters, Cauchy
method leads to reasonable results (not very good results
are italicized)

Interval actual | num. | Cauchy
value diff. | method
2.0,2.75 161 151 184
2.75,3.5 54 59 36
3rd quarter 23 5 16
4th quarter 37 39 42
# calls
to f > 1200 | 1200 200




Comments and conclusions.

o If we use NV < 200 iterations, we still get an estimate
— but more overestimating. In general, once get an
estimate A from Cauchy method, we can then say
that with probability 95%, the actual difference 3 —y
is bounded by the value -

s [ie2)

— for N =200, we get 20% overestimation;

In particular:

— for N = 50, we get 40% overestimation.

e Cauchy method works well on this simulated exam-
ple:

— for n & 1,200 variables, we cut the number of
calls to f (“gold-plated” calls) 6 (or 24) times
(depending on whether we use N =200 or N =
50);

— for n = 1,200,000 variables, we cut the number
of calls to f 6,000 (or 24,000) times.

— in general, the number of calls to f is always 200
(or 50), no matter how many variables we have.

8. FROM INTERVALS TO MORE GENERAL CASE:
PRELIMINARY RESULTS AND FUTURE WORK

Combination of probabilistic and interval uncer-
tainty. So far, we have considered two cases:

e probabilistic uncertainty, when the errors Ax; of di-
rect measurements are Gaussian distributed with 0
average and known standard deviation o;; in this
case, we can use Monte-Carlo technique with Gaus-
sian distribution;

o interval uncertainty, when the only information about
Az; is that |Az;| < A;; in this case, we can use
Monte-Carlo techniques with Cauchy distribution.

What if we have both uncertainties?

Ezxample: for a certain parameter z, we have a uniform
distribution that is located on an interval [a, b]. However,
we do not know the exact values of a and b; instead, we
only know intervals [a,@) and [b, b] of possible values of a
and b. In this case, x can be represented as

z=a+(b—a)-n,

where 7 is uniformly distributed on the interval [0, 1] (i.e.,
given with probabilistic uncertainty), while a and b are
give with interval uncertainty.

If we have such an uncertainty for each x;, then, to
find the corresponding uncertainty in Ay, we can simulate
the random and interval error components separately, and
then combine the results; for details, see [26].

Cauchy methods for independent case. In the in-
terval setting, we assumed that all possible combinations
of values z; € [z;,T;] are possible — in particular, that all
possible combinations of extreme values are possible. In
reality, often, extreme cases are not very probable.

For example, let us consider the case when the intervals
for z; are confidence intervals [a; —k-0;,a; +k-0;]. In this
case, in addition to the variables x;, we can apply a similar
idea to their linear combinations and conclude that, say,
the sum z; + z2 can only lie within the corresponding
interval [a — k- 0,a + k - 0]. One can show that as a
result, instead of the original rectangular box, we have an
ellipsoid — for which the combination of extreme values are
indeed not possible. There exists a version of our Cauchy
algorithm for the case when the input vector (z1,...,2,)
can take any value within a given ellipsoid; this version is
described in [26].

It is worth mentioning that there is an additional advan-
tage of considering ellipsoids. Indeed, so far, we consider
linear approximations for the function f. A natural idea
is: why not get the next — quadratic — approximation?
In other words, why not consider quadratic functions f?
Alas, the problem of finding the range of a function f
over the box is NP-hard, it needs (unless P=NP) about
2" computations — which, for large n, is not practically
possible.

Good news is that we can feasibly optimize a quadratic
function f(z1,...,2,) =ao+>, ai-xi—}—zij Q;j-T;Tj OVer
an ellipsoid bg + > b;-2; + > b;j -z -x; < 1. Indeed, e.g.,
the minimum of f is attained either inside the ellipsoid —
where equating all partial derivatives to 0 leads to a easy-
to-solve system of n linear equations with n unknown,
or at the border, in which case the Lagrange multiplier
method also leads to a simple system of linear equations;
see [17] and references therein for details.

