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ABSTRACT

Several techniques are known for non-destructive testing of aerospace structures, such as pulse echo, Eddy
current, magnetic resonance, etc. Each of these techniques detects some faults but misses others, so it is
desirable to combine (fuse) the results of these techniques. Several methods of data fusion are known. To
improve the quality of fault detection, we modified the straightforward statistical method as follows: (1) we
computed mean and variance iteratively: detected faults are excluded form the computation on the next
iteration; (2) we treated the plate’s edge and the inside separately; (3) we dismissed measurements in which
only one technique detects a fault as possibly erroneous. The resulting method indeed leads to a much better
fault detection.
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1. INTRODUCTION

Testing structural integrity of aerospace structures is an important practical problem (see, e.g., Ferregut et
al.?). Some of the faults can be detected visually, but other (sometimes potentially dangerous) faults do not
show up during the visual inspection. To detect such faults, we must use some indirect (non-destructive)
testing techniques.

Several such techniques are known, such as pulse echo, Eddy current, magnetic resonance, etc. All these
techniques aim at determining whether there is a fault, and if there are faults, what is the location and the size
of each fault. Each of these techniques detects some faults but misses others, so it is desirable to combine (fuse)
the results of these techniques. In addition to detecting faults, all the images produced by these techniques
come with a lot of noise; therefore, the desired fusion technique must also decrease the noise level.

2. TEST STUDY

To test ability of different NDE techniques, Boeing developed a benchmark plate. It is a 11” x 11" B-52
plate which contains artificially induced smooth-shaped (circular) and angular-shaped (square) faults of four
different sizes, both inside and on the edge. In total, we have 16 faults: 8 squares and 8 circles. Of these 16
faults, 8 are inside the plate: four squares of sides 1/2", 3/8", 1/4", and 1/8"; and four circles of diameters
1/2",3/8",1/4", and 1/8"; and 8 are of the exact same size but on the edge of the plate: four squares of sides
1/2",3/8",1/4" and 1/8"; and four circles of diameters 1/2", 3/8",1/4", and 1/8".

On this plate, the following quantities are measured: Pulse Echo (PEO and PE1) corresponding to different
time delays, Eddy Current (EC), and Magnetic Resonance (RES0O, RES1, RES2, and RES3). PE and RES
return two components — real and imaginary — for each point. Empirical analysis shows that considering the
magnitudes of the corresponding complex values does not improve the quality of fault detection. Therefore,
for each of these complex-valued measurements, we only consider phases.
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3. EXISTING METHODS OF FAULT DETECTION
3.1. Fault Detection Based on a Single Image (i.e., on Measurement of a Single Type)

The general idea of the traditional approach to fault detection is as follows. For each image i, we compute the
(arithmetic) average a; of all the values, and the mean square (standard) deviation o; of the signal z;(A) from
its average a;. In accordance with the standard statistical techniques (see, e.g., Wadsworth!®), we can then
consider points A at which the value z;(A) is outside of the “two sigma” interval [a; — 20;, a; + 20;] as possible
faults. In other words, we compute the “normalized” values z;(4) = (z;(A) — a;)/0;, and consider points A
for which |z;(A)| > 2 to be possible fault locations.

By applying this idea to each of the seven image, we had the following results:

e PEO well detected edge faults, and not other faults.

e PEI detected the boundaries of square edge faults and all circular faults.

o ECO detected inside circular faults and nothing else.

¢ The phase of RESO detected all circular faults near the plate’s edge.

e The phases RES1 and RES2 also detected (but more fuzzily) all circular faults near the plate’s edge.
e The phase of RES3 detected all square faults.

In addition to detecting the faults, all these methods lead to several “false positives”, i.e., no-fault points
erroneously marked as faults. In particularly, practically all of these methods marked several points on the
edge of the plate as faults.

3.2. The Need for Data Fusion

In short, none of the seven images detected all the faults. However, every fault was detected by at least one
image. It is therefore desirable to combine (fuse) the information contained in these seven images. We tried
all fusion methods described in Gros.?

3.3. Union Method

The first — union — method is motivated by the fact that since every fault is detected by one of the measurements,
it is natural to declare a point a fault if at least one of the 7 measurements indicates that this point is a fault.
For this method, 195 out of 665 fault points were undetected (false negatives); also, we have 3,470 false
positives.

