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Abstract

Based on a black box model of a complex system, and on intervals and probabilities describing

the known information about the inputs, we want to estimate the system’s reliability. This

problem is motivated by a number of problem areas, most specifically in engineering reliability

analysis under conditions of poor measurement and high complexity of system models. Using

the results of tests performed on the system’s computer model, we can estimate the lower and

upper bounds of the probability that the system is in a desirable state. This is equivalent to

using Monte-Carlo sampling to estimate cumulative belief and plausibility values of functionally

propagated finite random intervals. In this paper, we prove that these estimates are correct in

the sense that under reasonable assumptions, these estimates converge to the actual probability

bounds.

Keywords: Interval probability, interval analysis, reliability analysis, Dempster-Shafer evidence

theory, random sets, random intervals, epistemic uncertainty, Monte-Carlo sampling.

1 Introduction

In this paper, we consider the problem of modeling the risk and reliability of complex technical

system. The behavior of this system is determined by the values of the corresponding parameters

x =
〈
x(1), x(2), . . . , x(n)

〉
; for example, for a nuclear reactor, these characteristics could include the
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thicknesses of the walls, the locations of the radiation absorbers, etc. For each combination x of

these parameters, the system exhibits certain characteristics y =
〈
y(1), y(2), . . . , y(m)

〉
; e.g., for a

nuclear reactor, the list of such characteristics include neutron flux, temperature, etc.

We assume that the parameters set is complete (or almost complete), so that the observed state is

uniquely determined by the values x of the parameters, so that y = f(x) for some function f . In

this context, f acts as a model of our knowledge of the system.

The reliability of such a system is related to the fact that some states y are desirable, while some

other states are not. Thus we’ll be concerned with the conditions under which the system output

occurs within some desirable output set B0.

If we knew the exact values of the parameters x(i), then we would be able to determine the cor-

responding state y = f(x) and check whether it is desirable, f(x) ∈ B0, or not. But in real life,

we usually do not know the exact values of x(i). Instead, in some instances we may know a lower

bound x(i) and the upper bound x(i) that are known to contain x(i). Often, we do not know how

more or how less probable are different values within this interval, i.e., what is an actual probability

distribution for x(i) within this interval.

In some cases, instead of a single interval, several experts provide different intervals corresponding

to different possible situations. Then, in addition to these intervals, we usually also know the

probability of each such situation. For example, a reactor shell can come from three different

manufacturing plants, and we know the frequencies with which they come from different plants,

i.e., the probabilities that a randomly selected shell is from this particular plant. For each plant,

we also know the interval of possible value of thickness for shells produced by this plant.

Furthermore, systems of interest are characterized by a high complexity such that these models

f are large simulation codes. These codes are sometimes so huge that each run requires days on

supercomputers. As a result, we cannot typically control what inputs we feed into the code, but

have to reply on the results of the testing, i.e., on some pairs {〈x1, y1〉 , 〈x2, y2〉 , . . . , 〈xM , yM 〉}
corresponding to these actual test runs.

Given such information, what can you know about the probability P that the resulting state is

desirable? If we knew the joint probability distribution of the parameters, then we could determine

the probability of different values of y and thus we could get the probability Pr(f(x) ∈ B0). In

reality, we only have partial information about the probability distributions. For different distrib-
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utions, we may get different values of P . Our goal is, therefore, to find the interval P =
[
P ,P

]
of

possible values of this probability P .

In this paper we develop the methodology of this problem formulation under conditions of only

sampling information from f(x), and determine convergence conditions for both the upper and

lower value of this probability interval.

This class of problems is quite realistic in certain engineering modeling contexts, and was the recent

focus of a major interdisciplinary research effort among the engineering modeling, risk analysis,

and generalized information theoretical and imprecise probability communities [2, 7, 11]. Most

specifically, this can be understood as the problem of propagating a finite random interval [8]

through the model f . Monte-Carlo sampling approaches to such random interval sampling are in

development [5, 6, 9], and this work stands to assist that effort in providing a rigorous formulation

of some of the required convergence results.

2 Probability Intervals on Input Information

We begin by introducing our basic mathematical constructs, characterizing the uncertainty struc-

tures on the inputs, and demonstrating the resulting probability intervals.

2.1 Input Information

Let IR be the real numbers, and IN := {1, 2, . . .}, INn := {1, 2, . . . , n}. Assume integers n,m ∈ IN

where n is the number of inputs and m the number of outputs, and let f : IRn �→ IRm.

Let the i’th input be denoted x(i), taking values on a set X(i) = IR, for i ∈ INn. Similarly, let the l’th

output be denoted y(l), taking values on a set Y (l) = IR, for l ∈ INm. Let x :=
〈
x(1), x(2), . . . , x(n)

〉
∈

IRn be called input points, and y :=
〈
y(1), y(2), . . . , y(m)

〉
∈ IRm be called states.

Let X and Y be the sets of closed, rectangular boxes in IRn and IRm respectively, and generically,

let A ∈ X,B ∈ Y . More specifically, let B0 ∈ Y be the box of desired states; all other states

y ∈ IRm, y �∈ B0 will be called undesirable.

