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Abstract

Born about three decades ago, Kolmogorov Com-
plexity Theory (KC) led to important discoveries
that, in particular, give a new understanding of the
fundamental problem: interrelations between classi-
cal continuum mathematics and reality (physics, bi-
ology, engineering sciences, . . . ). Crudely speaking,
it enables us to better distinguish between mathe-
matical possible (possible abnormal) and physically
possible situations.

We show that this formalization is not only in good
accordance with theoretical physics, but it can also
be applied to robust control: instead of requiring
that the control work for all mathematically possible
situations, we only require that the control works for
all “non-abnormal” situations.

1 Introduction

1.1 Problem that Led to the Notion of Kol-
mogorov Complexity
Traditional mathematical approach to the analysis of
physical systems implicitly assumed that all mathe-
matically possible integers are physically possible as
well, and all mathematically possible trajectories are
physically possible. Traditionally, this approach has
worked well in physics and in engineering, but it does
not lead to a very good understanding of chaotic sys-
tems, which, as is now known, are extremely impor-
tant in the study of real-world phenomena ranging
from weather to biological systems.

Kolmogorov was among the first who started, in the
1960s, analyzing the discrepancy between the physi-
cal and the mathematical possibility. He pinpointed
two main reasons why a mathematical correct solu-
tion to the corresponding system of differential or

difference equation can be not physically possible:

First, there is a difference in understanding the term
“random” in mathematics and in physics. For exam-
ple, in statistical physics, it is possible (probability is
positive) that a kettle, when placed on a cold stove,
will start boiling by itself. From the viewpoint of a
working physicist, however, this is absolutely impos-
sible. Similarly, a trajectory which requires a highly
unprobable combination of initial conditions may be
mathematically correct, but, from the physical view-
point, it is impossible.

Second, the traditional mathematical analysis tacitly
assumes that all integers and all real numbers, no
matter how large or how small, are physically pos-
sible. From the engineering viewpoint, however, a
number like 101010

is not possible at all, because it
exceeds the number of particles in the Universe. In
particular, solutions to the corresponding systems of
differential equations which lead to some numbers
may be mathematically correct, but they are physi-
cally meaningless.

Attempts to formalize these restrictions have been
started by Kolmogorov himself. These attempts are
at present, mainly undertaken by researchers in the-
oretical computer science who face a similar prob-
lem of distinguishing between theoretically possible
“algorithms” and feasible practical algorithms which
can provide the results of their computations in rea-
sonable time.

The goal of the present paper is to use the experience
of formalizing these notions in theoretical computer
science to enhance the formalization of similar con-
straints in engineering and physics.



1.2 What Is Kolmogorov Complexity
This research is mainly concentrated around the no-
tion of Kolmogorov complexity. This notion was
introduced independently by several people: Kol-
mogorov in Russia and Solomonoff and Chaitin in
the US. Kolmogorov used it to formalize the notion
of a random sequence. Probability theory describes
most of the physicist intuition in precise mathemat-
ical terms, but it does not allow us to tell whether
a given finite sequence of 0’s and 1’s is random or
not. Kolmogorov defined a complexity K(x) of a bi-
nary sequence x as the shortest length of a program
which produces this sequence. Thus, a sequence
consisting of all 0’s or a sequence 010101. . . have a
very short Kolmogorov complexity because these se-
quences can be generated by simple programs, while
for a sequence of results of tossing a coin, proba-
bly the shortest program is to write print(0101. . . )
and then reproduce the entire sequence. Thus, when
K(x) is approximately equal to the length len(x) of
a sequence, this sequence is random, otherwise it is
not. The best source for Kolmogorov complexity is
a book [12].

1.3 Beyond Traditional Kolmogorov Com-
plexity
The definition of K(x) only takes into consideration
the length len(p) of a program p. From the physical
viewpoint, it is also important to take into consid-
eration its running time t(p), because if it exceeds
the lifetime of the Universe, this algorithm makes no
practical sense. This development is in line with Kol-
mogorov’s original idea that some natural numbers
which are mathematically possible (like 101010

) are
not feasible and thus, should not considered as feasi-
ble. Corresponding modifications are also described
in the above book. We plan to show how to use the
corresponding ideas in physics and engineering.

