Complexity of Single-Agent and Equilibrium-Based Multiagent
Planning and Plan Checking: Approach When We Have a List of Valid
States

Chitta Baral and Vladik Kreinovich

Abstract

In a recent paper M. Bowling, R. Jensen, and
M. Veloso proposed a new formalization of the
problem of multiagent planning — a formaliza-
tion that is based on the (intuitively natural)
notion of an equilibrium. In this paper we an-
alyze the computational complexity of the cor-
responding equilibrium-based multiagent plan-
ning and plan checking. Within the traditional
approach in which states are described by flu-
ents, the computational complexity of plan-
ning under incompleteness is PSPACE-hard
already for a single agent; therefore, to make a
meaningful comparison between the complex-
ity of single-agent and multi-agent planning, we
analyze complexity in a different approach, in
which a list of valid states is assumed to be
explicitly given.

1 Introduction

1.1 Multiagent Planning Is Important

Traditionally, planning was about planning for a single
agent. For a single agent, it may be computationally
difficult to find an optimal plan, it may be even difficult
to check that the plan is good, but at least we know what
exactly we want from the plan: that, as the result of this
plan, we satisfy the desired goal.

The situation in which there is only agent is, of course,
an oversimplification. There are usually multiple agents,
and the action of each agent may influence the results
of the other agents. It is therefore desirable to take this
influence into consideration when formulating and ana-
lyzing planning problems, In other words, it is necessary
to consider multiagent planning.

1.2 Multiagent Planning Is Difficult to
Describe

For multiagent planning, it is not easy even to define
what it means for a multiagent plan to be success-
ful. Preliminary definitions have been discussed, e.g., in
[Jensen and Veloso, 2000; Wilkins and Myers, 1998]. A

very convincing definition of multiagent planning — mo-
tivated by general notion of an equilibrium from game
theory — was introduced in [Bowling et al., 2002].

The main idea behind the notion of an equilibrium
is that there is no incentive for any agents to abandon
the mutually agreed strategies. In other words, if one
agent ¢ replaces his original strategy A; with some other
strategy A} # A;, this replacement will not improve this
agent’s success — and therefore, it makes sense for all the
agents to stick to their pre-agreed strategies.

In game theory (see, e.g., [Owen, 1995]), success is
characterized by a real number. In Al a success is usu-
ally described in “yes”-“no” terms: whether we have
achieved the goal or not. Thus, for deterministic ac-
tions, we have two possible values of success: success
achieved and success not achieved. For a more realis-
tic description, in which we take into consideration non-
deterministic consequences of different actions, we have
three natural levels of success:

e the lowest is when for all possible results of the ac-
tions, the agent does not achieve its goal;

e the intermediate is when for some possible result of
the actions, the agent achieves its goal, but for some
other possible results, the agent does not achieve its
goal;

o the highest is when for all possible results of the
actions, the agent achieves its goal.

(It is worth mentioning that, for the purpose of clar-
ity, we are somewhat simplifying the descriptions from
[Bowling et al., 2002].)

In these terms, the equilibrium means the following:

o if, for the original set of strategies, the agent i never
succeeds, then, no matter how this agent changes his
strategy, this agent will never succeed;

o if, for the original set of strategies, it is possible that
the agent ¢ does not succeed, then, no matter how
this agent changes his strategy, there will always be
a possibility that this agent does not succeed.

1.3 It Is Important to Analyze
Computational Complexity of
Multiagent Planning

One of the main obstacles that prevent widespread prac-
tical applications of planning is that planning in gen-
eral is known to be a computationally difficult prob-
lem; see, e.g., [Baral et al., 2000; Erol et al., 1995;
Liberatore, 1997; Littman, 1997] and references therein.
Main practical successes of planning come from consid-
ering tractable (easy-to-solve) particular cases.

Even planning for a single agent is a difficult com-
putational problem; adding extra agents can only make
this problem more complex. It is therefore desirable to
analyze how exactly more difficult is the corresponding
multiagent problem.

