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Abstract

In interval computations, the range of each intermediate result r is described by an interval
r. To decrease excess interval width, we can keep some information on how r depends on the
input = (x1,-..,%n)- There are several successful methods of approximating this dependence;
in these methods, the dependence is approximated by linear functions (affine arithmetic) or by
general polynomials (Taylor series methods). Why linear functions and polynomials? What
other classes can we try? These questions are answered in this paper.
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1 Formulation of the problem

One of the main reasons why computers are needed is that in many real-life situations, we are
interested in the value of a quantity y that is difficult or impossible to measure directly; examples
of such quantities are distance to a star or the amount of oil in a given field. To find the value of
the desired quantity, we perform indirect measurement, i.e., we measure other quantity z1, ...,z
that are related to y by a known dependence y = f(z1,...,,), and then process the data, i.e., use
the measurement results Z; to estimate the value of the desired quantity as § = f(Z1,...,Zn).

Measurements are never 100% accurate; the measured values ;, in general, differ from the

actual values z; of the directly measured quantities: Ax; def Z; — x; # 0. As a result, the resulting

estimate ¥ is, in general, also different from the actual value y. To make decisions on the basis of
. 1. . def ~
indirect measurement, we must know how large the corresponding measurement error Ay = y —y
can be.



Sometimes, for direct measurements, we know the probabilities of different values of Az;; how-
ever, often, the only information we have about the accuracy of each direct measurement is the
upper bound A; on the measurement error |Az;|. (If nothing else, this upper bound has to be
provided by the manufacturer of the measuring instrument because if no upper bound is provided,
this means that the actual value can be arbitrarily large, so we have a guess rather than a measure-
ment.) In this case, once we get the measurement result Z;, we conclude that the possible values
z; = Tj — Az; of the measured quantity form an interval x; = [z;,T;] = [T; — A, T; + A;]. So, the

set of all possible values of y is the interval y def {f(z1,---,2n) | Z1 € X1,...,Zn € Xy}
Thus, to answer the question how large Ay can be, we must be able, given n intervals x1,...,x,
and a function y = f(z1,...,2,) from real numbers to real numbers, to find the range y of the

function f on the box x; X ... X x,,. This problem is sometimes called the main problem of interval
computations [9, 10, 11, 19].

Historically the first approach to solving this problem is to use “straightforward” interval com-
putations. Specifically, for the case when the function f(z1,z2) coincides with one of the elemen-
tary arithmetic operations, it is easy to describe an explicit formula for the desired range; these
formulas form interval arithmetic. In general, in the computer, an arbitrary computation is even-
tually translated (“parsed”) into a code list, i.e., a sequence of elementary arithmetic operations;
in straightforward interval computations, we replace each starting operand with the correspond-
ing interval x;, and replace each arithmetic operation with real numbers with the corresponding
interval-arithmetic operation.

It is known that as a result, we always get an enclosure Y of the desired interval y, i.e., an
interval for which Y D y. The problem is that this enclosure can be much wider than the actual
(desired) range. For example, if f(z1) = z1 — x?, a natural parsing leads to 71 := z; - z; and
y := x1 — r1. So, for x; = [0, 1], straightforward interval computations lead to the estimates
R; :=[0,1]-[0,1] = [0,1] and Y := [0, 1] — [0,1] = [—1, 1], while the actual range is y = [0, 0.25].

The reason for this excessive width is that when we derive the formula of an interval arithmetic,
e.g., the formula [a,@] — [b,b] = [a — b,@ — b], we take into consideration that values a and b
can independently take any values from the corresponding intervals; however, when we apply this
formula to the intermediate computational results (e.g., to z; and z?), these intermediate results
cannot independently take arbitrary values from the corresponding intervals because they both
depend on the same input. To decrease excess width, it is therefore desirable, at each intermediate
computation step, to keep track of how the corresponding intermediate result r; depends on the
inputs z1,...,z, — or, alternatively, on the differences Az1,...,Ax,.