Specifically, these ideas lead us to the following im-
provements in comparison with the traditional math-
ematical approaches to science and engineering, ap-
proaches that do not take into consideration the dif-
ference between “inhuman” (“abnormal”) and “hu-
man” (“normal”) numbers:

1.3.1 Physically impossible events be-
come “mathematically impossible” as well:
From the physical and engineering viewpoints, a cold
kettle placed on a cold stove will never start boiling
by itself. However, from the traditional probabilistic
viewpoint, there is a positive probability that it will.
Our new approach makes the mathematical formal-
ism consistent with common sense: crudely speaking,
the probability is so small that this event is simply
physically impossible.

1.3.2 Physically possible indirect mea-
surements become “mathematically possible”
as well: In engineering and in physics, we often
cannot directly measure the desired quantity; in-
stead, we measure related properties and then use
the measurement results to reconstruct the measured
values. In mathematical terms, the corresponding re-
construction problem is called the inverse problem.
In practice, this problem is efficiently used to recon-
struct the signal from noise, to find the faults within
a metal plate, etc. However, from the purely math-
ematical viewpoint, most inverse problems are ill-
defined meaning that we cannot really reconstruct
the desired values without making some additional
assumptions. We show that the only assumption we
need to make is that the reconstructed signal, etc.,
is “normal”, and immediately, the problem becomes
well-defined in the precise mathematical sense.

We also show that this idea naturally leads to an
emergence of chaos, and it also helps to deal with
systems that display chaotic behavior.

2 Main Idea

2.1 Physicists Assume that Initial Conditions
and Values of Parameters Are Not Abnormal
To a mathematician, the main contents of a physical
theory is the equations. The fact that the theory
is formulated in terms of well-defined mathematical
equations means that the actual field must satisfy
these equations. However, this fact does not mean
that every solution of these equations has a physical
sense. Let us give three examples:

Example 1 At any temperature greater than abso-
lute zero, particles are randomly moving. It is the-
oretically possible that all the particles start moving
in one direction, and, as a result, the chair that I am
sitting on starts lifting up into the air. The probabil-
ity of this event is small (but positive), so, from the
purely mathematical viewpoint, we can say that this
event is possible but highly unprobable. However, the
physicists say plainly that such an abnormal event is
impossible (see, e.g., [4]).

Example 2 Another example from statistical
physics: Suppose that we have a two-chamber
camera. The left chamber if empty, the right one has
gas in it. If we open the door between the chambers,
then the gas would spread evenly between the two
chambers. It is theoretically possible (under appro-
priately chosen initial conditions) that the gas that
was initially evenly distributed would concentrate
in one camera, but physicists believe this abnormal



event to be impossible. This is a general example
of what physicists call irreversible processes: on
the atomic level, all equations are invariant with
respect to changing the order of time flow t → −t).
So, if we have a process that goes from state A to
state B, then, if at B, we revert all the velocities
of all the atoms, we will get a process that goes
from B to A. However, in real life, many processes
are clearly irreversible: an explosion can shatter a
statue, but it is hard to imagine an inverse process:
an implosion that glues together shattered pieces into
a statue. Boltzmann himself, the 19 century author
of statistical physics, explicitly stated that such
inverse processes “may be regarded as impossible,
even though from the viewpoint of probability theory
that outcome is only extremely improbable, not
impossible.” [1].

Example 3 If we flip a coin 100 times in a row, and
get heads all the time, then a person who is knowl-
edgeable in probability would say that it is possible,
while an engineer (and any person who uses common
sense reasoning) would say that the coin is not fair,
because if it is was a fair coin, then this abnormal
event would be impossible.

In all the above cases, we knew something about
probability. However, there are examples of this type
of reasoning in which probability does not enter into
picture at all. For example, in general relativity, it is
known that for almost all initial conditions (in some
reasonable sense) the solution has a singularity point.
Form this, physicists conclude that the solution that
corresponds to the geometry of the actual world has
a singularity (see, e.g., [13]): the reason is that the
initial conditions that lead to a non-singularity solu-
tion are abnormal (atypical), and the actual initial
conditions must be not abnormal.

In all these cases, the physicists (implicitly or explic-
itly) require that the actual values of the fields must
not satisfy the equations, but they must also satisfy
the additional condition: that the initial conditions
should not be abnormal.

2.2 The Notion of “Not Abnormal” Is Diffi-
cult to Formalize
At first glance, it looks like in the probabilistic case,
this property has a natural formalization: if a prob-
ability of an event is small enough (say, ≤ p0 for
some very small p0), then this event cannot happen.
For example, the probability that a fair coin falls
heads 100 times in a row is 2−100, so, if we choose
p0 ≥ 2−100, then we will be able to conclude that
such an event is impossible. The problem with this
approach is that every sequence of heads an details

has exactly the same probability. So, if we choose
p0 ≥ 2−100, we will thus exclude all possible se-
quences of heads and tails as physically impossible.
However, anyone can toss a coin 100 times, and this
prove that some sequences are physically possible.