Let A(i) =
[
x(i), x(i)

]
⊆ X(i) be a closed interval of the i’th input X(i), and B(l) =

[
y(l), y(l)

]
⊆ Y (l)

a closed interval of the l’th output Y (l). We assume that for every input i from 1 to n, we have
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information about i-th input expressed as a finite collection of N (i) ∈ IN weighted intervals. In

particular, denote the uncertainty structure on the i’th input as

S(i) :=
{〈

A
(i)
1 , p

(i)
1

〉
, . . . ,

〈
A

(i)

j(i) , p
(i)

j(i)

〉
, . . . ,

〈
A

(i)

N(i) , p
(i)

N(i)

〉}
,

where j(i) ∈ INN(i) , A
(i)

j(i) =
[
x

(i)

j(i) , x
(i)

j(i)

]
⊆ X(i) is one such interval, p

(i)

j(i) ∈ [0, 1], and we have

∀i ∈ INn the probabilistic normalization criterion

N(i)∑
j(i)=1

p
(i)

j(i) = 1. (1)

So in general, across the different inputs X(i), we can choose a particular combination of intervals

A
(i)

j(i) , one for each input dimension X(i). Denote �j :=
〈
j(1), j(2), . . . , j(n)

〉
as indicating these

combinations. There are N :=
∏n

i=1 N (i) such possible combinations. Since there exists a bijective

mapping between INN and the set of all combinations �j, we can thereby use the j ∈ INN to

enumerate the various possible �j. Also, denote j(i) ∈ �j to indicate that a particular j(i) is one of

the components of �j.

So for each such combination �j, we can define the box A�j as the Cartesian product of the corre-

sponding intervals:

A�j :=
n×

i=1
A

(i)

j(i) ∈ X,

also denoted Aj ∈ X as appropriate. Furthermore, assume that the information corresponding to

different parameters are independent. Then for each combination �j, we have the overall probability

“mass” p�j :=
∏n

i=1 p
(i)

j(i), also denoted pj. In this way, from the individual uncertainty structures

S(i) we can construct the overall input uncertainty structure

S :=
{〈

A�j , p�j

〉}
�j

= {〈A1, p1〉 , . . . , 〈Aj , pj〉 , . . . , 〈AN , pN 〉}.

An example is shown in Fig. 1 for n = 2 input parameters and N (1) = N (2) = 2 intervals on each

input parameter. The input intervals A
(1)
1 , A

(1)
2 on X(1) and A

(2)
1 , A

(2)
2 on X(2) are shown, with

probabilities

p
(1)
1 = .4, p

(1)
2 = .6, p

(2)
1 = .2, p

(2)
2 = .8,

which assignment satisfies (1). The boxes A�j and masses p�j are shown, along with their enumerated

forms Aj, pj . The bijective mapping INN ↔
{
�j
}

is

〈1, 〈1, 1〉〉 , 〈2, 〈1, 2〉〉 , 〈3, 〈2, 1〉〉 , 〈4, 〈2, 2〉〉
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shown as tuples of the form
〈
j,�j =

〈
j(1), j(2)

〉〉
.

Note that for illustrative purposes, in Fig. 1 we show the boxes A
(i)

j(i) slightly offset from each other,

in order to clearly distinguish them. In fact, their borders overlap where they are shown very close

to each other.

2.2 Consistent Probability Measures

Consider a probability measure P on IRn. For an arbitrary box in the input space A ∈ X, we say

that the total probability P (A) is consistent with the input uncertainty structure S if there exists

a collection of total probabilities 〈Pj(A)〉, which are concentrated on the corresponding boxes Aj ,

such that

P (A) =
N∑

j=1

pjPj(A).

An example is also shown in Fig. 1, for A ∈ X as illustrated. It can be demonstrated that P (A) = .2

is consistent with S, because for the distribution of total probabilities 〈Pj(A)〉 = 〈.5, .5, 0, 0〉 we

have
N∑

j=1

pjPj(A) = .08 · .5 + .32 · .5 + .48 · 0 + .12 · 0 = .2 = P (A).

2.3 Probability Intervals

Our goal is to describe the smallest interval P :=
[
P ,P

]
that contains all possible values of

Pr(f(x) ∈ B0) = P ({x : f(x) ∈ B0}) for all consistent probability measures P (A).

Theorem 1

P =
∑

j:f(Aj )⊆B0

pj, P =
∑

j:f(Aj )∩B0 �=∅
pj. (2)

2.4 Comments

• Proofs of all theorems, corollaries, and propositions can be found in the Appendix.

• The problem formulation, including a different version of Theorem 1, was originally expressed

by Joslyn and Helton [9].
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• Many readers will recognize (2) as formulae from the Dempster-Shafer theory [4, 13]: P is the

formula for belief, and P is the formula for plausibility, with boxes Aj as focal elements, and

with pj being the mass of the “basic probability assignment” of the corresponding box Aj .

The formula for the mass of the box is also familiar: it corresponds to the Dempster-Shafer

combination of the corresponding “knowledge bases” S(i). This similarity is no accident:

Dempster-Shafer formalism was originally designed to describe exactly such situations – when

we have only partial information about probabilities.

• In particular, we assume a random set interpretation of a Dempster-Shafer structure [1, 12],

so that the weights p
(i)

j(i) are interpreted as values of a discrete probability density over the

atomic events which are actually the intervals A
(i)

j(i) , and thus which may be overlapping,

included within each other, or disjoint.

• Similarly, our formulation of the input uncertainty structure, both the dimensional form S(i)

and the overall form S, is isomorphic to a formulation as a finite random set [3, 9], which is

itself isomorphic to Dempster-Shafer evidence theory.

3 Basic Sampling Results

Theorem 1 describes how we can compute the bounds P and P in the ideal situation when we know

the function f(x). In reality, all we know are some samples 〈xk, f(xk)〉 from this function.

Denote yk = f(xk), and let S := {〈x1, y1〉 , . . . , 〈xk, yk〉 , . . .} be an infinite sequence of sample

points for k ∈ IN. For some M ∈ IN, denote SM := {〈x1, y1〉 , . . . , 〈xM , yM 〉} as the initial finite

subsequence of M sample points.

How can we estimate P and P based on these samples?