The problem is even simpler: we do not need to con-
sider all possible values of the coefficients a;; describing
the “dependence” between z; and zj;, it is sufficient to
ask experts which pairs variables are more probable to be
dependent on each other.
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APPENDIX 1: NUMERICAL DIFFERENTIATION PROGRAM
// program diffgen.c

// This program uses numerical differentiation to estimate
// errors of indirect measurements

#include <stdio.h> // standard input and output functions
#include <malloc.h>

#include <math.h>

#define NumberOfVariables 4 //number of input variables

// Instead of this sample function - the sum of 4 variables -
// here we should place the code of the actual data processing function;
// its inputs should form an array inputs[i]
double F(double inputs[NumberOfVariables+1])
{

int i;

double temp =0.0;

for (i = 1;i<= NumberOfVariables; i++)

temp = temp + inputs[i];

return temp;

};

int main(void)

{
double inputs[NumberQOfVariables + 1]; // measurement results
double deltaX[NumberQOfVariables + 1]; // bounds on measurement errors
double delta; // desired error bound for indirect measurement

double tildeY; // the result of indirect measurement, i.e.,
// the result of applying F to measurement results
int i,j; // auxiliary variables used for loops:
double xsimul[NumberOfVariables + 1]; // simulated measurement results

double change[NumberQfVariables+1]; // simulated errors of
// indirect measurement

// inputting the results of direct measurements and the
// corresponding measurement errors
for (i = 1; i <= NumberOfVariables; i++){
inputs[i] = 1.0;
deltaX[i] = 0.1;
s

// printing the header
P g
printf ("Numerical differentiation method for the toy example %\n");

// computing the result of indirect measurements by
// applying F to the measurement results
tildeY = F(inputs);

// return the result of indirect measurement
printf ("The result of indirect measurement is: %1f\n",tildeY);

// calculating derivatives



for (i = 1; i <= NumberOfVariables; i++){
// simulating measurement error in i-th input only
for (j = 1; j <= NumberOfVariables; j++){

if (j == 1)
xsimul[j] = inputs[j] + deltaX[j];
else
xsimul[j] = inputs[j];
}

// computing corresponding error of indirect measurement
change[i] = fabs(F(xsimul) - tildeY);
}

// computing the desired upper bound on the indirect measurement error
// as the sum of components corresponding to different variables
delta = 0.0;
for (i = 1;i <= NumberOfVariables;i++)

delta = delta + changel[il;

// return the desired delta
printf ("The maximum error is: %1f\n",delta);
return 0;

};

APPENDIX 2: CAUCHY METHOD

// program cauchygen.c

// This program uses Cauchy method to estimate
// errors of indirect measurements.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <math.h>

#define NumberOfVariables 4
#define N 200 //number of iterations
#define PI 3.1415926535897932384626433832795

// Instead of this sample function - the sum of 4 variables -
// here we should place the code of the actual data processing function;
// its inputs should form an array inputs[i]
double F(double inputs[NumberOfVariables+1])
{

int i;

double temp =0.0;

for (i = 1;i<= NumberOfVariables; i++)

temp = temp + inputs[il;

return temp;

};

int main(void)
{
double inputs[NumberQfVariables + 1]; // measurement results
double deltaX[NumberQOfVariables + 1]; // bounds on measurement errors
double deltaest; // desired error bound for indirect measurement: estimate
double deltabound; // desired error bound for indirect measurement: bound



double tildeY; // the result of indirect measurement, i.e.,
// the result of applying F to measurement results
int i,k; // auxiliary variables used for loops:
// i is the number of a variable,
// k is the number of an iteration
double r; // uniform random variable on [0,1]]
double cauchy[NumberQfVariables + 1]; // array of Cauchy distributed
// random variables with
// parameter 1
double largest; // normalization for
// Cauchy distribution
double deltak[NumberOfVariables + 1]; // simulated measurement errors
double xsimul[NumberOfVariables + 1]; // simulated measurement results
double c[N + 1]; // simulated errors of indirect measurement
double deltaminus; // lower bound for the desired delta
double deltaplus; // upper bound for the desired delta
double sum; // auxiliary variable for the sum that is
// supposed to be equal to N/2 in the
// equation for determining delta

// seeding the random number generator
srand( (unsigned)time( NULL ) );

// inputting the result of direct measurements and the
// corresponding measurement errors
for (i = 1; i <= NumberOfVariables; i++){
inputs[i] 1.0;
deltaX[il 0.1;
};

// printing the header
printf ("Numerical differentiation method for the toy example %\n");