Historical comment: This problem was
first noticed by Kyburg under the name of Lottery
paradox [11]: in a big (e.g., state-wide) lottery, the
probability of winning the Grand Prize is so small,
then a reasonable person should not expect it. How-
ever, some people do win big prizes.

2.3 How to Formalize the Notion of “Not Ab-
normal”: Idea
“Abnormal” means something unusual, rarely hap-
pening: if something is rare enough, it is not typical
(“abnormal”). Let us describe what, e.g., an abnor-
mal height may mean. If a person’s height is ≥ 6
ft, it is still normal (although it may be considered
abnormal in some parts of the world). Now, if in-
stead of 6 pt, we consider 6 ft 1 in, 6 ft 2 in, etc,
then sooner or later we will end up with a height
h such that everyone who is higher than h will be
definitely called a person of abnormal height. We
may not be sure what exactly value h experts will
call “abnormal”, but we are sure that such a value
exists.

Let us express this idea is general terms. We have a
Universe of discourse, i.e., a set U of all objects that
we will consider. Some of the elements of the set U
are abnormal (in some sense), and some are not. Let
us denote the set of all elements that are typical (not
abnormal) by T . On this set, we have a decreasing
sequence of sets A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . with
the property that ∩An = ∅. In the above example,
U is the set of all people, A1 is the set of all people
whose height is ≥ 6 ft, A2 is the set of all people
whose height is ≥ 6 ft 1 in, A2 is the set of all people
whose height is ≥ 6 ft 2 in, etc. We know that if we
take a sufficiently large n, then all elements of An

are abnormal (i.e., none of them belongs to the set T
of not abnormal elements). In mathematical terms,
this means that for some n, we have An ∩ T = ∅.

In case of a coin: U is the set of all infinite sequences
of results of flipping a coin; An is the set of all se-
quences that start with n heads but have some tail
afterwards. Here, ∪An = ∅. Therefore, we can con-
clude that there exists an n for which all elements of
An are abnormal. So, if we assume that in our world,
only not abnormal initial conditions can happen, we
can conclude that for some n, the actual sequence
of results of flipping a coin cannot belong to An.
The set An consists of all elements that start with
n heads and a tail after that. So, the fact that the



actual sequence does not belong to An means that if
an actual sequence has n heads, then it will consist
of all heads. In plain words, if we have flipped a coin
n times, and the results are n heads, then this coin
is biased: it will always fall on heads.

Let us describe this idea in mathematical terms [6,
10]. To make formal definitions, we must fix a formal
theory: e.g., the set theory ZF (the definitions and
results will not depend on what exactly theory we
choose). A set S is called definable if there exists
a formula P (x) with one (free) variable x such that
P (x) if and only if x ∈ S.

Crudely speaking, a set is definable if we can define
it in ZF. The set of all real numbers, the set of all
solutions of a well-defined equations, every set that
we can describe in mathematical terms is definable.

This does not means, however, that every set is de-
finable: indeed, every definable set is uniquely de-
termined by formula P (x), i.e., by a text in the lan-
guage of set theory. There are only denumerably
many words and therefore, there are only denumer-
ably many definable sets. Since, e.g., there are more
than denumerably many set of integers, some of them
are thus not definable.

Definition 1 A sequence of sets A1, . . . , An, . . . is
called definable if there exists a formula P (n, x) such
that x ∈ An if and only if P (n, x).

Definition 2 Let U be a universal set.

• A non-empty set T ⊆ U is called a set of typical
(not abnormal) elements if for every definable
sequence of sets An for which An ⊇ An+1 and
∩An = ∅, there exists an N for which AN ∩T =
∅.

• If u ∈ T , we will say that u is not abnormal.

• For every property P , we say that “normally, for
all u, P (u)” if P (u) is true for all u ∈ T .

It is possible to prove that abnormal elements do ex-
ist [6]; moreover, we can select T for which abnormal
elements are as rare as we want: for every probabil-
ity distribution p on the set U and for every ε, there
exists a set T for which the probability p(x 6∈ T ) of
an element to be abnormal is ≤ ε:

Proposition 1 For every probability measure µ on
a set U (in which all definable sets are measurable),
and for every ε > 0, there exists a set T of typical
elements for which µ(T ) > 1− ε.

