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1 Introduction: It Is Necessary to Go Beyond Traditional Statistics

In traditional statistics, we process crisp data – usually, results of measurements and/or observations:

� First, for each physical quantity, we observe and/or measure several values ���	��
�
�
��
��� .

� Based on this data, we try to find the probability distribution that describes this data. Usually, we
first guess the finite-parametric family of probability distributions that contains the desired one (e.g.,
Gaussian distribution), and then we use the measured values to estimate the values of the correspond-
ing parameters.

� Based on the probability distributions describing the data, we can then use the known equations – i.e.,
the known relation between the measured quantities and the characteristics of the future events – to
predict the results of future events.

Not all the knowledge comes from measurements and observations. In many real-life situations, in addition
to the results of measurements and observations, we have expert estimates, estimates that are often formu-
lated in terms of natural language, like “ � is large”. It is therefore necessary to extend traditional statistical
techniques to the case when some of the processed values come from expert.

Statistical data processing often requires a lot of computations, and therefore, requires that we use
computers. Thus, before we analyze how to process these statements, we must be able to translate them in a
language that a computer can understand. This translation of expert statements from natural language into
a precise language of numbers is one of the main original objectives of fuzzy logic (see, e.g., [7, 18]). It
is therefore important to extend necessary to extend traditional statistical techniques from processing crisp
data to processing fuzzy data.

In this paper, we provide an overview of our research in this direction, outline our main results and open
problems.

2 Estimating Parameters of a Distribution Based on Fuzzy Data

When we have � results ��� ��� ��
�
�
������ ��� of repeated measurement of the same quantity, traditional statistical
approach usually starts with computing their sample average

��� ��� ����� 
�
�
 � ��� ���
�
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and their sample variance ����� ��� ����� ����� � 
�
�
 � � ��� ���	� ���
�
� ���

(or, equivalently, the sample standard deviation 
 ��� � ); see, e.g., [21]).
In some practical situations, we only have fuzzy estimates for � � ��� ��
�
�
������ ��� . In this case,

�
and
�

are
also fuzzy values. How can we compute these values?

A convenient way of looking at the fuzzy number � is to consider it as a nested family of intervals � ��� �
– � -cuts of � corresponding to different values � . In this case, for each � , the corresponding � -cut

� ��� �
of, say,

�
is equal to the range of the function

� � � � ��� ��
�
�
���� � ��� � when � ��� � takes all possible values from
the corresponding intervals ����� � ��� � . So, in order to be able to compute

�
and
�

, it is sufficient to be able to
compute the ranges � and � of the corresponding functions

�
and
�

on given intervals � ��� � ��� � ��� � � � ��� ��� .
The interval � for the sample average can be obtained by using straightforward interval computations,

i.e., by replacing each elementary operation with numbers by the corresponding operation of interval arith-
metic: � � � � ����� 
�
�
 � � � � �

� 

What is the interval

� � � � � of possible values for sample variance
�

?
When the intervals � ��� � intersect, then it is possible that all the actual (unknown) values � ��� ��� � ��� �

are the same and hence, that the sample variance is 0. In other words, if the intervals have a non-empty
intersection, then

� ���
. Conversely, if the intersection of � ��� � is empty, then

�
cannot be 0, hence

� � �
.

First, we design a feasible algorithm for computing the exact lower bound
�

of the sample variance.
Specifically, our algorithm is quadratic-time, i.e., it requires ! � � �"� computational steps for � interval data
points � ��� � �#� � ��� � � � ��� � � . We have implemented this algorithm in C++, it works really fast. The algorithm
is as follows (the proof that this algorithm is correct is provided in [1, 2]):

� First, we sort all $	� values � ��� � , � ��� � into a sequence � � ���&% � � � �'% 
�
�
 % � � ��� . This sorting requires! � �)(+*�,.- � � ��� steps.