1.4 For This Analysis, We Need to
Further Specify the Definitions

Before we proceed with this analysis, we need to make
one important comment. The original definition of the
multiagent equilibrium was given from the viewpoint of
clarity and mathematical accuracy; this definition is very
precise and, by itself, does not require any clarifications
or modifications. However, if we want to analyze its
computational complexity, we must provide further clar-
ifications.

Let us give a simple example of why it is important. A
part of the definition of the multiagent planning domain
is a set of valid states S which is defined as a subset
S C 27, where P is a finite set of propositions (fluents)
that describe different states. There are two different
natural computational interpretations of this definition:

e we can assume that we are given a list of valid states;

e alternatively, we can assume that we are given an
algorithm that, given a state, checks whether this
state is valid or not.

The second interpretation is a particular case of the first
one: if we have a list, then, of course, we can design a
validity-checking algorithm by simply comparing a new
state with all the states form the given list. However,
from the viewpoint of computational complexity, these
two interpretations are not equivalent. For example, sup-
pose that every state is valid, and we are interested in
checking whether there exists a state for which a given
propositional combination of fluents is true. Then:

o if we are given a list of states, then this checking
can be done by simply testing all the states from the
given list; the time necessary for this check is linear
in the length of the input, so in this formulation, the
desired checking is feasible (i.e., polynomial time);

e if, instead, we are given a validity-checking algo-
rithm (a trivial one that returns “true” for ev-
ery state), then the desired checking problem be-
comes the problem of propositional satisfiability —
the problem known to be NP-hard.

(In this particular case, the examples given in [Bowling
et al., 2002] seem to indicate that the authors of this
paper have the first interpretation in mind.)

1.5 For a Meaningful Comparison of
Computational Complexity of
Single-Agent and Multi-Agent
Planning, We Need a Different
Approach to Describing Complexity

In the traditional approach to analyzing complexity of
planning, states are described by fluents. In this ap-
proach, the computational complexity of planning under
incompleteness is PSPACE-hard already for a single
agent; see, e.g., [Baral et al., 2000].

Therefore, to make a meaningful comparison between
the complexity of single-agent and multi-agent planning,
we must analyze complexity in a different approach,
when a list of valid states is explicitly given.

In this paper, we start with formulating this different
approach; then, we re-visit the problems of single-agent
planning in this alternative approach, and finally, we an-
alyze the complexity of the multiagent planning in this
approach.

2 Alternative Approach to Describing
States When Analyzing
Computational Complexity of
Planning and Plan Checking

2.1 How to Describe States: Traditional
Approach

We have already mentioned that even for a single agent,
the planning problem is computationally difficult; in
several reasonable formalizations, this problem is NP-
hard; see, e.g., [Baral et al., 2000] and references therein.
These formulations are based, in particular, on the fol-
lowing idea of how we can describe different states.

To find out what a state is, we can perform certain
measurements and/or expert estimates. As a result of
each measurement, we get the values of the measured
quantities; these values characterize the state. In en-
gineering and control, we usually consider real-valued
quantities; as a result, each measurement result is a real
number, and a state is therefore described as a sequence
of real numbers. In AT — specially in logic-based AI — it
is natural to consider fluents, i.e., “true”-“false” charac-
teristics describing a given state. From this viewpoint,
a state can be described by a sequence of fluents. In
other words, we are given a list of n fluents fi,..., fn,
and a state is characterized by the corresponding n truth
values.

2.2 The Problem with the Traditional
Approach
The problem with this description is that to get a better

and better description of a state, we must add more flu-
ents. However, for n fluents, we have 2" possible states,

so for reasonable n, we have a very large number of possi-
ble states. In the above-mentioned NP-hardness results,
we implicitly assume that all 2" states are possible. As
a result, even the problem of finding a state with given
properties becomes difficult, and planning becomes NP-
hard — or even PSPACE-hard.

The assumption that we have 2" possible states means
that we assume that all the fluents are independent. In
reality, fluents are heavily dependent; as a result, only
some of the 2" combinations actually correspond to valid
states: once the few main fluents are described, most
states are described uniquely; some still need to be clar-
ified, so we may need extra fluents, but we definitely do
not double the overall number of states after introducing
each extra fluent.