Proof: Similarly to the above argument, one can
show that there are no more than countably many
definable sequences of sets {An}. Thus, there are at
most countably many definable decreasing sequences
a = {An} for which ∩An = ∅. Therefore, we can
order all such sequences into a sequence of sequences:
a(1) = {A(1)

n }, a(2) = {A(2)
n }, . . . For each of these

sequences a(k), since ∩A
(k)
n = ∅, we have µ(A(k)

n ) →
0 as n → ∞, hence there exists an Nk for which
µ(A(k)

Nk
) < ε/2k.

Let us show that as T , we can take the complement
U \ A to the union A of all the sets A

(k)
Nk

. Indeed,
by our choice of T , for every definable decreasing
sequence a(k) = {A(k)

n }, there exists an N , namely
N = Nk, for which T ∩A

(k)
N = ∅.

To complete the proof, we must show that µ(T ) >

1−ε. Indeed, from µ(A(k)
Nk

) < ε/2k, we conclude that

µ(A) = µ(∪A
(k)
Nk

) ≤ ∑
µ(A(k)

Nk
) <

∑
ε/2k = ε, and

therefore, µ(T ) = µ(U \A) = 1− µ(A) > 1− ε.

3 Applications

3.1 Restriction to “Not Abnormal” Solutions
Leads to Regularization of Ill-Posed Problems
An ill-posed problem arises when we want to recon-
struct the state s from the measurement results r.
Usually, all physical dependencies are continuous, so,
small changes of the state s result in small changes in
r. In other words, a mapping f : S → R from the set
of all states to the set of all observations is continu-
ous (in some natural topology). We consider the case
when the measurement results are (in principle) suf-
ficient to reconstruct s, i.e., the case when the map-
ping f is 1-1. That the problem is ill-posed means
that small changes in r can lead to huge changes in
s, i.e., that the inverse mapping f−1 : R → S is not
continuous.

We will show that if we restrict ourselves to states
S that are not abnormal, then the restriction of f−1

will be continuous, and the problem will become well-
posed.

Definition 3 A definable metric space (X, d) is
called definably separable if there exists a definable
everywhere dense sequence xn ∈ X.

Proposition 2 Let S be a definably separable de-
finable metric space, T be a set of all not abnormal
elements of S, and f : S → R be a continuous 1-1
function. Then, the inverse mapping f−1 : R → S is
continuous for every r ∈ f(T ).



In other words, if we know that we have observed
a not abnormal state (i.e., that r = f(s) for some
s ∈ T ), then the reconstruction problem becomes
well-posed. So, if the observations are accurate
enough, we get as small guaranteed intervals for the
reconstructed state s as we want.

Proof: It is known that if a set K is compact, then
for any 1-1 continuous function K → R, its inverse
is also continuous. Thus, to prove our result, we will
show that the closure T of the set T is compact.

A set K in a metric space S is compact if and only it
is closed, and for every positive real number ε > 0,
it has a finite ε-net, i.e., a finite set K(ε) with the
property that every s ∈ K, there exists an element
s(ε) ∈ K(ε) that is ε-close to s.

The closure K = T is clearly closed, so, to prove
that this closure is compact, it is sufficient to prove
that it has a finite ε-set for all ε > 0. For that, it is
sufficient to prove that for every ε > 0, there exists
a finite ε-net for the set R.

If a set T has a ε-net T (ε), and ε′ > ε, then, as one
can easily see, this same set T (ε) is also a ε′-net for
T . Therefore, it is sufficient to show that finite ε-nets
for T exist for ε = 2−k, k = 0, 1, 2, . . .

Let us fix ε = 2−k. Since the set S is definably sepa-
rable, there exists a definable sequence x1, . . . , xi, . . .
which is everywhere dense in S. As An, we will now
take the complement to the union Un of n closed
balls Bε(x1), . . . , Bε(xn) of radius ε with centers in
x1, . . . , xn.

Clearly, An ⊇ An+1. Since xi is an everywhere dense
sequence, for every s ∈ S, there exists an n for which
s ∈ Bε(xn) and for which, therefore, s ∈ Un and
x 6∈ An = S \ Un. Hence, the intersection of all the
sets An is empty.

Therefore, according to the definition of a set of typi-
cal elements, there exists an N for which T∩AN = ∅.
This means that T ⊆ UN . This, in its turn, means
that the elements x1, . . . , xN form an ε-net for T . So,
the set T has a finite ε-net for ε = 2−k.