� Second, we compute
�

and
�

and pick all “small intervals”
� � ��/ � �
� ��/10 ��� � that intersect with

� � � � � .
� For each of remaining small intervals

� � ��/ � ��� ��/10 ��� � , we compute the ratio 2 / �43 /65879/ , where3 / :+;=<� >�@? A BDCEAGFIH�JLK�M � � � >N ? APO1QEA FIH�M � N �
and 79/ is the total number of such R ’s and S ’s (if 7T/ �U� , we take

��V/ :P;=<�W� ). If 2 / � � � ��/ � �
� ��/80 ��� � ,
then we compute

� V/ :+;=<� �
� �X� (

YZ >�@? A B CEA FIH�JLK�M � � � � 2 / � � � >N ? A O QEAGFIH�M � � N � 2 / � �8[\ 


� Finally, we return the smallest of the values
�]V/ as

�
.

Our second result is that the general problem of computing
�

from given intervals � ��� � is NP-hard [1, 2].
NP-hard means, crudely speaking, that there are no general ways for solving all particular cases of this

problem (i.e., computing
�

) in reasonable time.
However, we show that there are algorithms for computing

�
for many reasonable situations. For

example, we propose an efficient algorithm ^ that computes
�

for the case when the “narrowed” intervals� _����� �`�Ua ��� � 5 � � _����� � ��a ��� � 5 � � – where
_����� � � � � ��� � � � ��� � � 5 $ is the interval’s midpoint and a ��� � �� � ��� �`� � ��� � � 5 $ is its half-width – do not intersect with each other. We also propose, for each positive

integer b , an efficient algorithm ^ / that works whenever no more than b “narrowed” intervals can have a
common point [2].
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3 Using Fuzzy Estimates for Parameters of Probability Distributions
for Predictions

Once we have the information about the measured quantities ������
�
�
��
��� , and we know that the desired
quantity � is related to � � by a known relation � ��� � ��� ��
�
�
���� � � , we want to use the known information
about � � to make predictions about � . For example, once we know the current � and the resistance � , we
can predict the voltage

�
by using the known relatiin (Ohm’s law)

��� � (�� .
For each of the quantities � � , we have a fuzzy number representing its possible values, and from stat-

sitical data processing, we may also have some additional (fuzzy) information about the statistical charac-
teristics of � � . A natural case of such an information is when we have information about the average (first
moment) of each variable. What can we then say about the fuzzy value corresponging to � and the fuzzy
value corresponding to the average

��� � � of � ?
Since a fuzzy number can be represented as a nested family of intervals, it is sufficient, similarly to the

previous section, to be able to consider this problem for interval uncertainty. In precise terms, we arrive at
the following problem:

GIVEN: an algorithm computing a function
� � � � ��
�
�
���� � � from � � to � ; � intervals � � ��
�
�
�� � � , and �

intervals � �	��
�
�
�� � � ,

TAKE: all possible joint probability distributions on � � for which, for each R , � � � � � with probability
1 and the mean

� � belongs to � � ;
FIND: the set � of all possible values of a random variable � ��� � ���	��
�
�
���� � � and the set � of all

possible values of
��� � � for all such distributions.

In this formulation, we have no information about the possible dependence between the random variables
� � . A similar problem can be formulated for the case when � � are known to be independent, and for the
cases when � � $ and the values � � are highly positively or highly negatively correlated (i.e., crudely
speaking, when they are increasing or decreasing functions of each other).

If we can find the range for degenerate intervals � � ��� � � � � � � , then we can use interval computation to
extend these formulas to arbitrary intervals � � .

Similarly to interval computations, our main idea is to find the corresponding formulas for the cases
when � � $ and

� �	�
is one of the basic arithmetic operations ( � , � , ( , 
���
 , 
���� ). The algorithm

for the general case is based on the fact that inside the computer, every algorithm consists of elementary
operations (arithmetic operations, 
���
 , 
���� , etc.). For each elementary operation

� � ��� � � , if we know the
intervals � and � for � and � , we can compute the exact range

� � � ��� � ; the corresponding formulas form
the so-called interval arithmetic. We can therefore repeat the computations forming the program

�
step-by-

step, replacing each operation with real numbers by the corresponding operation of interval arithmetic. It is
known that, as a result, we get an enclosure for the desired range.