This idea have been successfully implemented by two approaches. In “generalized” (affine)
arithmetic [5, 7], each intermediate result is represented by a linear function ry = co + ¢1 - Az1 +
eeo + ¢y - Az + Ry with a small “remainder” interval Ry. (Of course, inside the computer,
we store the parameters a; of the linear function and the endpoints of the interval.) When we
perform each arithmetic operation from the “code list”, we try to get a similar expression for
the result. Only at the final stage, when we get an expression for y, we substitute the ranges
of Az; to get the enclosure for y. In the above example, Z; = 0.5, and Az; € [—0.5,0.5], so
z1 = 0.5 — Az;. Therefore, 1y = z1 - z; = 0.25 — Azy + (Az1)%. The first two terms are linear,
the third term can be represented by an interval [0,0.25], so r1 = 0.25 — Az + [0, 0.25]. Therefore,
y=x1—711 = (05— Az)— (0.25 — Az; +[0,0.25]) = 0.25 — [0,0.25] = [0,0.25] — the exact range.

In more complex examples, instead of the exact range, we get an enclosure — which is often
narrower than the one produced by straightforward interval computations. The reason why this
estimate is not always exact is that at each stage, we approximate the actual dependence of r; on
z; by a linear function. Thus, to decrease the excess width, we must look for better approxima-



tions. A natural way to improve the accuracy of a linear approximation is to consider polynomial
approximations. The corresponding techniques in which each intermediate result r is represented
as P, + Ry for some polynomial P; has indeed been successfully used under the name of Taylor
series methods; see, e.g., [1, 2, 3, 8, 18, 22] and references therein.

Two questions naturally arise. The first is a methodological question: why linear functions and
polynomials turned out to be successful? why not, say, trigonometric polynomials — they are also
universal approximators? The second is a practical question: even for the best of these existing
methods, there is still some excessive width. How can decrease it even further? In this paper, we
will answer these questions.

2 Towards formalization of the problem

In order to formalize the above questions, let us first formalize the above idea. We select a family
of functions F, and we represent each intermediate result by an expression ry = F(z1,...,z,) + R,
where F' € F and R is an interval.

Any function that is obtained by a sequence of arithmetic operations is analytical, i.e., it can
be expanded into Taylor series; thus, it is reasonable to restrict ourselves to analytical functions F'.

We want to be able to represent functions from the class F inside a computer; if we use too
many parameters, we will spend too much time processing these parameters — it would have been
easier to decrease the excess width by dividing the original box into multiple subboxes. Therefore,
it only make sense to consider finite-dimensional families of functions.

It would be nice to select the family F in such a way that an application of any arithmetic
operation ® does not lead to additional approximation error. In other words, ideally, we would like
to select F in such a way that if two intermediate results r and s belong exactly to F, then r ® s
should also belong to F. However, if we require that, then, since we start with variables and we
have addition and multiplication, we will end up with arbitrary polynomials — which contradicts
to F being finite-dimensional. Since we cannot require that for all operations, we should at least
require it for the simplest ones: 4+, —, and multiplication by an arbitrary real number A. In other
words, we require that if F € F and G € F, then F+ G € F and A- F € F — i.e., that the family
F is a (finite-dimensional) vector space of functions.

A general vector space can be described as {C - F1 +...+Cn-Fn}c,,.. cy- Standard intervals
correspond to N = 1 and F; = 1; affine arithmetic —to N =n+1, F; = z; for i <n and F,, 11 = 1;
Taylor series approach corresponds to monomials Fj.

There are many possible vector spaces of functions. The question is: which of these vector
spaces is the best (“optimal”) for our purpose?

When we say “the best”, we mean that on the set of all such spaces, there is a relation >
describing which family is better or equal in quality. This relation must be transitive (if F is better
than G, and G is better than #, then F is better than ).

This relation is not necessarily asymmetric, because we can have two families of the same
quality. However, we would like to require that this relation be final in the sense that it should
define a unique best family Fop (i.e., the unique family for which VG (Fope > G). Indeed, if none
of the families is the best, then this criterion is of no use, so there should be at least one optimal
family. If several different families are equally best, then we can use this ambiguity to optimize
something else: e.g., if we have two families with the same approximating quality, then we choose
the one which is easier to compute. As a result, the original criterion was not final: we get a new
criterion (F >pew G if either F gives a better approximation, or if F ~gq G and G is easier to



compute), for which the class of optimal families is narrower. We can repeat this procedure until
we get a final criterion for which there is only one optimal family.