2.3 How to Describe States: Alternative
Approach (Implicitly Used in
Describing Multiagent Equilibria)

Summarizing: instead of describing states as interpreta-

tion of a set of fluents, it is reasonable to assume that

we have a list S of possible states.

We also have a finite list A of actions. Since we con-
sider a deterministic case, we assume that we know,
for each state s and for each action a, a consequence
res(a, s) € S of applying this action.

2.4 This Approach Has Been Used in
Planning and Multiagent Planning —
Implicitly and Explicitly

Traditionally, in the analysis of computational complex-

ity, states are described by fluents because this is what

planning algorithms like STRIPS take as inputs. How-
ever, in examples that explain the commonsense meaning
of planning and plan checking (both single-agent or mul-
tiagent), in many case, an explicit list of valid states is
given. In other words, the alternative approach to state
description is in a very good accordance with common
sense and is, in this sense, implicitly used in planning.
It is also explicitly used in some papers, even in some
papers that analyze the computational complexity of
multiagent planning problems; see, e.g., [Pynadath and
Tambe, 2002].

2.5 Computational Complexity of
Planning and Plan Checking within
the Alternative Approach to State
Description: Case of a Simple Goal

In the traditional description of the planning problem,

we use a simple description of the goals: namely, we

assume that we know the initial state sg, and that the
goal is to reach a state from a given subset (sublist)
gCs.

A plan is then defined as a sequence of actions
ai,...,an. We say that a plan is successful if after this
sequence of actions, we get a state from G, i.e., that
res(an,res(an_1,---(res(ai, so0)--.)) € G. The result-
ing general problem of planning for a single agent in a
deterministic environment is easy to solve:

e From the very definitions, it follows that there exists
a polynomial-time algorithm that, given an instance
of the planning problem and a plan, checks whether
this plan is successful.

e There also exists a polynomial-time algorithm that,
given an instance of the planning problem, either
finds a successful plan or (correctly) reports that
there is no successful plan.

(In graph terms, a plan is a path from the initial state to
to one of the final states; thus, this result immediately
follows from Dijkstra’s algorithm.)

3 Different Approach to Describing
States Requires a Different Approach
to Describing Goals

3.1 How Goals are Described in Real Life

In the previous section, we followed the traditional plan-
ning approach and described goals as desired final states.
In real life, a goal is described not just by the final state
but also by the efforts that led to this goal. For example,
when we plan the motion of an industrial robot, we not
only specify where this robot must be at the end, but
also that this robot should not go out of the industrial
zone, and that it should not spend too much energy on
its actions. In short, the actual goal depends not only
on the final state, but also on the actions that led to this
state and on the intermediate states.

3.2 In Traditional Description of States,
The Description of Goals Can Be
Simplified

In traditional description of the planning, the description
of the goal is usually simplified by claiming that the goal
is simply one of the final states. This simplification can
be done without losing generality because we can always
add history (previous actions and previous states) to our
description of a state.

3.3 In a New Description of States, the
Traditional Goal Simplification Is No
Longer Possible: A New Description of
Goals

In our new formulation of the planning problem, when
the states come from a given list, we can no longer do
that: if we have S states, then after T steps, we get ST
possible histories; hence, for large T', we cannot describe
all the histories as a list.

As a result, for our new description of states, we can-
not always use the simplified description of a goal as a
final state or as a set of desirable final states. Instead,
we must describe a goal as a feasible function (i.e., poly-
nomially evaluable) that, given a sequence of actions
ai,---,a, and a sequence of states si,...,s,, returns
“true” or “false” depending on whether the goal is sat-
isfied or not.

3.4 Some Simplification Is Still Possible

Some simplification is still possible here: since we con-
sider a deterministic case, the states are uniquely deter-
mined by actions, so we do not need to consider states
at all: it is sufficient to consider sequences of actions. In

other words, we have a function g(as,...,a,) that maps
sequences of n actions into “true” or “false”; we say that
aplan (ai1,...,a,) is successful if g(a, ..., a,) is “true”.

4 A Different Approach to Goal
Description Necessitates a Different
Description of a Plan: Restriction to
Plans of Polynomial-Time Duration

In principle, the above definition of a plan can lead to
arbitrarily long plans.