3.4. Average Method

In the union method, to decide whether a give point A is a fault, we only used one bit of information about
each of 7 measurements i: whether this point A is classified as a fault by this measurement, i.e., whether
|2;(A)| > 2. To improve the quality of data fusion, it is therefore desirable to use one of the continuous fusion
methods that combines the actual values z;(A) into a single “fused” value z(A) = f(21(4),...,2,(A)), and
then compares the resulting value z(A) with a threshold. If one of the values z;(A) is very large, the point is
probably a fault; problems appear when the values z;(A) are reasonably small; for such points, we can ignore
quadratic and higher order terms in the expansion of f and consider f to be linear: f = ) w; - 2z; for some
weights w;. Since there is no reason to believe that one of the 7 measurements is better than the others, it
makes sense to consider equal weights w;. In this case, the use of the fused value is equivalent to using the
(arithmetic) average Z(A) of z;(A). The standard deviation of an average of n values is 1/4/n, so, following 20
rule, we mark A as a fault if [z2(A4)| > 2/+/n.

This average method leads to 510 false negatives and 778 false positives: fewer false positives but more false
negatives than for the union. To compare the union and average methods, we can use k - o for k # 2: e.g., fix
the number of false negatives, for each method, choose k # 2 that leads to exactly this many false negatives
FN, and compare the resulting number of false positives. Depending on FN, the average method produces
slightly better or slightly worse results, but never much better ones.



3.5. Probabilistic, Neural, and Fuzzy Approaches

Gros® describes three other approaches to information fusion: probabilistic, neural, and fuzzy. To apply
probabilistic or neural methods to detect faults on the plate, we need to collect a sufficient amount of data
about the faults. In aging and futuristic aircraft design we do not have this information:

e For aging aircraft, B-52 was designed 50 years ago. We have statistics from the aircraft for the last 50
years. After these 50 years of service, to detect faults on the aircraft for the next 3 years, we cannot use
the statistics we have for the last 50 years, because during the service the aircrafts material properties
alter because of the wear, tear, and cracks.

e In case of futuristic aircraft design, these designs are entirely different from the existing designs, so we
cannot use the statistics we have from the other aircrafts to detect faults on our new ones.

Fuzzy logic converts expert knowledge (usually, rules), expressed in natural language, into computer algorithms.
For fault detection in aging aircraft, experts cannot provide us with meaningful rules, so we cannot use this
approach.

3.6. Dempster-Shafer Approach

Another approach described in Gros® is Dempster-Shafer (DS) approach. In this method, in the general spirit
of statistics, for every measurement i and for every point A, we use the value z;(A) not just to mark or not
to mark A as a fault, but rather to gauge the probability p;(A) that A is a fault. The larger z;(A), the more
probable it is that A is a fault, so p;(A) = fi(2;(A)) for some increasing function f(z). The simplest function
is a linear function. When z;(A) = a; and z;(A) = 0, it is most certainty not a fault; when z;(A) takes its
largest possible value Z;, it is most probably a fault. So, f;(z) is a linear function with f(0) = 0 and f(Z;) =1,
hence f(2) = z/Z;.

In many practical measurements, deviations from average are only in one direction of increasing z;(A) and
hence, z;(A). For such measurements, we can safely assume that values z;(A4) < a; do not represent fault, i.e.,
that f;(z) =0 for all z < 0.

We can now compute the plausibility PI(A) that point A is an outlier point as the probability that at least
one of the measurements detected point A as an outlier:

e the probability that, according to i-th measurement, point A is not an outlier point, is equal to 1 —p;(A);

e since different measurements detect different types of faults, it is natural to assume that the measurements
are statistically independent; then, the probability that point A is not an outlier point according to all
the measurements is equal to the product [],(1 — p;(4));

e finally, the probability that point A is an outlier point according to at least one measurement is equal to
PI(A) =1 —T[;(1 - pi(4)).

We can also compute the belief Bel(A) that there is a fault at a point A as the probability that all the
measurements detected the fault. Since the measurements are independent, this probability is equal to the
product Bel(A) = [],pi(4). The actual probability of A being a fault is somewhere within the interval
[Bel(A), PI(A)]. Gros® recommends to use the midpoint of this interval as the reasonable estimate for the
probability. Alas, the use of this midpoint leads to a much worse fault detection than union or average (even
if we use the actual CDF instead of a linear function f(z)).