3.1 Lower Probability

Let us start with P . According to Proposition 1, the actual value P is the sum of the values pj for

all the boxes Aj for which f(Aj) ⊆ B0. This set theoretical condition can be re-expressed in logical

terms:

f(Aj) ⊆ B0 ≡ {f(x) : x ∈ Aj} ⊆ B0
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≡ ∀x ∈ Aj , f(x) ∈ B0

≡ x ∈ Aj → f(x) ∈ B0

Thus, the left side of (2) can be restated as:

P =
∑

j:x∈Aj→f(x)∈B0

pj.

So, since we only know the value of f(x) on M different inputs xk, it makes sense to use as an

estimator the same expression on the sample data set, that is to define:

PM :=
∑

j:∀k≤M,xk∈Aj→yk∈B0

pj. (3)

We will show below that PM is, indeed, a good estimator of P .

Before that, it is useful to consider some of the properties of PM . First, note that (3) can be restated,

by logical expansion of the implication operator and de Morgan over universal quantification, as

PM =
∑

∀j:∀k≤M,xk �∈Aj∨yk∈B0

pj

=
∑

∀j:�∃k≤M,xk∈Aj∧yk �∈B0

pj.

In other words, PM includes the pj values for any box Aj which is not “contradicted” by a data point

〈xk, yk〉 such that xk is in the box Aj, but nonetheless yk �∈ B0. Note that for M = 0, there can be

no such data points, since S0 is empty (there are no data points at all). Thus P 0 =
∑N

j=1 pj = 1, so

that all boxes Aj are included. For M > 0, as data points 〈xk, yk〉 ∈ SM are encountered for which

yk �∈ B0, all the boxes Aj � xk become excluded from PM . Hence 0 < M < M ′ → PM ≥ PM ′ , so

that PM is monotonically non-increasing in M .

Consider now a particular box Aj. There are two possibilities:

1. ∀x ∈ Aj , f(x) ∈ B0: By (2), pj is not excluded from P . Moreover, no contradictory data

point will be encountered, so pj can never be excluded from PM .

2. ∃x ∈ Aj , f(x) �∈ B0: Now pj will be excluded from P . But it might be that no such

contradictory x is encountered as an xk in SM , so that pj may or may not be exluded from

PM .
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Thus we can see that ∀M > 0, P ≤ PM .

So PM is a monotonically non-increasing sequence bounded below by P . Thus PM has a limit, and

it’s reasonable to ask if that limit is, indeed P , and to ask about the convergence of PM −→ P as

M −→ ∞. Our proof actually proves a stronger result: not only does PM give the correct value

of P in the limit as M −→ ∞, but it also does so for a sufficiently large, but finite, number M0 of

sample points.

Theorem 2 Let f : IRn �→ IRm be a continuous function, S = {〈x1, y1〉 , . . . , 〈xk, yk〉 , . . .} be an

infinite sequence of pairs such that the values xk are everywhere dense in X, and yk = f(xk). Let

SM be the finite subsequence of S for k ≤ M , and let PM be defined as in (3) on SM . Then there

exists an integer M0 such that ∀M ≥ M0, P M = P .

Corollary 3 Given the conditions holding in Theorem 2, then

lim
M−→∞

PM = P .

Proposition 4 The condition that a sequence {x1, . . . , xk, . . .} is everywhere dense is satisfied

if to select xk, we generate independent random vectors – random relative to some probability

distribution for which the probability density function ρ(x) is continuous and positive everywhere

on the set X.

3.2 Upper Probability

By similar reasoning to P , according to Theorem 1, the probability P is the sum of the probabilities

pj for all boxes j for which f(Aj)∩B0 �= ∅. This set theoretical condition can also be expressed in

logical terms:

f(Aj) ∩ B0 �= ∅ ≡ {f(x) : x ∈ Aj} ∩ B0 �= ∅
≡ ∃x ∈ IRn, x ∈ Aj ∧ f(x) ∈ B0.

Thus, the right side of (2) can be restated as:

P =
∑

j:∃x∈IRn,x∈Aj∧f(x)∈B0

pj.



Interval Probabilistic Approach 9

So in seeking an estimator for P , we can similarly advance:

PM :=
∑

j:∃k≤M,xk∈Aj∧yk∈B0

pj . (4)

Similarly, but conversely, to P , we can easily conclude that PM is a monotonically non-decreasing

sequence bounded above by P . Thus it also has a limit. Does this limit equal P? Well, unlike P ,

this limit may be different from the desired value P .

Theorem 5 There exists a continuous function f(x) and an everywhere dense sequence 〈xk, yk〉
for which PM → 0 and P = 1.

However, a natural minor modification of (2) considered in Sec. 4.2 below will lead to the desired

result.

3.3 Comments

• (3) and (4) were originally proposed by Joslyn and Helton [9] as estimators of the Dempster-

Shafer uncertainty measures Bel and Pl respectively.

• As mentioned above, the Dempster-Shafer formalism inspiring this formulation is isomorphic

to a random set approach [3]. From this viewpoint, our convergence result can be obtained

as particular case of convergence results for random sets [10].

• How algorithmic are (3) and (4)? For each rectangular box A�j =
n×

i=1
A

(i)

j(i) , checking whether

a given input x =
〈
x(1), . . . , x(i), . . . , x(n)

〉
belongs to this box means checking that for every

i ∈ INn, the value x(i) belongs to the corresponding interval A
(i)

j(i) for each ji) ∈ �j, i.e., checking

∀i ∈ INn,∀j(i) ∈ �j, whether x
(i)

j(i) ≤ x(i) ≤ x
(i)

j(i) . So since Aj and B0 are rectangular boxes,

checking whether xk ∈ Aj or whether yk ∈ B0 means checking n and m corresponding double

inequalities respectively. Thus, computing the above estimates PM and PM requires finitely

many computational steps.