(From the practical viewpoint, the same arguments
that show that only polynomial-time computations are
practically possible can be used to conclude that only
polynomial-length plans are feasible. In other words, we
have a (growing) polynomial P(n) that describes, for
each input length n, the largest possible duration of a
plan. The problem is: given a planning situation whose
description length is n, to produce a feasible (= of du-
ration < P(n)) successful plan.

5 Single Agent, Deterministic Actions:
Results on Computational
Complexity of Planning and Plan
Checking

Let us describe the computational complexity of a single-
agent planning and plan checking in this new formula-
tion.

Proposition 1. (single agent, deterministic actions,
realistic goal) There exists a polynomial-time algorithm
that, given a plan, checks whether this plan is successful.

As usual in computational complexity (see, e.g., [Pa-
padimitriou, 1994]), by complexity of planning, we
means the complexity of checking whether there is a
plan.

Proposition 2. (single agent, deterministic actions, re-
alistic goal) The planning problem — i.e., the problem
of checking the existence of a successful plan — is NP-
complete.

(For reader’s convenience, all the proofs are given in the
special Proofs section.)

6 How to Describe Non-Deterministic
Actions in This Approach
In general, the goal depends on the actions and states

at different moments of time. In the deterministic case,
actions uniquely determine the states, so, without losing

generality, we can assume that the goal g only depends
on the sequence of actions.

In real-life, the results of an action are not uniquely
determined by the agents’ action; they are non-
deterministic in the sense that they depend on some
external actions and properties e, ..., e, that are be-
yond our control. We know the set of possible values
of each e;; once we know the agent’s actions a; and the
values ej, we are able to determine all the states. We
can substitute this dependence of the states s; on a; and
e; and thus, conclude that, in general, the goal can be
described solely in terms of a; and e;.

In other words, we have a finite set 4 of actions, and
we have a finite set £ of possible external actions. We
have a feasible function g(ai,...,an,e1,...,€y,) that,
given a sequence of actions and a sequence of external
actions, returns “true” or “false”.

We must also have a function that describes, for each
state s, for each sequence of external actions ey, ..., emn,
and for each action a, the resulting state s’.

7 Planning for Situations with
Non-Deterministic Actions: Necessity
for Conditional Actions

The possibility of external actions changes the notion
of a plan. In the deterministic case, once our actions
are fixed, we know what will happen to a system; so to
describe a plan, it is sufficient to describe the action a;
performed at each moment t.

In non-deterministic case, we may end up with differ-
ent states at the same moment of time, so it is reason-
able to plan different actions depending depending on
where we end up. In other words, instead of the original
actions, we must consider conditional actions, i.e., func-
tions from the set of all states to the set of all actions.

To describe each conditional action, we must describe,
for each moment ¢ and for each state s € S, the corre-
sponding action a; . Thus, a plan is now a sequence
ais, where 1 <4 < n and s € S. For each plan and for
each sequence of values ey, ..., e, of external variables,
we can compute the actual states and thus, the value of
the goal function.

We say that a plan is:

o necessarily successful if g=“true” for all possible val-
ues €1,...,Em;

o possibly successful if g=“true” for some possible val-
ues €1,...,Em.-

8 Single Agent, Non-Deterministic
Actions: Computational Complexity
of Planning and Plan Checking

Proposition 3. (single agent, non-deterministic ac-

tions, realistic goal) Checking whether a given plan is
necessarily successful is coNP-complete.

Proposition 4. (single agent, non-deterministic ac-
tions, realistic goal) Checking whether a given plan is
possibly successful is NP-complete.

Proposition 5. (single agent, non-deterministic ac-
tions, realistic goal) Checking the existence of a neces-
sarily successful plan is YoP-complete.

Proposition 6. (single agent, non-deterministic ac-
tions, realistic goal) Checking the existence of a possibly
successful plan is NP-complete.

9 Description of Equilibrium-Based
Multiagent Planning within the
Alternative Approach to State
Description

For each agent k (1 < k < K), we have a set A®) of
possible actions. We also have a finite set S of possible
states and a finite set £ of possible external actions. For
each agent k, we have a feasible function

(2)

g(agl)7a1 ,...,G%K),Cl,...,em)

that, given the actions of all the agents and all the ex-
ternal actions, returns “true” or “false” depending on
whether the goal of k-th agent is satisfied or not.