3.7. Conclusion

So, among the existing methods, union and average are the best. Problem: there is still too many false positives
and false negatives, so we need a better fault detection method.



4. A NEW VERSION OF A DEMPSTER-SHAFER APPROACH

While analyzing why the traditional DS approach did not work, we noticed (see, e.g., Holguin®) that the results
are much better if as an estimate for the probability of a fault p(A), instead of the midpoint, we take the upper
(worst-case) endpoint PI(A) of this interval. In other words, we consider a point A a fault if PI(A) exceeds a
certain threshold ¢.

To compare this method with union and average methods, we fix the number of FN, change & (or threshold t)
in each method to get exactly this FN, and compare the number of false positives. By this comparison, the
DS method is better — but only slightly better — than union and average: e.g., for FN=75, we get 7022 FP for
union, 6941 for average, and only 6806 for DS. How can we further improve fault detection?

5. OUR FIRST IDEA: ITERATIVE APPROACH

The main drawbacks of the existing methods is that some faults are undetected. One reason is that we use 20
criteria, and in the computation of the average a; and of the standard deviation o; we include all the points A
including fault points, in which the value of the signal is very different from the expected normal value.

Hence, the computed o; is much larger than for the normal points. As a result, some true fault points —
which would have been detected by a correct (smaller) o; go undetected when we use this larger value.

In our test case, for some measurements, the values of x;(A) corresponding to most actual fault locations
are within 20; from the average. Thus, the resulting points are not recognized as fault locations.

To detect all the faults, we apply the iterative estimation:

e first, we use the traditional procedure and find some possible faults;
e then, we re-calculate a; and o; by omitting points known to be possible faults;

e we then check for new faults by using these better estimates for a; and oy,

(s)

and we continue these iterations until the subsequent values of a;’ and az(s) become close to each other, e.g.,

when |a{* Y — ! <0.1-a/” and |o0* 7 — 0!V <0.1- 07V,
As a result, we arrive at the following iterative algorithm. At each step s = 1,2,... of this algorithm:
(s)

i

(s)

e new approximations a; = and o; ' are computed for the desired values of a; and o;; and

e some points on the plate are marked as possible fault locations.

In the beginning, we do not know where the faults are, so no points are marked. Each step s consists of the
following two operations:

(s

i

o first, we compute the average a
plate;

) and the standard deviation oz(s) based on all un-marked points of the

(5).

e then, we check each un-marked point, and mark all the points for which |z;(A4) — a§5)| > 20,

The process stops when the subsequent values of ags) and JES) become close to each other, i.e., when
6™ — 6l <0140 and |0V =0l <0107,
This process is guaranteed to stop for the following reason: Once marked, a point remains marked; so the set

of all un-marked points can only shrink. We start with a finite number of un-marked points, so this shrinking
process has to stop.



The corresponding final values of ags) and ags) are then taken as the desired values of a; and 0;. As a

result, for each measurement ¢ and for each point A, we get a normalized value z;(4) = (z;(A) — a;)/0;.

Our histogram analysis confirmed that the value which are < 2 (i.e., which correspond to probably no-fault
locations) are distributed according to Gaussian distribution with the mean 0 and standard deviation 1. Thus,
for these points, the use of “two sigma” criterion is indeed justified.

We can use this ideas in all three methods: union, average, and DS. In all three cases, we get better fault
detection, but still not perfect one: all edge points are marked as faults. So, we need to continue improving
the method.

6. INFORMATION FUSION: TRADITIONAL STATISTICAL APPROACH

We have mentioned that we could not apply probabilistic data fusion methods because we did not know the
probabilities of different faults. However, now, since we know the distribution (Gaussian) of z;(A) for non-fault
points and we have assumed that the distributions corresponding to different measurements are independent,
we can use statistical data fusion.

For each measurement ¢, the distribution for non-fault points is Gaussian with 0 mean and unit standard
deviation. According to this normalized Gaussian distribution, for each value z;, the probability density is
proportional to exp(—(z;(4))?/2). Due to independence, the probability (density) that a non-fault point A can
have the normalized measured values z1(A), ..., 2,(A) is equal to the product of the probabilities corresponding
to different measurements, and is, therefore, proportional to

H exp(—(2i(4))?/2) = exp (—(1/2) ' Z(zz'(A))z) :

i=1

If this probability is too small, this means that we probably have a fault. Thus, the criterion for a fault is that
the above probability is < const; for some constant const;. By turning to logarithms, we can reformulate this
n

criterion is the equivalent simpler form Y (2;(A4))? > consts, or, equivalently, (1/n) - z:(zz(A))2 > consts. To
i=1
complete our description, it is therefore sufficient to select an appropriate constant consts.
In accordance with the traditional statistics, we should choose the threshold value consts in such a way that
for no-fault points, the probability of exceeding consts is &~ 5% (this corresponds to “two sigma” criterion).