The numerical values of the directly measured quantities x; depend on the choice of a starting
point and the measuring unit. If we change the starting point and/or unit, we get different numerical
values. For example, for temperature, t7. = 1.8 - ¢}, + 32. In general, such re-scaling transforms z;
into a new numerical value z} = a; - z; + b;. It is reasonable to require that the relative quality of
two families should not change if we simply apply such re-scaling to one of the variables ;.

As a result, we arrive at the following definitions:

3 Definitions and the main result

Definition 1. Let n > 0 and N > 0 be integers.

e By a N-dimensional family, we mean a family F of all functions of the type
{Cl -Fl(:cl,...,.’L‘n) +...+Cn- FN(:I,‘1,... ,In)},
where F; are given analytical functions, and C1,...,Cy are arbitrary (real) constants.

e By an optimality criterion, we mean a transitive relation > on the set of all N-dimensional
families.

o We say that a criterion is final if there exists one and only one optimal family, i.e., a family
Fopt for which VG (Fopt = G).

e For every transformation T = a-xz+b (a > 0), and for every i, we define (T;(F))(z1,...,%,) =
def

F(xla s ,.’L'ifl,T(.’L'i),.’L'i_Fl, s 7-Tn); and T,Z(]:) = {T'Z(F) |F € ‘7:}
o We say that a criterion - is rescaling-invariant if for every two families F and G, for every i,
and for every linear function T'(z) = a -z + b, F »= G implies T;(F) = T;(G).

Theorem 1. Let > be a final rescaling-invariant optimality criterion on the set of all families.
Then, every function F from the optimal family Fopt is a polynomial.

Comments.
e This result justifies the Taylor series approach.
e The proofs of all the results are given in the special Proofs section.

e Our result says that if we want to develop a method that would work well for all possible
problems, then polynomial approximations are the best choice. If we are only interested in a
specific class of problems, other approximations may work better. For example, in celestial
mechanics, there is a natural unit of time — e.g., one year for Earth’s motion, so the only
natural invariance is with respect to changing the starting point £ — z + b;. In this case,
trigonometric polynomials and, more generally, Poisson series (trigonometric polynomials
with polynomial coefficients) are known to be a very good approximation; see, e.g., [4].



Theorem 2. Among all families that are optimal final w.r.t. rescaling-invariant optimality crite-
rion, the family of the smallest dimension N is the family consisting of constants.

Comment. This corresponds to the original interval computations.

Definition 2. We say that a family of functions F is non-degenerate if for each variables x;, at
least one of the functions F' € F depends on x;.

Theorem 3. Among all non-degenerate families that are optimal final w.r.t. rescaling-invariant
optimality criterion, the family of the smallest dimension N is the family of all linear functions.

Comment. This result justifies affine arithmetic.

4 How to represent the corresponding polynomials?

If we use linear functions ag + ) a; - ¢; to represent the dependence of intermediate results on
the inputs z;, then a natural way to represent such linear functions is to store the corresponding
coefficients a;.

For polynomials, the choice is not so straightforward: we can use coefficients at monomials, or
we can select another basis Fy(z1,...,%,),...,Ex(z1,...,2,) in the space of all polynomials and
use coefficient w.r.t. this basis. Which is the best choice?

In explaining why polynomials are the best family, we assumed that we can arbitrarily change
the starting point and the measuring unit for each variable z;. In general, this is true, but once
we have the measurement result Z;, we can now fix the starting point (at least, for our particular
problem) — e.g., by taking this measurement result as the new starting point, and considering the
new variable Az; = z; — Z; instead of the original variable z;. For simplicity, let us assume that z;
denotes the new variable.

In this case, the only remaining freedom is the possibility to choose different measuring units
for each variable z;, i.e., x; — a; - z; for a; > 0. Similarly to the previous sections, we want each
element E; from the basis to be optimal in the sense some optimality criterion that is invariant
w.r.t. these scalings. The expansion is practically the same whether we use E; or const - E;, so we
are looking not for a single function Fj, but rather for a 1-D family of functions {C - E;}¢.