We must also have a function that describes, for each
state s, for each sequence of external actions ey, ..., ey,
and for each combination of agent’s action a(*),a(® ..,
the resulting state s'.

A plan consists of strategies of each agent, and each
strategy is (like in the previous section) a sequence of
conditional actions. Similarly to the previous section,
we say that a plan is

o necessarily successful for agent the k if gp=“true”
for all possible values eq,...,en;

o possibly successful for the agent k if gr="“true” for
some possible values ey, ..., en.

We say that a plan is a equilibrium if the following two
conditions are satisfied for each agent k:

e if this plan is not necessarily successful for this
agent, then, if the agent k changes its strategy, the
result will still not be necessarily successful for this
agent;

e if this plan is not possibly successful for this agent,
then, if the agent k changes its strategy, the result
will still not be possibly successful for this agent.

10 Multiple Agents: Computational
Complexity of Planning and Plan
Checking

Proposition 7. Checking whether the existing plan is
an equilibrium in a Iy P-complete problem.

Proposition 8. The problem of checking the existence
of an equilibrium plan belongs to the class Y3P.

11 Conclusion and Future Work
In this paper, we:

e explicitly formulate and develop an alternative ap-
proach to the analysis of computational complexity
of plan checking, an approach in which the valid
states are given as a list;

e we then use this alternative approach:

— to re-visit the problems of computational com-
plexity of single-agent planning, and

— to analyze the computational complexity of
multiagent planning.

By comparing Proposition 7 with Proposition 3 and 4
(and Proposition 8 with Propositions 5 and 6), we see
that our results are reasonably optimistic: Namely, we
prove that although the equilibrium-based multiagent
planning problem is more complex than the correspond-
ing single agent planning problem, the increase in com-
plexity is, in some natural sense, the smallest possible —
exactly one level on the polynomial hierarchy.

Informally, multiagent planning is not that much more
complez than single-agent planning.

Open problems: it is desirable to extend these results
to even more realistic models of agents, e.g., to models
of communicating agents; these models (and the cor-
responding computational complexity results) are de-
scribed, e.g., in [Pynadath and Tambe, 2002].

12 Proofs

12.1 Proof of Propositions 1-2

The proof of Proposition 1 is straightforward.

To prove Proposition 2: the existence of a plan has
the form Jay ...3a, g(ai,- .., a,) for a feasible property
g; thus, this problem is in the class NP.

Vice versa, every problem from the class NP (e.g.,
propositional satisfiability) can be thus represented, so
this planning problem is indeed NP-complete.

12.2 Proof of Proposition 5

The existence of such a plan is equivalent to
Jdai s, -.-Jdan s Ver .. . Ve, g, where s; denotes i-th state
in the listing S of all the states, and g is feasible; thus,
this existence belongs to the class ¥2P.

To prove that it is ¥sP-complete, it is thus sufficient
to prove that a known ¥sP-complete problem — checking
dzi ... 3z, Vy1 ... Vy F for Boolean variables z; and y;
and a propositional formula F' — can be reduced to this
planning problem.

Indeed, for this reduction, we can take the following
planning problem:

e this problem has two actions, “true” and “false”;
e it has two similar external actions;

e the goal function g that does not depend on the
states at all — only on the actions z; and external
actions y;, as F(Z1,..., &k, Y1, -+ Yn)-

In this case, there is no reason to even consider con-
ditional actions, and the necessarily successful plan is
possible if and only if the above quantified propositional
formula is true.

12.3 Proof of Proposition 6

The existence of such a plan is equivalent to
Jdais, .. .Janssder ... Jepg, where g is feasible; thus,
this existence belongs to the class NP. Due to Propo-
sition 2, already a subclass of this problem is NP-
complete; thus, the new problem is NP-complete as well.