For large n, according to the central limit theorem, the average 22(A) of the values (z;(A))? is distributed
approximately according to the normal distribution. The mean E[z2] of this distribution is equal to the
mathematical expectation E[2?] of 27, i.e., to E[2?] = 0?[z] = 1. The mean square E[(22 — E(22))?] = 0?[22]

of the difference between the average 22 and its mean 1 is equal to (1/n)-th of the mean square
E[(z2-1)?=E[2*']|-2-E[}]+1=30c*-1=2

(see, e.g., Wadsworth!®). Thus, the average 22 has the mean 1 and the standard deviation v/2/n. Hence, if
22(A) > 14 2-1/2/n, then we can be sure that there is fault at this point.
So, the criterion for declaring a point a fault location is (1/n) - Z(zz(A))2 >1+2-4/2/n.
i=1
n
In particular, for n = 7, we mark a point A as a fault if (1/n) - Z(zz (A))? > 2.07. The result is slightly
i=1
better than union, average, or DS, but edges are still marked as fault, and also, the resulting picture contains
a lot of separate points erroneously marked as faults.



7. OUR SECOND IDEA:
DISMISSING NON-CONFIRMED MEASUREMENT RESULTS

The reason why separate points are marked as outliers is that one of the fused measurement results may be
erroneous (caused by sensor malfunctions). An erroneous measurement result z;(A) will, most probably, be
drastically different from the mean a;. As a result, the corresponding value |z;(A)| will be large and the value
(2i(A))? will also be large. So, we will erroneously mark this point as an fault.

To avoid this situation, we should not mark the point A as a fault if only one measurement results in an
abnormal value z;(A). We would rather only consider a point as a fault, if at least two different measurements
detect an outlier there.

Thus, we arrived at the following modified method for combining the values of z;(A) for each point A:

e If at this point,

o only one of the values z;(A), 1 < i < n, indicates a fault (i.e., |2;(4)| > 2), and
e in a neighborhood of a certain radius d, no other measurement detects any fault (i.e., |z;(B)| < 2
for all j # ¢ and for all points B for which d(4, B) < d),

then we dismiss this large value of z;(A), and only combine the remaining values z;(A4), j # 1.

e For all other points A, we combine all the values z;(A), 1 <7 < n.

This idea drastically decreases the number of separate points marked as faults.

8. OUR THIRD IDEA: DETECTING FAULTS ON EDGES

How can we now decrease the number of false positives (FP) on edges? The reason for these FP is that for
fault detection, a typical fault may be a hole (or a thinning) in the plate, i.e., in effect, an extra edge.

To avoid showing edges as faults, we modified the above algorithm as follows: for points near the edges, we

compared the measured characteristic z;(A) not with the average value a; and standard deviation o; over the
(e)

entire plate, but only with the average a;’ and standard deviation age) taken over the edge points. Then, for

edge points A, we compute the normalized values z;(A4) as z;(A4) = (z;(A) — az(e)) / az(e), and apply the above
data fusion techniques.

9. RESULTING METHOD

In summary, our proposed fault detection method consists of the following steps:

e first, we apply the iterative method to the entire plate and to the edge zone only, and get values a;, o3,
age), and age); based on these values, we compute the normalized values z;(A);

e we dismiss large values z;(A) that are not confirmed by other measurements;

e then, for each point A, we combine the values z;(4) and declare A a fault if Y (2;(A))? exceeds the
corresponding threshold.



Figure 1. New Statistical Method

10. COMPARISON WITH THE PREVIOUS METHODS

In our sample plate, we considered all the points within 3/4" from the edge as edge points. The new method
did indeed drastically decrease the number of FN and FP, to the extent that we could see that there was a
minor error in the originally referencing of the images in comparison with the original plate: the reconstructed
fault locations are slightly shifted with respect to the actual ones. So, to make a fair comparison of different
methods, we first shift the resulting pictures to eliminate the reconstruction shifts.