• For the above algorithm, the number of steps is proportional to the total number of boxes and

it can actually be quite large. In Sec. 5 we will show how we can decrease the computation

time when the number of boxes is large.
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• In the proof of Theorem 2 and Corollary 3, we do not use the fact that B0 is a closed box,

only that it is a closed set.

4 Advanced Results

We now consider some other results which hold for this problem.

4.1 Continuity and Density Requirements

Theorem 2 was proven using two assumptions: that the function f(x) is continuous, and that

the sequence xk is everywhere dense. The following propositions show that both conditions are

necessary.

Theorem 6 There exists a discontinuous function f(x) and an everywhere dense sequence xk for

which PM �→ P.

The counter-example used in the proof is quite natural. Moreover, for discontinuous functions,

not only is it the case that our method cannot extract the correct value P , but moreover, it is

impossible to do so by any method.

Theorem 7 There exists a discontinuous function f(x) and a continuous function f̃(x), for which

P �= P̃ , but for which, for some everywhere dense sequence xk, we have f(xk) = f̃(xk) for all k.

Thus, we have the same set of pairs 〈xk, yk〉 to start with, so no matter what method we use, we

cannot end up with two different values P .

Similarly, if the sequence is not everywhere dense, we cannot reconstruct P no matter what method

we use.

Theorem 8 Let the boxes and probabilities be given, and let B0 ⊂ IRm be a closed set. Then, for

every sequence xk which is not everywhere dense in X, there exist different continuous functions

f(x) and f̃(x) for which P �= P̃ , but for which we have f(xk) = f̃(xk) for all k.
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4.2 Modification of Upper Probability Conditions

Similar to the counter-example from the proof of Theorem 6, the counter-example used in the proof

of Theorem 5 is also very natural. So, we have to modify the original estimator PM for the upper

probability. Fortunately, such a modification is relatively easy and straightforward, introducing only

modest considerations for the semantics of the kinds of risk and reliability problems concerning us.

First, we know that the box of desirable states B0 can be characterized by intervals on the dimen-

sions of the output space as

B0 =
m×

l=1

B
(l)
0 =

m×
l=1

[
y(l)
0

, y
(l)
0

]
.

So now consider a small positive real number α > 0, and define the extended desirable box as:

Bα :=
[
y(1)

0
− α, y

(1)
0 + α

]
×

[
y(2)

0
− α, y

(2)
0 + α

]
× . . . ×

[
y(m)

0
− α, y

(m)
0 + α

]
.

Elements of this extended box Bα do not necessarily satisfy all 2m desired inequalities generated

by the outpute intervals B
(l)
0 , but their deviation from each of these inequalities does not exceed α.

Our reliability requirement now becomes that f(x) belongs to this extended box: f(x) ∈ Bα. The

upper bound for this probability is then

Pα =
∑

j:f(Aj)∩Bα �=∅
pj. (5)

Since the modified condition f(x) ∈ Bα is less demanding than the original condition f(x) ∈ B0,

it is now easier for a state to be desirable, so the probability for a state to be desirable is higher:

P ≤ Pα. The actual upper probability can be anywhere between P and Pα. From this viewpoint,

when we compute an estimate for P , it is also reasonable, instead of sticking to the original set B0,

to depart from (4) and instead use our slightly enlarged set Bα:

Pα,M :=
∑

j:∃k≤M,xk∈Aj∧yk∈Bα

pj.

Theorem 9 Let f : IRn �→ IRm be a continuous function, S = 〈xk, yk〉 , k > 0 be an infinite sequence

of pairs such that the values xk are everywhere dense in X, and yk = f(xk). Let SM be the finite

subsequence of S for k ≤ M , and for a small number α > 0, let Pα,M be defined as in (3) on SM .

Then there exists an integer M0 such that ∀M ≥ M0, P α,M ∈
[
P ,Pα

]
.

The main idea of the above result is that the required bounds on the state variables yk are not

exact, they can be exceeded a little bit – by some small value α – without any harm to the system.
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In the above result, we used the same value α > 0 for every M . Intuitively, the more pairs we have,

the more accurately we can describe the requirements. It is therefore seems reasonable, instead of

selecting a single α for all M , to make α decrease to 0 when M → ∞: αM → 0. Then, if we can

still prove the inequality P ≤ PαM ,M ≤ PαM
, we will be able to conclude, in the limit M → ∞,

that PαM ,M → P . Alas, as we will show, this is not possible – and in this sense Theorem 9 is the

best we can get.

Theorem 10 Let αM → 0 be a sequence of positive real numbers. Then, there exists a continuous

function f(x) and an infinite sequence of pairs 〈xk, yk〉 for which the values xk are everywhere dense

in X, and PαM ,M �→ P .

5 Estimator Calculations for Large Numbers of Inputs

Equations (3), (4), and (5) require that we analyze every single box j. If for each variable x(i),

we have N (i) possible intervals, then have N =
∏N

i=1 N (i) boxes. In a nuclear facility example,

we could have about n = 100 variables, and at least two boxes N (i) ≥ 2 for each variable. Thus,

the total number of boxes is 2100 – which is approximately 1030. Testing that many boxes is well

beyond the capacity of modern computers. So what do we do?

A natural idea is to use Monte-Carlo simulation to estimate, e.g., PM . Indeed, (3) can be interpreted

as follows. For each box j, let

χM (j) =

⎧⎪⎨
⎪⎩

1, ∀k ≤ M,xk ∈ Aj → yk ∈ B0

0, otherwise
.