// computing the result of indirect measurements by
// applying F to the measurement results
tildeY = F(inputs);

// return the result of indirect measurement
printf ("The result of indirect measurement is: %1f\n",tildeY);

// generating N simulated results of indirect measurements
// by using Cauchy distribution
for (k = 1; k <= N; k++)
{
// simulating Cauchy distributed measurement errors
for (i = 1; i <= NumberOfVariables; i++)
{
// simulated uniform distribution on [0,1]
r = (double) rand() / (double) RAND_MAX;
// transforming uniform distribution into Cauchy
cauchy[i] = tan(PI * (r - 0.5));
s

// computing the largest value of |cauchy[i]| so that



// we will be able to normalize simulated measurement
// errors and apply F to the values that are within
// the box of possible values
largest = 0.0;
for (i = 1; i <= NumberOfVariables; i++)
if (largest < fabs(cauchy[i]))
largest = fabs(cauchy[il);

// computing simulated measurement errors
for (i = 1; i <= NumberOfVariables; i++)
deltak[i] = deltaX[i] * cauchy[i] / largest;

// computing simulated measurement results
for (i = 1; i <= NumberOfVariables; i++)
xsimul[i] = inputs[i] + deltak[i];

// computing simulated error of indirect measurement
c[k] = fabs(largest * (F(xsimul) - tildeY));
+;

// lower bound for delta is set at O
deltaminus = 0.0;

// upper bound for delta is set at max of c[k]
deltaplus = 0.0;
for (k=1; k <= N; k++)
if (deltaplus < c[k])
deltaplus = c[k];

// finding delta estimate by bisection; we stop when the lower bound
// for delta is within 5% of the upper bound
while (deltaminus < 0.95 * deltaplus)
{
// compute the midpoint of the interval [deltaminus,deltaplus]
deltaest = (deltaminus + deltaplus) / 2;

// compute the value of the sum at this midpoint
sum = 0.0;
for (k = 1; k <= N; k++)
sum = sum + (deltaest * deltaest)/((deltaest * deltaest)
+ (clkl) * (c[k1));

// depending on whether this sum is > N/2 or < N/2 conclude
// that delta belongs to the corresponding half-interval
if (sum > (N / 2))
deltaplus = deltaest;
else
deltaminus = deltaest;

};

// return the estimate for the desired delta
printf ("The estimate for delta is: %1f\n",deltaest);

// compute the upper bound for delta
deltabound = deltaest * (1 + 2 x sqrt(2.0 / N));



// return the estimate for the desired delta
printf ("The 95 per cent bound for delta is: %1f\n",deltabound);
return 0;

};
APPENDIX 3: MULTIPLE OSCILLATOR FUNCTION FOR THE LEFT HALF-INTERVAL
#define NumberOfVariables 1201

// single oscillator function
double osc(double m, double k, double c, double omega)

{

double diff,temp;

diff = k - m * omega * omega;

temp = k / sqrt(diff * diff + c * c * omega * omega);
return temp;
};

// multiple oscillator function
double F(double inputs[NumberOfVariables + 1])
{
double m,k,c,omega,sum;
int i;
omega = inputs[NumberOfVariables];
sum = 0.0;
for (i = 0; i < (NumberOfVariables / 3); i++){
m = inputs[3 * i + 1];
k = inputs[3 * i + 2];
c = inputs[3 * i + 3];
sum = sum + osc(m,k,c,omega);
}
return sum;

}

// inputting the result of direct measurements and the
// corresponding measurement errors
numbOsc = (NumberOfVariables - 1) / 3;

for (i = 0; i < numbOsc; i++){
inputs[3 * i + 1] = 10.0 + (2.0 / numbOsc) * (i + 0.5);
deltaX[3 * i + 1] = 1.0 / numbOsc;
inputs[3 * i + 2] = 60.0 + (170.0 / numbOsc) * (i + 0.5);
deltaX[3 * i + 2] = 85.0 / numbOsc;
inputs[3 * i + 3] = 5.0 + (20.0 / numbOsc) * (i + 0.5);
deltaX[3 * i + 3] = 10.0 / numbOsc;

}

inputs [NumberOfVariables] = 2.375;
deltaX [NumberOfVariables]