Comment: To actually use this result, we
need an expert who will tell us what is abnormal.

3.2 Every Physical Quantity is Bounded

Proposition 3 If U is a definable set, and f : U →
R is a definable function, then there exists a number
C such that if u ∈ U is not abnormal, then |f(u)| ≤
C.

Proof: We can take An
def= {u | |f(u)| > n}; then,

∩An = ∅, hence there exists N for which AN∩T = ∅,
i.e., for which, once u ∈ T , we have u 6∈ AN – i.e.,
|f(u)| ≤ N .

If we use the physicists’ idea that abnormal initial
conditions and/or abnormal values of parameters are
impossible, then we can make the following conclu-
sions:

3.2.1 Special relativity: If as U , we take
the set of all the particles, and as f , we take velocity,
then we can conclude that the velocities of all (not
abnormal) particles is bounded by some constant C.
This is exactly what special relativity says, with the
speed of light as C.

3.2.2 Cosmology: If we take the same state
U , and as f , take the distance from the a particle
u to some fixed point in the Universe, then we can
conclude that the distances between particles in the
Universe are bounded by a constant C. So, the Uni-
verse is finite. Similarly, if we take a time interval
between the events as f , we can conclude that the
Universe has a finite lifetime.

3.2.3 Why particles with large masses do
not exist: If we take mass of the particle as f , then
we can conclude that the masses of all particles are
bounded by some constant C. This result explains
the following problem:

• Several existing particle classification schemes
allow particles with arbitrarily large masses [2].
E.g., in Regge trajectory scheme, particles form
families with masses mn = m0 + n · d for some
constants m0 and d. When n → ∞, we have
mn →∞.

• Only particles with relatively small masses have
been experimentally observed (see, e.g., [14]).

These particles with large masses, that are difficult
to wed out using equations only, can be easily weeded
out if use the notion of “not abnormal”.

3.2.4 Dimensionless constants are usu-
ally small: This is the reason why engineers and
physicists can safely estimate and neglect, e.g.,
quadratic (or, in general, higher order terms) in
asymptotic expansions, even though no accurate es-
timates on the coefficients on these terms is known
[5]. In particular, such methods are used in quantum
field theory, where we add up several first Feynman
diagrams [3]; in celestial mechanics [15], etc.



3.3 Chaos Naturally Appears
Restriction to not abnormal also explains the origin
of chaotic behavior of physical systems. In mathe-
matical terms, chaos means, in particular, that after
some time, the states of the system get close to the
so-called strange attractor, i.e., a set whose sections
are completely disconnected set.

Definition 4 A set S in a metric space X is called
completely disconnected if for every s1, s2 ∈ S, if
s1 6= s2, then there exist open sets S1 and S2 such
that s1 ∈ S1, s2 ∈ S2, S1 ∩S2 = ∅, and S ⊆ S1 ∪S2.

In other words, every two points belong to different
topological components of the set S. The relation-
ship between this definition and typical elements is
given by the following result:

Proposition 4 In a definable separable metric
space, the set of typical elements is completely dis-
connected.

Proof: Let s1, s2 ∈ T , and s1 6= s2. Since
both points si are definable, the distance d

def=
d(s1, s2) between them is definable as well. Let
us take An

def= {x | d/2 < d(s1, x) ≤ d/2 + 2−n};
then ∩An = ∅, hence there exists an N for which
AN ∩ T = ∅, i.e., for which for every x ∈ T , either
d(s1, x) ≤ d/2 (hence d(s1, x) < d/2 + 2−(N+1)) or
d(s1, x) > d/2 + 2−N . Thus, the desired property
holds for S1 = {x | d(s1, x) < d/2 + 2−(N+1)} and
S2 = {x | d(s1, x) > d/2 + 2−N}: clearly, s1 ∈ S1,
s2 ∈ S2, S1 ∩ S2 = ∅, and S ⊆ S1 ∪ S2.

So, if we assume (as physicists do) that abnormal
states are impossible, then we immediate arrive at
the chaotic dynamics.

3.4 Potential Applications to Robust Control
Robust control, with its emphasis on worst-case sit-
uations, is, in many practical situations, too conser-
vative. It is, in principle, possible to improve the sit-
uation if, instead of requiring that the control work
for all mathematically possible situations, we only
require that the control works for all non-abnormal
situations.
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