Then (3) takes the form P =
∑N

j=1 pjχM (j). In other words, P is a mathematical expectation of

χM (j) under the probability distribution in which each box Aj appears with probability pj.

Recall that we constructed a bijective mapping between the integers INN and the vectors �j =〈
j(1), . . . , j(n)

〉
. Since the probability pj is defined as the product

∏N
i=1 p

(i)

j(i) of the corresponding

probabilities p
(i)

j(i) , to get this probability distribution, it is sufficient to independently select each

situation j(i) ∈ �j with probability p
(i)

j(i) . This can be done, e.g., as follows: we subdivide the interval

[0, 1] into N (i) subintervals of lengths p
(i)
1 , p

(i)
2 , etc., – i.e., into the intervals [0, p(i)

1 ], [p(i)
1 , p

(i)
1 + p

(i)
2 ],

etc., and then run a random number generator corresponding to the uniform distribution on [0, 1]

to select a situation depending on into which interval the resulting random number falls.
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Before we show the algorithm, we introduce some auxiliary computations:

• For each i ∈ INn, we compute the values q
(i)
0 := 0 and q

(i)

j(i)+1
:= q

(i)

j(i) + p
(i)

j(i)+1
, 0 ≤ j(i) ≤

N (i) − 1.

• For each k ∈ INM , we check whether yk ∈ B0, i.e., whether the corresponding inequalities

y(l) ≤ y
(l)
k ≤ y(l) are satisfied for all l ∈ INm.

Then, to estimate P , we select the number of runs R; the larger R is, the better the estimate.

Now for the algorithm itself. For each run r ∈ INR, we do the following:

• For i from 1 to n:

– Run a random number generator (RNG) corresponding to the uniform distribution on

the interval [0, 1] and store the result in r(i).

– By comparing the result r(i) of this RNG with the values q
(i)

j(i) , we find and retain the

value j(i) for which r(i) ∈
[
q
(i)

j(i)−1
, q

(i)

j(i)

]
.

• For every k ∈ INM for which yk �∈ B0, we check whether xk ∈ Aj, i.e., whether the inequalities

x
(i)

j(i) ≤ x
(i)
k ≤ x

(i)

j(i) hold for all i ∈ INn. After that:

– If for some k for which yk �∈ B0, we have xk ∈ Aj , this means that

¬(∀k ≤ M,xk ∈ Aj → yk ∈ B0),

so we set χr = 0;

– Otherwise, we set χr = 1.

Finally, we take the average
∑R

r=1 χr

/
R as the desired estimate for PM .

The above algorithm is a standard Monte-Carlo algorithm, so when R → ∞, its result converges

to PM . Due Theorem 2, for sufficiently large M , we have PM = P . Therefore, we can conclude

that for sufficiently large M , the results of the above algorithm converge to PM .

An algorithm for computing Pα,M is similar to the algorithm for computing PM , with the only

difference that here:

• χM (j) = 1 if ∃k ≤ M,xk ∈ Aj ∧ yk ∈ Bα, and

• χM (j) = 0 otherwise.
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A Theorem 1

We need to show three things:

1. For every consistent probability distribution P , P ≤ Prob(f(x) ∈ B0) ≤ P .

By definition, the fact that the probability measure P (A) is consistent means that

P (A) =
N∑

j=1

pjPj(A)

for some probability measures Pj(A) which are concentrated within the corresponding boxes

Aj . The probability Pr(f(x) ∈ B0) is equal to the probability that x belongs to the set

f−1(B0) of all values x for which f(x) ∈ B0, so that Pr(f(x) ∈ B0) = P (f−1(B0)). In

particular, for A = f−1(B0), we have P := P (f−1(B0)) =
N∑

j=1

pjPj(f−1(B0)).

For each combined situation j, the probability measure Pj(A) is located on the box Aj . Thus:

• If a box Aj has no elements x with f(x) ∈ B0 – i.e., if f(Aj) has no common elements

with B0 – we have Pj(f−1(B0)) = 0.

• For those boxes that do contain elements x with f(x) ∈ B0 – i.e., for which f(Aj) has a

non-empty intersection with B0, the conditional probability Pj(f−1(B0)) – just like any

other probability – cannot exceed 1.

Thus, replacing Pj(f−1(B0)) with 0 for boxes for which f(Aj) that do not intersect B0 and

with 1 for boxes that do, we get an upper bound for P – the upper bound which is exactly

the expression P from (2).

Similarly, since the probability measure Pj(A) is located on the box Aj , we have Pj(Aj) = 1.

Therefore:

• Pj(f−1(B0)) = 1 for all boxes Aj for which f(B0) ⊆ Aj .

• For all other boxes, the conditional probability is a non-negative number Pj(f−1(B0)) ≥
0 – just like any other probability.

Thus, replacing Pj(f−1(B0)) with 0 for boxes for which f(Aj) does not contain B0 and with

1 for boxes that do, we get a lower bound for P – the lower bound which is exactly the

expression P from (2).
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2. There exists a consistent probability distribution P (A) for which Pr(f(x) ∈ B0) = P .

We select the probability Pj(A) in one of two ways:

f(Aj) ⊆ B0: Select an arbitrary point xj ∈ Aj , and select Pj(A) such that this point occurs

with probability 1, i.e., for which Pj(A) = 1 if xj ∈ A and Pj(A) = 0 otherwise.

f(Aj) �⊆ B0: By definition of the subset relation, there exists a point yj ∈ f(Aj) with yj �∈ B0.

Since yj ∈ f(Aj), there exists a value xj ∈ Aj for which yj = f(xj) and for which,

therefore, f(xj) �∈ B0. For each such box, as Pj(A), we take a probability distribution

in which this point occurs with probability 1, i.e., for which Pj(A) = 1 if xj ∈ A and

Pj(A) = 0 otherwise.