For example, if we know two “triples” � � � � � � � � � � , ( R � � � $ ), what are the possible triples � � � � � � � for� � � � (�� � ?
For all basic operations, the interval part � � � � � of the result is the same as for interval arithmetic.
We provide explicit formulas for the interval � of possible values of

� � � � � � [3]. For example, for
multiplication, when we know nothing about the correlation,

� � 
���
 ��� ��� � � � ( � �&( � � � 
���� ��� � � � � � � � ( � �&(�� � � 
���� ��� � � � �	� �.� (�� � ( � � �

���
 � � � � � � � � � � � (�� � (�� � �

where � � :P;=<� � � � � � � � 5 � � � � � � � 

This formula has a natural meaning. Indeed, the probability � � can be interpreted as follows: if we only

allow values � � and � � , then there is only one probability distribution on � � for which the average is exactly� � . In this probability distribution, the probability � � � � � of � � is equal to � � , and the probability � � � � � of � �
is equal to � � � � .

If we know the probabilities � � and � � of two events
3 � and

3 � , then the probability of
3 ��� 3 � can take

any value from 
���� ��� � � � � � � � �.� to 
���
 ��� � � � � � . From this viewpoint, since � � � � � � � � and � � � � � � � � ,
we can interpret 
���
 ��� � � � � � as � � ����� � � � . Similarly, we can interpret all other terms in the above formulas,
so we can rewrite the formulas for

�
and

�
as follows:

� � � � � � � � � � ( � � ( � � � � � � � � � � � ( � � (�� � � � � � � � � � � (�� � ( � � � � � � � � � � � (�� � (�� ���
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��� � � ����� � � � ( � �&( � � � � � ����� � � � ( ���'(�� � � � � � � � � � � (�� � ( � � � � � � � � � � � (�� � (�� � 

4 A Natural Way to Interpret Fuzzy Techniques in Probabilistic

Terms: Random Sets

In the previous sections, we have considered fuzziness as an external feature explicitly added to the original
probabilistic model. Fuzziness does not have to be added this way. There are known results showing
that any consistent description of uncertainty can be, in principle, reformulated in probabilistic terms, and
fuzzy description is no exception: from the purely mathematical viewpoint, we can always interpret fuzzy
values as probabilities; this fact was first explicitly shown by one of the authors [14]. The corresponding
probabilistic interpretation of fuzzy values is not only a mathematical equivalence, it makes sense from the
viewpoint of knowledge representation as well.

Indeed, one of the main objectives of fuzzy logic is to interpret natural-language statements like “Mary
is young”. The problem with interpreting this statement lies in the ambiguity of the natural language. In
the idealized situation when all experts could agree on what age corresponds to young and what age means
that a person is no longer young, then whether a person is young or not is uniquely determined by the
person’s age. We can therefore describe this idealized situation by describing the set of all values of age
that correspond to “young” – i.e., a certain subset of the set of all positive real numbers.

In reality, different experts may have (and actually have) different interpretations of the word ”young”.
(Moreover, a single expert may have different interpretations of this word.) As a result, for different experts,
we have different sets of values corresponding to “young”. To capture the overall meaning of the word
“young”, we must therefore keep not just a single set, but several different sets – with an indication of
which sets are more frequent and which are less frequent. In other words, to describe the meaning of
the word “young”, we must have a family of sets, with a frequency assigned to each of these sets. In
mathematical terms, when we have several objects with probabilities (frequencies) assigned to each object,
it is called a random object:

� if we have several numbers with different probabilities, it is called a random number;

� if we have several processes (functions of time) with different probabilities, it is called a random
process; etc.

