Can Quantum Computers Be Useful When There Are
Not Yet Enough Qubits?

Luc Longpré and Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
{longpre,vladik } @cs.utep.edu

Formulation of the problem. Quantum computers (see, e.g., [5]) have a potential of speeding
up computations in many important problems. For example:

e By using Grover’s algorithm [3, 4], for any given error probability ey, we can search for an
item in an n-item (un-sorted) database in ©(y/n) steps (where checking that a given element
is the desired one is counted as a single step). By contrast, the best possible probabilistic
algorithm that locates an item with an error probability < ey requires O(n) steps.

e By using Shor’s algorithm [6], we can factorize integers in polynomial time instead of the
best known exponential time for non-quantum deterministic algorithm (or even non-quantum
probabilistic algorithms with any reasonable probability).

In view of the great potential for computation speedup, engineers and physicists are actively working
on the design of actual quantum computers. There already exist working prototypes. However, at
present, these computers can only solve trivial instances of the above problems, instances that have
already been efficiently solved by non-quantum computers. Main reason: the existing quantum
computers have only a few qubits, while known quantum algorithms require a lot of qubits; for
example:

e Grover’s algorithm requires a register with ¢ = log(n) qubits for a search in a database of n
elements;

e Shor’s algorithm requires O(log(n)) qubits to factor an integer n, etc.

Of course, while we only have 2 or 3 or 4 qubits, we cannot do much. However, due to the active
research and development in quantum computer hardware, we will (hopefully) have computers with
larger number of qubits reasonably soon.

A natural question is: while we are still waiting for the qubit register size that is necessary
to implement the existing quantum computing algorithms (and thus, to achieve the theoretically
possible speedup), can we somehow utilize the registers of smaller size to achieve a partial speed
up?

In this paper, we start answering this question by showing the following: for quantum search,
even when we do not have enough qubits, we can still get a partial speedup. The fact that we do

get a partial speedup for quantum search makes us hope that even when we do not have all the
qubits, we can still get a partial speedup for other quantum computing algorithms as well.

We can put the above question in a more general perspective of resource-bounded computations.
In classical computational complexity, algorithms are typically analyzed in terms of their time and
space requirements. In many occasions, there is a space-time trade-off, meaning that, for example,
if space is limited, the algorithm can still work, given more time resource. We consider the number
of qubits in a quantum computation as an additional resource, and quantum algorithms efficiency
should therefore be evaluated in terms of time, space, and number of qubits. Now, an interesting
question is to consider whether an algorithm can trade-off some quantum qubits for time and space.
We show below that Grover’s algorithm offers such a trade-off with respect to qubits and time. We
do not see how to implement any non-trivial trade-off in other well-known quantum algorithm, and
so we offer this as an interesting open problem.

Grover’s algorithm: a simple result. Let us assume that we are interested in searching in
an unsorted database of n elements, and that instead of all log(n) qubits that are necessary for
Grover’s algorithm, we only have, say 90% or 50% of them. To be more precise, we only have a
register consisting of r = « - log(n) qubits, where 0 < o < 1. How can we use this register to speed
up the search?

Grover’s algorithm enables us to use a register with r qubits to search in a database of N = 2"
elements in time C - v/N. For our available register, r = « - log(n), hence N = 2" = n®, so
we can use Grover’s algorithm with this qubit register to search in a database of size n® in time
C-VN =C n*?

To search in the original database of size n, we can do the following:
e divide this original database into n'~® pieces of size n®; and then

e consequently apply Grover’s algorithm with a given qubit register to look for the desired
element in each piece.

Searching each piece requires C'-n®/?2 steps, so the sequential search in all n'~% pieces requires time

nl=e . (C-n*?) = C - n!=*2. Since a > 0, we get a speedup.

Comment. In Grover’s algorithm, we have a database of n elements, and we search for an element
that has a certain (easy-to-test) property. At the end of Grover’s algorithm, we apply measurement
to the resulting quantum state to get an element (one of the original n elements), and then we check
whether this element satisfies the desired property. If it does, we have solved the search problem;
if it does not, we claim that there is no element with this property in the given database. There
is a probability of an error: when an element actually exists, but the algorithm does not find it.
Grover’s algorithm returns the correct answer with a probability > pg; the threshold probability
po ~ 1 must be fixed from the very beginning, as one of the parameters of this algorithm.