For these selected distributions, Pj(f−1(B0)) = 1 for boxes for which f(Aj) ⊆ B0, and

Pj(f−1(B0)) = 0 for all other boxes. Thus, for the resulting distribution P (A), the probability

P = P (f−1(B0)) is equal to P .

3. There exists a consistent probability distribution P (A) for which Pr(f(x) ∈ B0) = P .

• For each box Aj for which f(Aj)∩B0 = ∅, we select an arbitrary point xj within this box,

and, as Pj(A), take a probability distribution in which this point occurs with probability

1, i.e., for which Pj(A) = 1 if xj ∈ A and Pj(A) = 0 otherwise.

• For each box Aj for which f(Aj)∩B0 �= ∅, by definition of a non-empty set, there exists

a point yj ∈ f(Aj) ∩ B0. Since yj ∈ f(Aj), there exists a value xj ∈ Aj for which

yj = f(xj) and for which, therefore, yj = f(xj) ∈ B0. For each such box, as Pj(A),

we take a probability distribution in which this point occurs with probability 1, i.e., for

which Pj(A) = 1 if xj ∈ E and Pj(A) = 0 otherwise.

For thus selected distributions, Pj(f−1(B0)) = 0 for boxes for which f(Aj) ∩ B0 = ∅, and

Pj(f−1(B0)) = 1 for all other boxes. Thus, for the resulting distribution P (A), the probability

P = P (f−1(B0)) is equal to P .

B Theorem 2

We will show that for every box Aj , there exists an integer Mj such that for every M ≥ Mj , the

condition f(Aj) ⊆ B0 is equivalent to ∀k ≤ M,xk ∈ Aj → yk ∈ B0. Then, if we take the largest of
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theses values Mj as M0, we will be able to conclude that for every M ≥ M0, these two conditions

are equivalent to each other for every box j. Thus, by comparing the formula for P from (2) and

the definition of PM from (3), we will be able to conclude that indeed PM = P .

Let us show that the two conditions are indeed equivalent. The equivalence proof will be different

for two cases: when f(Aj) ⊆ B0 and when f(Aj) �⊆ B0. Specifically, we will show that:

• When f(Aj) ⊆ B0, then the finite analog of this condition is also satisfied, i.e., ∀k ≤ M,xk ∈
Aj → yk ∈ B0, and

• When f(Aj) �⊆ B0, then the finite analog of this condition is also satisfied, i.e., ¬(∀k ≤
M,xk ∈ Aj → yk ∈ B0, or, equivalently,

∃k ≤ M,xk ∈ Aj ∧ yk �∈ B0.

f(Aj) ⊆ B0: For every x ∈ Aj , we have f(x) ∈ B0. In particular, when x = xk, from xk ∈ Aj , we

will thus be able to conclude that yk = f(xk) ∈ B0, so the the finite version of this condition

is also satisfied.

f(Aj) �⊆ B0: So there exists a point x∗ ∈ Aj for which y∗ := f(x∗) �∈ B0 – or, equivalently,

f(x∗) ∈ B0, where · denotes set complement. Since B0 is a closed set, its complement

B0 is an open set. Therefore, together with a point f(x∗), it contains an entire open ball

Bε(f(x∗)) := {y : d(y, y∗) < ε} of a positive radius ε > 0 with a center in f(x∗). So, if

d(y, f(x∗)) < ε, then y ∈ B0, i.e., y �∈ B0.

Since the function f(x) is continuous, in particular, it is continuous at the point x = x∗.

By definition of continuity, this means that for every ε > 0, there exists a δ > 0 such that

if d(x, x∗) < δ, then d(f(x), f(x∗)) < ε. We already know that d(f(x), f(x∗)) < ε means

that f(x) ∈ B0, i.e., f(x) �∈ B0. Therefore, we can conclude that when d(x, x∗) < δ, then

f(x) �∈ B0.

We know that the point x∗ belongs to the box Aj . There are two possibilities:

x∗ is strictly inside Aj: Let δ0 be the smallest distance from x∗ to any of the edges. Then,

d(x, x∗) < δ0 implies that x is also inside the box Aj. Hence, if we take δ1 := min(δ, δ0),

we can conclude the following: when d(x, x∗) < δ1, then x ∈ Aj and f(x) �∈ B0.
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We assumed that the sequence {xk} is everywhere dense in X. By definition, this means

that for every point x ∈ X (in particular, for x∗ ∈ Aj) and for every δ > 0 (in particular,

for δ = δ1), there exists a point xk∗ for which d(xk∗ , x∗) < δ1. We already know that in

this case, xk∗ ∈ Aj and y∗k = f(xk∗) �∈ B0. Therefore, for every M ≥ k∗, there exists a

k ≤ M (namely, k = k∗) for which xk ∈ Aj ∧ yk �∈ B0. Hence, if we take this k∗ as Mj ,

then the finite analog of the condition f(Aj) �⊆ B0 is indeed satisfied for all M ≥ Mj .

x∗ is on the border of Aj: For each point on the border and for every δ, there exists a

δ-close point inside the box. So, there exists a point x∗∗ inside the box Aj for which

d(x∗, x∗∗) < δ – and therefore, f(x∗∗) �∈ B0. So, we have an internal point x∗∗ ∈ Aj

for which f(x∗∗) �∈ B0. For this new point, we can repeat the same proof that we had

starting with x∗, and conclude that there exists an Mj such that for every M ≥ Mj ,

there exists a k ≤ M for which xk ∈ Aj ∧yk �∈ B0 – i.e., the finite analog of the condition

f(Aj) �⊆ B0 is indeed satisfied for all M ≥ Mj .