Definition 3. Let n > 0 be an integer.

e By a base polynomial, we mean a family £ of all functions of the type {C - E(z1,...,z,)},
where E is a given polynomial, and C is an arbitrary (real) constant.

e For every scaling T = a - x, and for every i, we define (T;(E))(z1,...,2n) =

E(xla"' axiflaT(xi)awi-Fla"' axnay); and ’I'Z(g) déf {E(E) |E € 8}

Theorem 4. Let > be a final scaling-invariant optimality criterion on the set of all base polyno-
mials. Then, the optimal base polynomial is a monomial.

Comments.

e This theorems justifies the use of coefficients at the monomials as the optimal way of repre-
senting polynomials.

e The resulting monomial base is “closed” under multiplication, in the sense that as long as
the product of two base functions is still within F, this product is also a base function.



o Instead of fixing the midpoint z; of the interval x;, we can fix its left endpoint z; and conclude
that the optimal representation is monomials in z; — z;. Similarly, we can fix T; and get
monomials in T; — z;. If we combine these two bases and require that the resulting base be
closed under multiplication, we get base elements of the type 1_[(35z —z;)™ - (T; — x3)™. Such

7
products — called Bernstein polynomials — are indeed helpful in interval estimates; see, e.g.,
[6] and references therein.

5 What next?

In some practical cases, the dependence of the desired quantity y on the directly measured quan-

tities x; is implicit, i.e., has the form f(z1,...,2z,,y) = 0. In such cases, it is reasonable to
describe the dependence of the intermediate computation results r; on z; also by an implicit for-
mula F(z1,...,Zn,7,) = 0. It is therefore reasonable to consider families of functions of n + 1
variables:

{Cl -Fl(wl,...,xn,y)+---+CN'FN($15---a$nay)}'

In addition to z;-invariance, we can also change the measuring unit and the starting point for y,
resultinginy —a-y+5b.

Definition 4. Let n > 0 and N > 0 be integers.

e By a N-dimensional family, we mean a family F of all functions of the type
{Cl'Fl(xl""7$n’y)+"'+CN'FN($17""wn’y)}7
where F; are given analytical functions, and C1,...,Cy are arbitrary (real) constants.

e For every transformation T' = a - x + b, and for every i, we define

(’I'Z(F))(xlaaxn) = F(mla"'axiflaT(:L'i)al'i—Fla'"axnay)

for i < n, and (Tpi11(F))(z1,-..,2n,Y) © F(z1,...,2n,T(y)); we define T;(F) %ef

{T:(F) | F € F}.
Theorem 5. Let > be a final rescaling-invariant optimality criterion on the set of all families.

Then, every function F' from the optimal family Fopy is a polynomial.

Thus, optimal informal descriptions have the form P(z1,...,z,,y) = 0 for some polynomials
P. This description is indeed useful: as part of a special Hermite-Obreschkoff scheme, it has been
successfully applied to decreasing excess width in solving ODEs [20, 21].

Comment. This result is in good agreement with the fact that for polynomial functions

f(x1,...,2,), the dependence of the range on the parameters of the function and of the box is
sometimes not polynomial but algebraic, i.e., has the form P(z1,...,zy,y) = 0 for a polynomial P;
see, e.g., [13, 15].



6 Proofs

Proofs are similar to [12, 14, 16, 17, 23, 24].

1°. Let us first prove that the optimal family F,p; is itself rescaling-invariant, i.e., that for every
rescaling 7" and for every 4, we have T;(Fopt) = Fopt-

Indeed, let T" and ¢ be given. Since Fyp; is optimal, for every other family G, we have Fop; >~
T; 1(G) (where T, ' means the inverse transformation). Since the optimality criterion > is invariant,
we conclude that T;(Fop) = Ti(T; 2(G)) = G. Since this is true for every family G, the family
Ti(Fopt) is also optimal. But since our criterion is final, there is only one optimal family and
therefore, T;(Fopt) = Fopt-
2°. Let us now show that all functions from F,; are polynomials.

Indeed, every function F' € Fop is analytical, i.e., can be represented as a Taylor series (infinite

sum of monomials). Let us combine together monomials ¢ - :v‘lil dn of the same total degree

k=di+...4+dy,; then we get

F(z) = FO2) + FO@) + ...+ F®(2) 4+ ...,

where F(*)(z) is the sum of all monomials of degree k. Let us show, by induction over k, that for
every k, the function F¥)(2) also belongs to Fops.