When we divide the original list into n'!~® pieces and use the same probability of error
P(er|Ing) < 1—pg for search in each piece k, then the probability of an overall error can be
estimated as P(er) < P(Iny)-P(er|Iny)+...P(Ing)-P(er|Ing)+..., where P(Ing) is the prob-
ability that the first element with the desired property is in k-th piece. Since P(er|Ing) <1 —po
and Y P(Ing) = 1, we conclude that P(er) < 1—pg. In other words, our proposed modification of
Grover’s algorithm returns the correct answer with the probability > pog.

Grover’s algorithm: discussion. The larger «, the better the speedup:

e when « tends to 0, the computation time tends to C' - n, i.e., to the time of non-quantum
search;

e when « tends to 1, the computation time tends to C'-n'/2, i.e., to the time of quantum search.

A curious thing is that in our estimates, for all values «, we get a power law. We believe that this
fact is not a mathematical coincidence, there is a deep reason behind it.

Indeed, let us fix a computational setting — be it non-quantum computing, quantum computing
with potentially unlimited number of qubits, or quantum computing with a restricted number of
qubits, and let ¢(n) be the “optimal” (smallest possible) computation time that is necessary, within
this setting, to search for an element in a database of n elements. We want to show that under
certain reasonable conditions, ¢t(n) ~ n? for some real number S.

Informally, these reasonable conditions are that this algorithm should be optimal and that it
should work on real-life databases. Let us describe what these two conditions mean.

Definition 1. We say that a function t(n) from natural numbers to real numbers > 1 describes an
optimal algorithm if it satisfies the following two conditions:

e the function t(n) is (non-strictly) increasing, and

e for some constant CT > 0, we have t(n1 - n2) < CT -t(n1) - t(n2) for all natural numbers ny
and ny.

Let us present motivations for these conditions. First, if m > n, then, to each database of size
m, we can add n — m extra fictitious elements and thus search it in ¢(n) steps. Since ¢(m) is the
smallest possible time for searching databases of m elements, we conclude that ¢(m) < t(n), i.e.,
that the function ¢(n) is non-strictly increasing.

The second condition comes from the fact that, if n = ny - ny, then we can subdivide the
original database into n; pieces of size ny. For each piece, we can check, in ¢(ns) steps, whether
this piece contains the desired element; we thus have an auxiliary algorithm A that checks (in ¢(n2)
steps) whether each piece contains the desired element. Now, we can view the original database
as a database of n; pieces. We can apply the same (optimal) algorithm to this database of n;
“elements”, and in ¢(n;) calls to A, find the piece that contains the desired element. Each call to
A requires t(ng) steps; thus, overall, we need t(n1) - t(n2) steps.

If there was no overhead, then, since t(n) (= t(n1-n2)) is the smallest possible time for searching
databases of n elements, we would be able to conclude that ¢(n) < #(n1) - t(n2). In reality, there
is a possibility of an overhead, so we require that t(n) < C* - t(ny) - t(ng), where a constant C*
describes the necessary amount of overhead.

Definition 2. We say that a function t(n) describes an algorithm that works on real-life databases
if for some constant C~ > 0, we have C~ - t(n1) - t(n2) < t(n1 - na) for all natural numbers ny
and no.

The motivation for this definition is provided by the following argument. The need for a speedup
is the most important for large databases, when n is large. However, large databases are rarely
located on a single homogeneous medium, they usually have a hierarchical structure. Let us consider
the simplest case when we have the simplest possible two-level hierarchy: database — pieces —
elements, and all the pieces are of the same size ny. In other words, the database consists of n
pieces, and each piece has ns elements in it.