C Corollary 3

Follows immediately.

D Proposition 4

Let x ∈ ⋃N
j=1 Aj be a point, and ε > 0. Let us show that with probability 1, one of the points

xk will be ε-close to x. Indeed, let I := X ∩ Bε(x), where Bε(x) is the open ball around x. For

the probability distribution Psel that we use to select the points xk, the probability Psel(B) that

a randomly picked vector x is inside B is equal to Psel(B) =
∫
B ρ(y) dy. The intersection B has

a positive volume, so, since the probability density function ρ(y) is positive and continuous, this

integral Psel(B) is also positive.

Hence, for every k, the probability that xk �∈ B is equal to 1 − Psel(B) < 1. Since we assume

that the points are independently selected on each iteration, the probability that on each of M

selections, we get a point xk �∈ B is equal to the product of the corresponding M probabilities, i.e.,

to (1−Psel(B))M . When M → ∞, this probability tends to 0, so we conclude that the probability

that none of the infinitely many points xk is inside B is equal to 0. So, with probability 1, there is
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a point xk inside B – i.e., a point xk ∈ X for which d(x, xk) ≤ ε.

Since every ball contains a smaller ball with rational center and rational radius, it is sufficient to

show that we can find xk within each ball of rational center and radius. There are countably many

such balls, and for each, the probability of not having xk inside it is 0. Thus, the probability that

one of these balls does not contain any of xk’s is also 1 – so with probability 1, every ball has a

point from xk, which means, by definition, that the sequence {xk} is everywhere dense.

E Theorem 5

Let n = 1, N (1) = 1, and A
(1)
1 = [0, 1] (with p

(1)
1 = 1). Let xk be an arbitrary everywhere dense

sequence of numbers from the open interval (0, 1) – e.g., a sequence obtained by using a random

number generator that generates numbers uniformly distributed on the interval [0, 1].

Let us take f(x) = x and B0 = [1, 2]. Then, f(Aj) ∩ B0 �= ∅, so P = 1. On the other hand, since

the values xk are taken from the inside of the interval [0, 1], none of these values is equal to 1, and

therefore, none of the points xk ∈ Aj has the property that yk ∈ B0. So, for every M , we have

PM = 0.

F Theorem 6

Again, let n = 1, N (1) = 1, and A
(1)
1 = [0, 1] (with p

(1)
1 = 1). Let xk be an arbitrary everywhere

dense sequence of positive numbers – e.g., a sequence obtained by using a random number generator

that generates numbers uniformly distributed on the interval [0, 1].

Let f(x) be the sign function

f(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x = 0

1, x > 0

−1, x < 0

,

and let B0 = [0.5, 1.5]. Then, for the only box Aj = [0, 1], we have f(Aj) = {0, 1} �⊆ B0, so P = 0.

However, since all the values xk are positive, we have yk = f(xk) = 1 hence yk ∈ B0; thence

PM = 1 for all M . Here, as M → ∞, we have PM → 1, so PM �→ P .
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G Theorem 7

Let us take f(x), the boxes, and the everywhere dense sequence the same as in the proof of Theorem

6, and f̃(x) = 1 for all x. Then, 0 = P �= P̃ = 1.

H Theorem 8

Since the sequence xk is not everywhere dense, there exists a ball βr(x∗) ⊆ IRn that is not covered

by any element from this sequence. Since B0 ⊂ IRm, there exists a point y∗ ∈ IRm, y∗ �∈ B0. Define

the function f(x) as a constant equal to some point y∗∗ ∈ B0; for this function, P (f−1(B0)) = 1.

As f̃(x), we take a function

f̃(x) = y∗∗ + max
(

0, 1 − d(x, x∗)
r

)
· (y∗ − y∗∗).

One can easily see that f̃(x) = f(x) for all x �∈ βr(x∗), so the sequences 〈xk, yk〉 for these two

functions are indeed the same. However, since f̃(x∗) = y∗ �∈ B0, there exists a box Aj – namely,

any box that contains the point x∗ – for which f(Aj) �⊆ B0 and therefore, we have P̃ < 1 (while

P = 1).

I Theorem 9

We have already proven, in the discussion of the formula for PM , that PM ≤ P . Thus, we also

have Pα,M ≤ Pα. So, to complete our proof, we must show that there exists an M0 such that for

every M ≥ M0, we have P ≤ Pα,M .

Similarly to the proof of Theorem 2, we will prove that for every box Aj , there exists a value Mj

such that for every M ≥ Mj, the condition f(Aj) ∩ B0 �= ∅ implies that

∃k ≤ M,xk ∈ Aj ∧ yk ∈ Bα.

If we prove this, then, for every M ≥ M0 := maxj Mj , we will be able to conclude that all the terms

pj involved in the formula for P are also included in the sum that defines Pα,M and therefore, that

indeed P ≤ Pα,M .

Indeed, let f(Aj) ∩ B0 �= ∅. This means that there exists a value y∗ ∈ B0 for which y∗ ∈ f(Aj),

i.e., for which y∗ = f(x∗) for some x∗ ∈ Aj.
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Since the function f(x) is continuous, in particular, it is continuous at the point x = x∗. By

definition of continuity, this means that for every α > 0, there exists a δ > 0 such that if d(x, x∗) < δ,

then d(f(x), f(x∗)) < α/2. We already know that y∗ = f(x∗) ∈ B0, hence f(x) belongs to Bα

(actually, it even belongs to Bα/2). Therefore, we can conclude that when d(x, x∗) < δ, then

f(x) ∈ Bα.