Il
(@]
w
~J
o

APPENDIX 4: RESULTS OF USING CAUCHY METHOD FOR THE LEFT HALF-INTERVAL

Cauchy method for the multiple oscillator

for the first half of the frequency interval

The result of indirect measurement is: 766.658240
The estimate for delta is: 184.304499

The 95 per cent bound for delta is: 221.165399



APPENDIX 5: COMPUTING ACTUAL MINIMUM OF THE MULTIPLE OSCILLATOR FUNCTION FOR THE LEFT
HALF-INTERVAL

// program actualminl.c

// This program computes the actual minimum of the oscillator
// function for the case of multiple oxcillators

// for the left half of frequency interval

#include <stdio.h> // standard input and output functions
#include <malloc.h>

#include <math.h>

#define NumberOfVariables 1201 //number of input variables
#define NumberOfOmega 20 //number of values of omega

// single oscillator function
double osc(double m, double k, double c, double omega)
{
double diff,temp;
diff = k - m * omega * omega;
temp = k / sqrt(diff * diff + c * c * omega * omega);
return temp;

};

// computing minimum for each oscillator for given omega
double minosc(double m, double k, double c,

double deltam, double deltak, double deltac, double omega)
{

double ymin,ysimul;

double simulm,simulk,simulc;

int i1,i2;

// as a value of c, we always take the upper endpoint
simulc = c + deltac;

ymin = osc(m,k,c,omega);

// testing all endpoints and finding the smallest value
for (i1 = 0; il <= 1; i1++){
simulm = m + (2 * i1 - 1) * deltam;
for (i2 = 0; i2 <= 1; i2++){
simulk = k + (2 * i2 - 1) * deltak;
ysimul = osc(simulm,simulk,simulc,omega);
if (ysimul < ymin)
ymin = ysimul;
}
};
return ymin;

};

int main(void)

{
double inputs[NumberQOfVariables + 1]; // measurement results
double deltaX[NumberQfVariables + 1]; // bounds on measurement errors
double ymin; // desired minimum



double m,k,c,deltam,deltak,deltac,omega;
double ysimul; // minimum for each omega
int i,j; // auxiliary variables used for loops:
int numbOsc; // number of oscillators

// inputting the result of direct measurements and the
// corresponding measurement errors
numbOsc = (NumberOfVariables - 1) / 3;

for (i = 0; i < numbOsc; i++){
inputs[3 * i + 1] = 10.0 + (2.0 / numbOsc) * (i + 0.5);
deltaX[3 * i + 1] = 1.0 / numbOsc;
inputs[3 * i + 2] = 60.0 + (170.0 / numbOsc) * (i + 0.5);
deltaX[3 * i + 2] = 85.0 / numbOsc;
inputs[3 * i + 3] = 5.0 + (20.0 / numbOsc) * (i + 0.5);
deltaX[3 * i + 3] = 10.0 / numbOsc;

}

inputs [NumberOfVariables] = 2.375;

deltaX [NumberOfVariables] = 0.375;

// printing the header
printf ("Computing the actual minimum for the mutiple oscillator %\n");
printf ("for the first half of frequency interval %\n");

// we first set ymin to some large value
ymin = 1000000.0;

// for each frequency, we compute the tital minimum as the
// sum of minima of all oscillators
for (j = 0; j < NumberOfOmega; j++){
ysimul = 0.0;
omega = inputs[NumberOfVariables] - deltaX[NumberOfVariables]
+ (2.0 * deltaX[NumberOfVariables] / NumberOfOmega) * (j + 0.5);
for (i = 0; i < numbOsc; i++){
m = inputs[3 * i + 1];
k = inputs[3 * i + 2];
c = inputs[3 * i + 3];
deltam = deltaX[3 * i + 1];
deltak = deltaX[3 * i + 2];
deltac = deltaX[3 * i + 3];
ysimul = ysimul + minosc(m,k,c,deltam,deltak,deltac,omega);

}

// if for some frequency, the minimal value ysimul is smaller
// than minimum-so-far (ymin), then this new minimal value is
// the new minimum-so-far
if (ysimul < ymin)

ymin = ysimul;

};

// printing the result
printf ("The minimal value is: %1f\n",ymin);
return 0;

};

Computing the actual minimum for the mutiple oscillator



for the first half of frequency interval
The minimal value is: 605.761832