Let us first prove that F© (2) € Fopt- Since the family Fop is rescaling-invariant, we can apply
the transformation Tx = A - z to all n variables z; and conclude that for every A > 0, the function
F() - 2) also belongs to Fop. For each term F(*)(z), we have F®)(\ . 2) = A\¥ . F)(2), s0

FA-2)=FO@) 4+ X FO(2) 4 ... € Fops.

When A — 0, we get F(\-2) — F(0)(2). The family F,p is finite-dimensional hence closed; so, the
limit F(©) (z) also belongs to Fopi. The induction base is proven.

Let us now suppose that we have already proven that for all k < s, F(¥) (2) € Fopt- Let us prove
that F(%)(z) € Fopi. For that, let us take

G(z) = F(z) — FI(z) —... — F&1(2).
We already know that F(U, ... F(=1) ¢ Fopt; 80, since Fopi is a linear space, we conclude that
G(z) = FO(2) + FOT(2) 4+ ... € Fopi-
The family Fop¢ is rescaling-invariant, so, for every A > 0, the function
GA-2) =X -FO (2) + X1 FOHD () 4.

also belongs to Fopt. Since Fopy is a linear space, the function

Hy(z2) €A~ G- 2) = FO(2) + X FOTD () + 22 FEH(5) 4 .
also belongs to Fopt.
When A — 0, we get Hy(2) — F®)(2). The family Fp; is finite-dimensional hence closed; so,
the limit F(*)(z) also belongs to Fop;. The induction is proven.
Now, monomials of different degree are linearly independent; therefore, if we have infinitely
many non-zero terms F¥) (), we would have infinitely many linearly independent functions in a



finite-dimensional family F;,; — a contradiction. Thus, only finitely many monomials F(k)(z) are
different from 0, and so, F'(z) is a sum of finitely many monomials, i.e., a polynomial.
Thus, Theorem 1 is proven.

3°. Similarly, if we consider re-scaling w.r.t. a single variable, we will conclude that once a polyno-
mial F' belongs to the optimal class Fopt, all its monomials also belong to this class.

This proof can be repeated for the case of scaling (as in Theorem 4). Since in Theorem 4,
we are interested in the optimal 1-D space, and this space contains a monomial, the optimal base
polynomial is a monomial. Thus, Theorem 4 is proven.

4°. Let us prove that if a function F(z,y) belongs to Fop, then for every i, its partial derivative
F; with respect to x; also belong to Fopt-

Indeed, since the family Fop is shift-invariant, for every h > 0, we get F(zi1,...,2i—1,z; +
hyZit1,...,2Tn) € Fopt- Since the family Fop is a linear space, we conclude that a linear combination
h=YF(...,z;i + h,...) — F(...,3,...)) of two functions from F,, also belongs to Fopt. Since
the family Fp is finite-dimensional, it is closed and therefore, the limit F;(z,y) of such linear
combinations also belongs to Fopg.

5°. Due to Parts 2-4 of this proof, if any polynomial from F,,; has a non-zero part F®) of degree
k > 0, then it also has a non-zero part ((F*)); of degree k — 1. Similarly, it has non-zero parts of
degrees kK — 2,...,1,0.

So, in all cases, Fop; contains a non-zero constant. Among all families that are optimal final
w.r.t. rescaling-invariant optimality criterion, the family of the smallest dimension N is the 1-D
family. Since every optimal family contains constants, this 1-D optimal family cannot contain
anything else — so it simply consists of constants. This proves Theorem 2.

Similarly, of an optimal family contains a function that depends on z;, it should also contain the
term proportional to z;. Thus, if an optimal family is non-degenerate in the sense of Definition 2, it
contains at least n+ 1 independent functions: a non-zero constant and n variables z;. Thus, among
all non-degenerate families that are optimal final w.r.t. rescaling-invariant optimality criterion, the
family of the smallest dimension N is the family of all linear functions — which has dimension n+ 1.
This proves Theorem 3.

7 Conclusions

We prove that linear approximations (used in affine arithmetic) and polynomial approximations
(used in Taylor series method) are indeed optimal. We also prove that the optimal way to further
decrease the excess width is to use implicit polynomial dependence; the corresponding Hermite-
Obreschkoff methods has indeed been successful.
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