We know that the point x∗ belongs to the box Aj. There are two possibilities:

x∗ is inside Aj: Let δ0 be the smallest distance from x∗ to any of the edges. Then, d(x, x∗) < δ0

implies that x is also inside the box Aj . Hence, if we take δ1 := min(δ, δ0), we can conclude

that when d(x, x∗) < δ1, then x ∈ Aj and f(x) ∈ Bα.

We assumed that the sequence {xk} is everywhere dense in X. By definition, this means

that for every point x ∈ X (in particular, for x∗ ∈ Aj) and for every δ > 0 (in particular,

for δ = δ1), there exists a point xk∗ for which d(xk∗ , x∗) < δ1. We already know that in this

case, xk∗ ∈ Aj and yk∗ = f(xk∗) ∈ Bα. Therefore, for every M ≥ k∗, there exists a k ≤ M

(namely, k = k∗) for which xk ∈ Aj ∧ yk ∈ Bα. Hence, if we take this k∗ as Mj , then the

finite analog of the condition f(Aj) ∩ Bα �= ∅ is indeed satisfied for all M ≥ Mj .

x∗ is on the border of Aj: For each point on the border and for every δ, there exists a δ-close

point inside the box. So, there exists a point x∗∗ inside the box Aj for which d(x∗, x∗∗) < δ –

and therefore, f(x∗∗) ∈ Bα/2. So, we have an internal point x∗∗ ∈ Aj for which f(x∗∗) ∈ Bα/2.

For this new point, we can repeat the same proof that we had starting with x∗, and conclude

that there exists an Mj such that for every M ≥ Mj, there exists a k ≤ M for which

xk ∈ Aj ∧ yk ∈ Bα – i.e., the finite analog of the condition f(Aj) ∩Bα �= ∅ is indeed satisfied

for all M ≥ Mj .

J Theorem 10

Without losing generality, we can assume that αM < 1 for all M .

In this proof, we will use the same box and the same continuous function that was used in the

proof of Theorem 5 that PM �→ P : namely, we take n = 1, N (1) = 1, A(1)
1 = [0, 1] (with p

(1)
1 = 1),

f(x) = x, and B0 = [1, 2]. For this choice, P = 1.
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We will show that for an appropriately chosen everywhere dense sequence 〈xk, f(xk)〉, we will have

PαM ,M = 0 for all M – and thus, PαM ,M �→ P .

For this, we must make sure that for every k ≤ M , we have yk �∈ BαM
. For our choice of B0 = [1, 2],

we have Bα = [1 − α, 2 + α]. For our choice of f(x) = x, we have yk = xk. Thus, the condition

that we need to satisfy is xk < 1 − αM for all M ≥ k. In the limit M → ∞, αM → 0, so this

condition is satisfied – provided, of course, that xk < 1. The requirement that xk is smaller than all

possible values 1−αk, 1−αk+1, . . . , is equivalent to requiring that xk is smaller than the smallest

of the values 1−αk, 1−αk+1, . . .. The difference between 1 and a number is the smallest when the

subtracted number is the largest, therefore, the above condition is equivalent to xk < 1−βk, where

βk := max(αk, αk+1, . . .).

Since αM → 0, we can conclude that βk → 0, and one can easily see that βk is a monotonic

sequence: βk ≥ βk+1 ≥ . . . So, to complete the proof, it is sufficient to find an everywhere dense

sequence xk of numbers from the interval [0, 1] for which xk < 1 − βk for some given monotonic

sequence βk → 0.

Since αM < 1 for all M , we can conclude that βk = max(αk, αk+1, . . .) < 1 for all k.

To obtain such a sequence xk, let us start with an arbitrary everywhere dense sequence y1, y2, . . .

of numbers from the open interval (0, 1). Let us denote y0 := 0. Based on this sequence, we will

design a new everywhere dense sequence xk; this new sequence will consist of zero, one, or several

repetitions of y0 = 0, followed by one or several repetitions of y1, then one or several repetitions

of y2, etc. Since all the elements from yk are also in the sequence xk, this new sequence is also

everywhere dense in the interval [0, 1].

We start by checking whether y1 < 1 − β1.

• If this inequality is satisfied, we start repeating y1, i.e., take x1 = y1.

• If this inequality is not satisfied, we take x1 = y0 = 0.

In both cases, we have x1 < 1 − β1:

• In the first case, it is true due to our choice of x1.

• In the second case, since βk < 1, we have 0 < 1 − β1.
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In general, if we have already selected x1, . . . , xk, and xk = yl for some l, then, to select xk+1, we

check whether yl+1 < 1 − βk+1:

• If this inequality is satisfied, we start repeating yl+1, i.e., take xk+1 = yl+1.

• If this inequality is not satisfied, we continue to take xk+1 = yl.

In both cases, we have xk+1 < 1 − βk+1:

• In the first case, it is true due to our choice of xk+1.

• In the second case, since we had xk = yl < 1−βk and βk is a monotonic sequence βk ≥ βk+1,

we conclude that xk+1 = yl < 1 − βk ≤ 1 − βk+1, i.e., that xk+1 < 1 − βk+1.

To complete the proof, we must show that the process of selecting xk will not indefinitely stumble

on a value yl and that eventually, it will move on to the next value – thus guaranteeing that all

values yl will be covered. Indeed, the value yl is selected as xk only until the inequality yl+1 < 1−βk

is not satisfied, i.e., until we have yl+1 ≥ 1−βk. This cannot be true for arbitrarily large k because

then, in the limit k → ∞, we would have yl+1 ≥ 1, and we assumed that all the values yk are from

the open interval (0, 1). So, all the values yl are indeed covered.
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Captions

Figure 1 Example input uncertainty structure S.