12.4 Proof of Propositions 3 and 4
Propositions 3 and 4 are proved similarly.

12.5 Proof of Propositions 7 and 8

The fact that a plan a is an equilibrium can be described
as saying that for every k, the following two statements
hold:

(Fey ... Fem —gr) = (Va®3ey ... Fesm —gi)
and
(Vey ...Ven, gr) — (Va(k)\fel ... Vem gk)-

The first statement can be reduced to Ve g; VVa(®) Je —gy,
(where Ve is an abbreviation for Ve; ...) —i.e., to a state-
ment from II,P; the second statement can also be re-
duced to a statement of the same (actually, simpler)
type. Thus, the plan checking problem belongs to the
class II,P.

So, the existence of such an equilibrium can be de-
scribe as 3a G, where G € II,P —i.e., by a formula from
the class X3P; Proposition 8 is proven.

To complete the proof of Proposition 7, it is thus suf-
ficient to prove that a known II;P-complete problem —
checking Vz; ...Vz;3y; ... Jym F for Boolean variables
Z;, yj, and a propositional formula F' — can be reduced
to this plan checking problem.

Indeed, we can take the following planning problem:

e it has two actions, “true” and “false”;
e it has two similar external actions;

e the goal function g; that does not depend on the
states at all — only on the actions z; and external
actions y;, as

g1 = (.’L'()&y())v (_'xo&_'F(xh"')xl;yla"'7ym));

e the goal functions g, k > 1, always return “true”.

In this case, every plan is necessarily successful for all
the agents except maybe the agent 1, so to check that
the plan is an equilibrium, it is sufficient to check that
this plan is an equilibrium for agent 1.

For this agent, for a sequence of actions starting with
a “true” action xo=“true”:

e sometimes, we have success (when yo=“true”), and

e sometimes, we do not have success (when

yo="“false”).

In other words, the corresponding plan is possible suc-
cessful but not necessarily successful for agent 1.

The only case when the plan including this strategy
of agent 1 is an equilibrium is when there is no other
strategy of agent 1 that will make this agent necessar-
ily successful — i.e., when for all possible other strate-
gies x1,...,x;, there exists a possible case y, ...,y for
which the plan is not successful — i.e., for which F is
true. This condition is exactly what the original quanti-
fied propositional formula describes. Thus, we have the
desired reduction, and so Proposition 7 is proven.

References

[Baral et al., 2000] Chitta Baral, Vladik Kreinovich,
and Radl Trejo. Computational complexity of plan-
ning and approximate planning in the presence of
incompleteness. Artificial Intelligence, 122:241-267,
2000.

[Bowling et al., 2002] Michael Bowling, Rune Jense, and
Manuela Veloso. A formalization of equilibria for
multiagent planning. In proceedings of the AAAI-
2002 Workshop on Multiagent Planning, Edmonton,
Canada, August 2002.

[Erol et al., 1995] K. Erol, D. S. Nau, and V. S. Sub-
rahmanian. Complexity, decidability and undecidabil-
ity results for domain-independent planning. Artificial
Intelligence, 76:75-88, 1995.

[Jensen and Veloso, 2000] R. Jensen and M. Veloso.
OBDD-based universal planning for synchronized
agents in non-deterministic domains. Journal of Ar-
tificial Intelligence Research, 13:189-226, 2000.

[Liberatore, 1997] P. Liberatore. ~ The complex-
ity of the language A. FElectronic Transac-
tions on Artificial Intelligence, 1:13-28 (1997)

http://www.ep.liu.se/ej/etai/1997/02

[Littman, 1997] M. Littman. Probabilistic propositional
planning: representation and complexity. AAAI’97,
748-754.

[Owen, 1995] G. Owen. Game Theory. Academic Press,
New York.

[Papadimitriou, 1994] C. H. Papadimitriou. Computa-
tional Complerity. Addison-Wesley, Reading, MA,
1994.

[Pynadath and Tambe, 2002] David V. Pynadath and
Milind Tambe. Multiagent teamwork: analyzing the
optimality and complexity of key theories and mod-
els. In Proceedings of AAMAS’02, Bologna, Italy, July
15-19, 2002,

[Wilkins and Myers, 1998] D. E. Wilkins and K. L. My-
ers. A multiagent planning architecture. In Proceed-

ings of the Fourth International Conference on Artifi-
cial Intelligence Planning Systems, 145-162.