In our case, we have several sets with different probabilities. This structure is called a random set. From
the mathematical viewpoint, a random set is a probability measure on the family of all sets.

One can show that this interpretation not only makes some sense, it actually explains some – otherwise
heuristic and difficult to explain – empirically successful formulas and techniques of fuzzy logic; see, e.g.,
[6, 8, 13, 15].

Some applications will be described in detail in the talk.

5 Can Fuzzy Research Help in Crisp Data Processing? Possibility
Theory as a Technique for Describing Asymptotic Properties of
Statistical Distributions

In the previous section, we have shown that fuzzy techniques can be viewed as an important particular
case of probabilistic techniques. From the purely mathematical viewpoint, this case is much more difficult
to handle than traditional statistical techniques – because in this case, instead of a probability distribution
on the set IR of all real numbers, we have a much more complex object – a probability distribution on
the set of all subsets of this set IR. However, since this case corresponds to commonsense reasoning, we
have additional intuition that makes it easier to solve the corresponding problems. It is therefore natural to
expect that in some cases, reformulating a purely probabilistic problem in fuzzy terms will help to solve it.
In other words, we expect that not only crisp data processing can help in fuzzy research – by providing a
crisp foundations for fuzzy case, but that also fuzzy research can help in crisp data processing.

These expectations are indeed correct. Let us cite two examples. The first example is described in
detail in [11]. This application is based on the fact that in statistics, there is a situation that is similar to

4



nested intervals that form a fuzzy set – a nested set of confidence intervals. It turns out that indeed, we can
use techniques and algorithms developed for processing fuzzy data to design new efficient algorithms for
processing confidence intervals.

Another – less trivial – example comes from the necessity to consider rare events. Rare events – such
as unusually large deviations – are extremely important, because they account for catastrophic failures of
technical systems, for natural disasters such as earthquakes and floods, etc. Since they are rare, we do not
have a large number of observed events of this type and therefore, we cannot use traditional engineering
statistical techniques for processing such events. As an alternative, statisticians have developed asymptotic
techniques, in which instead of describing the probability � � �&� of a specific large deviation

�
, we try to

describe an asymptotic expression ���L� �&� that describes how the probability � � �'� of a deviation of size� �
depends on

�
. By definition of asymptotics, when

�
is large, the actual probability is close to this

asymptotic expression, and the larger
�

(i.e., the more important the deviation), the closer this asymptotic
estimate ���L� �'� to the actual value � � �'� .

In many cases, for large deviations
�

, the dependence of � on
�

is scale-invariant, i.e., crudely speaking,
leads to �	� �&����� ( �
	�� for some real number � ; for details, see [16, 17].

In this case, we have two parameters to characterize this dependence:
�

and � . If we want to character-
ized the rarity of an event by a single parameter, then which of these two parameters should we choose? A
small change in � leads to a much faster decrease in � � �'� than a small change in

�
, so it is natural to select� as a measure of rarity.

In this case, if we have two rare events with rarities �&��
 � and �'��� � , what is the rarity of 
��
� ? In other
words, how can we estimate the probability of the event that either 
 or � will lead to a large deviation� �

? One can easily see that if, say, �&��
 ��� �'��� � , then ��� � �'��� ��� � �'� , moreover, ��� � �&� 5 ��� � �&��� �
and therefore, asymptotically, the total probability � �
��� � �&� is equal to � � � �&� . In other words, in contrast
to traditional probability theory in which – provided 
 and � are incompatible – the probability of 
�� �
is equal to the sum �	��
!�"� � � �	��
 � � � ��� � , for our newly defined measure of rarity, �&��
#�$� � �

���� ���&��
 � � �&��� ��� . This is exactly the formula used in fuzzy logic – and in a related formalism of possibility
theory. It is therefore not surprising that a theory of “idempotent probabilities” – a mathematical theory
which is very similar to possibility theory – turned out to be very helpful in the analysis of asymptotic
properties of large deviations [15, 20].
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