We select the shift for which the total number of FN and FP is the smallest. For all the methods, the best
shift is s = 3. For this shift, with our method, we have 11 false negatives and 5986 false positives. To compare
with our DS method, e choose a threshold for which FN=11; for this threshold, the new method has 10281
false positives.

For comparison with union and average, the results are even better. In other words:

For the same amount of false negatives,
our new method leads to an almost 50% decrease
in the number of false positives.

One might argue that a possible reason for the success of the new method is that perhaps we tuned this method
to perform on the test plate only. To check whether the new method indeed better in general than the OH
method, we tested it on other test plates.

These two 250 mm x 250 mm test plates are manufactured by placing 24 thin layers of metal on top of
each other and subjecting the plates to high pressure. We had two plates with 12 faults on each plate, 4 faults
arranged systematically on each of the 3 rows: three circles of diameters 1", three circles of diameters 1/2",
three circles of diameters 1/4"”, and three amorphous faults.



Three circular faults from the first row are created by placing Teflon circles on the 6!* layer, the second
row on the 12!" layer and the third row on the 18" layer. The amorphous faults of are created by placing
balloons of diameter 1”. The upper fault was placed at the 6!* layer, the second at 12" layer, the third on
18t" layer. Under pressure, balloons change shape and circular faults shift.

An ultrasonic signal was sent to each plate, and the reflected pulse echo signals were detected at several
different moments of time. Different times of arrival of pulse echo correspond to 8 different depths.

To test our algorithm, we applied this algorithm and our version of DS method to both new plates. Since
we do not know the exact locations of the faults, we cannot directly compare the quality of fault detection
of these two methods. So, we used the following comparison technique. As already mentioned, because the
faults are slightly shifted, we do not know where exactly they are. For the amorphous faults, we do not know
the actual shape either, so, we only analyze circular faults. We know the 9 zones, each of which contains one
circular fault of given radius; within each of these zones, we found a circle of given radius which best fits the
set of points marked as faults in this zone — i.e., the circle for which the number of un-marked points within
this circle is the smallest.

We consider this circle as an (approximate) location of the actual fault, and we count false positives and
false negatives with respect to this location.

Similarly to the original test plate, to compare the new methods with other methods, we changed the
parameters of the other methods so that they lead to the same number of false negatives as our new method,
and compared the number of false positives.

For the first new plate, our method led to 59 false negatives and 1792 false positives; for the same number
of FN, the modified DS method led to 16272 FP - almost 10 times more (and even more for average and
union).

For the second new plate, our method led to 32 false negatives and 1315 false positives; for the same
number of FN, the modified DS method led to 24193 FP — almost 20 times more (and even more for average
and union). For both plates, the new method works much better.

11. TOWARDS FURTHER IMPROVEMENT: USING CORRELATION

To get a better fault detection, we can look into the assumptions that we made. One such assumption is the
statistical independence of different measurements.

Our statistical analysis shows that although some pairs of measurements are indeed almost independent,
there is some correlation between some other measurement results. For example, there is a sizable correla-
tion between two measurements RES 2 and RES 3 of resonance corresponding to different frequencies: the
corresponding correlation coefficient is ~ 54%.

n
For correlated normally distributed random variables, the probability is a function not of Z(zi(A))2, but

i=1
n on

of a more general quadratic form Z Z bij - zi(A) - z; (A), where the matrix b;; is the inverse to the covariance
i=1 j=1

matrix Cj; that describes the correlation between the measurements. Each element Cj; of this matrix is the

average of the product z;(A) - z;(A) over different points A. It is therefore reasonable to do the following:

e compute the elements of the covariance matrix Cj;;

o invert this matrix getting b;;; and then

n n n
e use the expression Z Z bij - zi(A) - zj(A) instead of the expression Z(zZ (A))? to detect the faults.

i=1 j=1 i=1



For the Boeing benchmark plate, in the edge zone, the distribution was not very homogeneous in the sense
that when we applied our algorithm to different parts of the edge zone, we got drastically different covariance
values C;;. Due to this non-homogeneity, we only applied the covariance method to the interior zone.

In the interior zone, we have an improvement, albeit a small one:

o instead of 1 false negative, we have 0 false negatives, and

e instead of 1,892 false positives, we have 1,862 false positives.