In some of such cases, the pieces are physically separated to the extent that we cannot directly
run our search algorithm on the database as a whole. Instead, we can use our algorithm to search
into each piece, and then use the same algorithm to search for the right piece. We have already
shown that this arrangement requires time ¢(n1)-t(ng). Since we require that the original algorithm

finish its search in time #(n) for all databases — including hierarchical ones, in the idealized no-
overhead situation, we would conclude that this number of steps should not exceed t(n) (= t(ni-n29)),
i.e., that ¢(n1) - t(n2) < t(n). Similarly to the previous definition, the constant C'~ take care of the
possible overhead.

Proposition. If a function t(n) describes an optimal algorithm that works on real-life databases,
then t(n) = ©(nP) for some g > 0.

Proof. Since the function #(n) is increasing, it is either bounded by a constant lim,,_, t(n), or it
tends to co as n — oo. If the function ¢(n) is bounded, then the proposition is true for § = 0. So,
it is sufficient to consider the case when t(n) — oc.

Due to our assumptions, ¢(n) is a positive-valued non-strictly increasing function for which

c™- t(nl) . t(ng) < t(n1 . ’ng) < cT. t(nl) . t(ng) (1)

for all natural numbers n; and ns.
Since t(n) > 1 for all n > 0, we can take logarithms of both sides and conclude that

¢ +T(n) +T(ng) <T(n1-n2) <c™ +T(n1) + T(ne), (2)

where we denoted ¢~ % In(C~), ¢t ¥ In(C+), and T(n) ¥ In(¢(n)). Since the values t(n) are
non-strictly increasing, their logarithms 7'(n) > 0 also form an increasing function.

Let us fix two natural numbers n, and ny. For every two positive integers k1 and ks, if nlfl < nIch,
then, due to the monotonicity of T'(n), we have T(n%') < T'(nk?). Due to (2), we have T(nk?) <
ky - T(ng) + ko - ¢t and T(n®) > ky - T(n1) + ki - ¢~ Thus, ky - (T(n1) +¢) < ky - (T (ng) +ct).

Since T'(n) = In(t(n)) — oo, for large enough n;, we get T'(n;) + ¢~ > 0 and T'(n;) + ¢t > 0; so
we can conclude that ki /ks < r, where r & (T(ny) + ¢*)/(T(n1) +).

The inequality n’fl < n’QC2 is equivalent to k1 - In(ny) < ko - ln(ng), ie., to k1/ky < R, where
R In(ng)/In(ny). Thus, every rational number k1 /k2 that is smaller than R is also smaller than
r. By taking rational numbers that are arbitrarily close to R, we conclude that R < r, i.e., after
rearranging terms, that

T(ni) +c < T(ng) +c*
In(n1) — In(ng)

for all ny and ny. For the ratio r(n) def T'(n)/In(n), we conclude that

1 1
o) = o < ¢ (s + i)

where ¢ % max(|c™|, |cT]); therefore, the sequence r(n) converges. Let us denote its limit by 3.

If we tend ng — oo in (3), we conclude that (T'(n1) + ¢)/In(ny) < B for every natural number
ni, i.e., that for every n, we have T'(n) < - In(n) —

Similarly, when we take n; — oo, we conclude that for every n, we have 3-In(n) — c* < T'(n);
s0,

3)

B-In(n) —ct <T(n) <P -In(n) —c . (4)

Since T'(n) = In(t(n)), we have t(n) = exp(T'(n)). If we apply exp(z) to all three terms in the
inequality (4), we conclude that C_ - n® < t(n) < C, - nf for some positive constants C_ and C,
— i.e., that t(n) = ©(nf). The proposition is proven.

Comment. When ¢~ = ¢t = 0, a function satisfying the formula (2) is called a totally additive
number theoretic function; see, e.g., [1]. It is known (see, e.g., [1, 2]) that every monotonic totally
additive number theoretic function has the form 7T'(n) = - In(n). Our result uses the main idea
from the proof of this statement, but our result extends it to the general case when the values ¢~
and ¢t may be different from 0.

Shor’s algorithm: open problem. Shor’s algorithm enables us to factorize an integer n in
polynomial time by using [log(n)] qubits. What if we have fewer qubits? For example:

e What if we have log(n) — C qubits, for some constant C'? is a polynomial-time algorithm still
possible? our conjecture: yes (see general open problem below).

e What if we have log(n) — C - log(log(n)) qubits, for some constant C? is a polynomial-time
algorithm still possible? our conjecture: yes (similarly, see general open problem below);

e What if we have « - log(n) qubits, for some @ < 1?7 is a polynomial-time algorithm still
possible? our conjecture: probably not. Can we still have a speedup compared to the best
classical algorithm? our conjecture: probably yes, but perhaps difficult to prove.

Deutsch-Josza algorithm: open problem. Since Shor’s algorithm is rather complex, it may
be instructive to analyze the effect of using fewer qubits on this algorithm without trying other
(simpler) quantum computing algorithms first. A natural starting point may be the historically
first quantum algorithm — Deutsch-Josza algorithm.

This algorithm solves the following problem: we have a function f(z1,...,z,) of n Boolean
variables, and we know that this function is either constant or “balanced” (takes value “true” on
exactly half of 2" possible Boolean vectors); we need to know whether it is constant or balanced.
Quantum algorithm solves this problem in one call to f (i.e., one computation of f) by using n+ 1
qubits (with probability 1).

Although this algorithm may not have as much practical promise as Grover’s and Shor’s al-
gorithms, Deutsch-Josza algorithm is a spectacular example of the power of quantum computing,
because the best possible deterministic algorithm for solving this problem requires at least 2" /2+1
calls to f. (A non-quantum probabilistic algorithm solves this problem in finitely many steps, but
this number of steps increases as we decrease the allowed probability of an error.)

What if we have only n qubits? only n — C' qubits for some constant C? only n — C - log(n)
qubits? only « - n qubits, for some a < 17

General open problem. We can ask a general question: Suppose that for some problem, we have
a quantum algorithm that, for every input of length n, uses ¢(n) qubits to solve the problem in
time < t(n) (either solves it with probability 1, or with a probability exceeding a certain threshold

po =~ 1). If, for some n, instead of ¢ def q(n) qubits, we only have ¢’ < ¢ qubits, what is the smallest
time ¢’ that we need to solve the same problem? Can we have a general approach that could be
applied to all such algorithms?

A similar situation occurs if, instead of qubits, we had “guessed” bits (as in nondeterministic
algorithms for solving problems from the class NP). Then, if we have a program that runs in time ¢
with ¢ guess bits, and we are only allowed ¢’ < ¢ bits, then we can try all 29=4 possible combinations
of missing bits and get the same result in time #' = ¢ - 204,

A natural question is: is t’ equal to ¢ - 24=4" for quantum computations as well?

Acknowledgments. This work was supported in part by NASA under cooperative agreement
NCC5-209 and grant NCC2-1232, by the Future Aerospace Science and Technology Program

(FAST) Center for Structural Integrity of Aerospace Systems, effort sponsored by the Air Force
Office of Scientific Research, Air Force Materiel Command, USAF, under grant F49620-00-1-0365,
by NSF grants CDA-9522207, EAR-0112968, EAR-0225670, and 9710940 Mexico/Conacyt, and by
IEEE/ACM SC2001 and SC2002 Minority Serving Institutions Participation Grants. This work
was also partly supported by a research grant from the Army Research Laboratories.

References

[1] J. Aczél and J. Dhombres, Functional equations in several variables, with applications to mathe-
matics, information theory, and to the natural and social sciences, Cambridge University Press,
Cambridge, 1991.

[2] P. Erdés, “On the distribution of additive functions”, Ann. of Math., 1946, Vol. 2, pp. 1-20.

[3] L. Grover, “A fast quantum mechanical algorithm for database search”, Proceedings of the 28th
Annual ACM Symposium on Theory of Computing, 1996, pp. 212-219.

[4] L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack”, Phys. Rev.
Lett., 1997, Vol. 79, No. 2, pp. 325-328.

[6] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge
University Press, Cambridge, U.K., 2000.

[6] P.Shor, “Algorithms for quantum computation: Discrete logarithms and factoring”, Proceedings
of the 35th Annual IEEE Symposium on Foundations of Computer Science, 1994, pp. 124-134.