12. WE ARE ALSO INTERESTED IN THE SHAPE OF A FAULT

After the faults are detected and located, we need to make a decision on whether these faults are dangerous or
not. Whether a fault is dangerous depends on its shape: From mechanics, we know that the angular shapes
are subjected to more stress than the smooth ones; therefore, if the shape of the fault is angular, then this
fault is more dangerous than a smooth one. Thus, we need to know not only the locations of the faults, but
also their shapes.

The above methods reproduce the fault locations well, but the shapes of the reconstructed faults do not
always match the shapes of the actual faults: some of the square (dangerous) faults are reproduced as circular
(less dangerous) ones. How can we modify the above method so that it will better reproduce the shapes of the
faults?

The main reason why the above method is not very good in detecting shape in that in the above method,
our main objective was not to miss any faults — because faults are dangerous. Therefore, when there was good
evidence to support both hypotheses: that the pixel A is a fault and that the pixel A is not a fault — we tended
to declare it a fault. As a result, we “padded” the set of fault points with extra points — thus distorting the
shape of the set of all the fault points.

To get the shape better, it is therefore reasonable to treat the two hypotheses equally. Specifically, we
consider two hypotheses: Hj that a point is not a fault and H; that the point is a fault, and we use the
standard techniques of hypothesis testing (see, e.g., Wadsworth!%) to decide which of these hypotheses is more
probable: we choose H; if the ratio p;/pe of the probability of H; to the probability of Hy exceeds a certain
threshold ¢.

We already know how to describe the probability of Hy. It turns out that the distribution of z;(A) for fault
points is also approximately Gaussian — of course, with different values a{ and a{ . (We can estimate the values

a{ and azf by processing the points that are marked as outliers after the iterative algorithm for computing a;
and o;.) As a result, after taking logarithms of both sides, we can transform the criterion p;/pg > t to an

equivalent form
2
n zA )
3 (zim»‘z—(iz( ) ) >t
g

i=1 i
Same arguments as before lead us to choose the same value for ¢g.

Important point: to apply this algorithm, we need to have enough fault point to be able to conclusively
estimate a{ and azf ; there were enough such point in the interior of the plate, but not enough on the edge; so,
we only applied this method in the interior.

As a result, we got a better shape reconstruction. Specifically, to estimate the quality of the shape recon-
struction of a square fault, we took the set F' of all the points marked as faults in the neighborhood of an
actual fault, found the square S that is the closest to the resulting set (in the sense that the total number of
pixels in the symmetric set difference is the smallest), and then estimates the number of false positives and
false negatives by comparing F' and S. Similarly, for circular faults, we compare the set F' with the closest
circle C. Then, we take the total number of false positives over all 8 inside faults, and the total number of
false negatives over these faults. Here is the result of our comparison:



e When we apply this procedure to the original method, we got 2,443 false positives and 19 false negatives
inside the plate.

e For the new method, we got 1,895 false positives and 11 false negatives inside the plate.

NaskEdgelKHR BESTFIT

Figure 2. A Method for Reconstructing Shapes

Conclusion: the new method is indeed much better in reconstructing shapes.

13. CONCLUSIONS

Several techniques are known for non-destructive testing of aerospace structures, such as pulse echo, Eddy
current, magnetic resonance, etc. Each of these techniques detects some faults but misses others, so it is
desirable to combine (fuse) the results of these techniques. Several methods of data fusion are known; we
tested them on a benchmark sample: a plate from B-52 with artificially induced faults of different type and
location. The best fault detection came from the simplest possible method - union, where a point is declared
a fault if the result of one of its measurements differs from the norm. Alas, union leaves several fault points
undetected.

To improve the quality of fault detection, we modified the straightforward statistical method as follows:

e we computed mean and variance iteratively: detected outliers are excluded form the computation on the
next iteration;

e we treated the plate’s edge and the inside separately;

e we dismissed measurements in which only one technique detects an outlier as possibly erroneous.



The resulting method indeed leads to a much better detection. We also successfully tested our method on
other examples of composites with artificial fault at different depths. Taking correlation into consideration
leads to a slight further improvement.

Once a fault is located, it is important to decide how dangerous is this fault; to make this decision, we must
know the fault’s size and the fault’s shape. In this paper, we propose a modification of the above method that
is specifically tailored towards reconstructing these shapes.
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